Effects of ageing and exogenous melatonin on pituitary responsiveness to GnRH in rats

E. Diaz¹, D. Pazo², A. I. Esquifino² and B. Diaz¹

Introduction

Different factors are involved in the decline of the reproductive system with age. A decrease in ovarian function, as indicated by a reduced number of ovarian follicles and an associated increase in ovarian resistance to gonadotrophins, has been reported (Navot et al., 1994; Hofmann et al., 1995). The role of the hypothalamo–pituitary axis during the decline of reproductive function remains uncertain. Attenuated preovulatory LH surges related to a decrease in LH pulse amplitude with no change in pulse frequency have been found in female rats during reproductive ageing. This finding indicates that a deficient GnRH drive or reduced responsiveness to the GnRH signal, rather than altered timing of the signal, accounts for the age-related decline in reproductive function as reflected by an attenuated pro-oestrous LH surge in middle-aged rats (Matt et al., 1998). Studies in young and middle-aged female rats have indicated that reduced pituitary responsiveness to GnRH may contribute to the delayed and attenuated pro-oestrous LH surge that precedes reproductive senescence (Smith et al., 1982). Brito et al. (1994) concluded that a decrease in pituitary LH responsiveness to GnRH is only apparent in middle-aged rats that display attenuated pro-oestrous LH surges.

Ageing of the female reproductive system in rats is marked by discrete stages in the disappearance of regular oestrous cyclicity. Transition to acyclicity is characterized by increased LH pulse duration but decreased amplitude. Changes in pulse generator function may play a role in the age-related transition to acyclicity (Scarborough and Wise, 1990).

Melatonin has been found to inhibit ageing processes (Pierpaoli et al., 1997; Oaknin-Bendahan et al., 1995; Rasmussen et al., 1999) and its secretion is reduced in senescence (Waldbauser and Steger, 1986; Reiter, 1992). Evidence of hypothalamic melatonin receptor sites (Zisapel et al., 1987) and changes consistent with inhibition of GnRH release after hypothalamic melatonin implants (Glass and Knotts, 1987) have led to the hypothesis that melatonin modulates GnRH...
release. Melatonin administration to aged female rats induced an 18% increase in the concentration of mRNA encoding GnRH, completely reversing the effect of ageing (Li et al., 1997).

In the present study, the influence of melatonin treatment on pituitary responsiveness to GnRH and other reproductive hormones in female rats was investigated.

Materials and Methods

Young (3-month-old) (n = 40) and old (23-month-old) female Wistar rats (n = 38) from the authors' colony were used. Animals were housed under 12 h light:12 h dark cycles (lights on at 08:00 h) at a temperature of approximately 23°C. Standard rat chow and tap water were available ad libitum. The sexual cycle of the rats was checked by vaginal smears taken between 10:00 and 11:30 h for 15 days, to select rats showing 4–5 days repetitive oestrous cycles. Vaginal smears were also obtained from 23-month-old rats to determine their acyclicity. None of the aged rats showed 'repetitive oestrous cycles', instead they showed persistent oestrous (PE) (20.53%) or dioestrous phases (PD) (79.47%). These rats were then assigned to the following groups according to their reproductive status and treatment regimen: cyclic control (n = 18), cyclic melatonin-treated (n = 22), acyclic control (n = 18) and acyclic melatonin-treated (n = 20).

Melatonin treatment

Large doses (3 mg kg–1 body weight, administered s.c.) have been used to investigate the effects of melatonin on young and old (24-month-old) albino rats (Gorni et al., 1993), without adverse side-effects. In the present study, doses of 150 μg melatonin per 100 g body weight were used. Melatonin (M-5250, Sigma Chemical Co., St Louis, MO) was dissolved in a small volume of absolute ethanol (0.02 ml) and diluted in 0.9% NaCl to a dose of 150 μg per 100 g body weight. Melatonin injections were administered s.c. to cyclic and acyclic rats at the end of the light phase, between 18:30 and 19:00 h for 1 month. Control animals received a placebo solution (absolute ethanol in 0.9% NaCl). After this treatment, the rats were submitted to a GnRH test. After the GnRH test, melatonin or placebo treatment continued for another month to detect any change in the reproductive hormones during ageing.

Pituitary responsiveness to GnRH

The responsiveness to GnRH was tested between 16:00 and 18:00 h in cyclic 4-month-old rats during the dioestrous phase of the sexual cycle and in acyclic 24-month-old rats that had been treated with melatonin or placebo for 1 month. After a basal blood sample had been taken, the animals were given an i.v. bolus injection of 50 ng GnRH per 100 g body weight (Sigma Chemical Co.), diluted in saline. Injected volumes ranged from 0.05 to 0.1 ml. Additional blood samples were obtained at 15, 30, 60 and 90 min after the GnRH injection. One millilitre blood samples were obtained by jugular venepuncture under light ether anaesthesia. After each blood extraction, the cut performed on the skin was sutured. Immediately after blood sampling, each rat received its own red blood cells suspended in 0.9% saline to avoid anaemia. Blood samples were centrifuged at 700 g for 10 min and plasma was stored at –20°C until assayed for LH, FSH and prolactin.

Plasma concentrations of gonadotrophins, prolactin, oestradiol, and progesterone in cyclic and acyclic rats

Cyclic rats were decapitated at the end of the treatment period at the next dioestrus and blood samples were collected and processed as described above. Blood samples were obtained from 23-month-old acyclic rats by jugular venepuncture under light ether anaesthesia before the treatments were started. At the end of the treatment periods, the 25-month-old rats were decapitated and blood samples were collected and processed as described above. Plasma LH, FSH, prolactin, oestradiol and progesterone concentrations were measured.

Radioimmunoassay of gonadotrophins, prolactin, oestradiol, and progesterone

Plasma LH, FSH and prolactin concentrations were measured by specific radioimmunoassays using second antibody-facilitated separation and reagents kindly provided by the National Hormone and Pituitary Program (NIADDK, Bethesda, MD). The methods used have been described in detail by Tresguerres and Esquifino (1981), Esquifino et al. (1989) and Díaz et al. (1995).

Radioimmunoassay of oestradiol and progesterone

Plasma oestradiol and progesterone were measured by a 125I radioimmunoassay kit using commercial ImmunoChem™ coated tubes, according to the manufacturers’ instructions (ICN Pharmaceuticals, Inc., Costa Mesa, CA). The minimum amounts of oestradiol and progesterone significantly different from zero were 10 pg ml–1 and 0.15 ng ml–1, respectively. The assay maximal binding for oestradiol was 32.3%, and the intra-assay coefficient of variation was 5.5%. The maximal binding for progesterone was 50.1%, and intra-assay coefficient of variation was 4.9%.

Statistical analysis

Statistical analysis was performed using the SPSS (9.0) statistical program. Results were expressed as mean ± SEM. Statistical analysis was performed using Mann–Whitney test for comparisons among groups studied at each time point, to compare the following pairs of interest: cyclic control versus acyclic control rats, cyclic melatonin-treated versus acyclic melatonin-treated rats, cyclic control versus cyclic melatonin-treated rats, and acyclic control versus acyclic melatonin-treated rats. Time-dependent changes in
each group studied were compared using analysis of repeated measures using the statistical ‘Hotelling trace’.

Results

Pituitary responsiveness to GnRH

In all groups of rats studied (cyclic control, cyclic melatonin-treated, acyclic control and acyclic melatonin-treated), a positive LH response ($P < 0.01$) was observed from 15 to 90 min after GnRH injection (Fig. 1). Comparisons between each time point demonstrated significantly higher ($P < 0.05$) LH values in the acyclic controls than in the acyclic melatonin-treated animals before and 90 min after administration of GnRH.

There was no positive response in terms of FSH release after GnRH injection in any of the groups studied. However, between time points, age-dependent differences were observed. Before GnRH injection, significantly ($P < 0.05$) higher FSH concentrations were found in the acyclic controls compared with the cyclic control rats. At 30, 60 and 90 min after GnRH injection, FSH concentrations were significantly higher ($P < 0.01$) in the acyclic control and the acyclic melatonin-treated groups compared with the cyclic control and cyclic melatonin-treated rats. Only at 15 min after GnRH injection were differences owing to melatonin treatment observed, with significantly higher ($P < 0.05$) FSH concentrations in cyclic melatonin-treated compared with cyclic control rats.

Prolactin concentrations were not affected by GnRH treatment. However, differences among the groups were observed at the different time points. Prolactin concentrations were significantly higher ($P < 0.01$; $P < 0.05$) in the acyclic controls compared with the cyclic controls before and 30 and 90 min after GnRH injection. In acyclic melatonin-treated rats, significantly higher ($P < 0.01$) prolactin concentrations compared with those in cyclic melatonin-treated rats were only observed before and 15 min after GnRH injection. An influence of melatonin on prolactin response to GnRH was only observed at the end of the test in cyclic rats, with cyclic melatonin-treated rats showing significantly higher prolactin concentrations ($P < 0.01$) than cyclic control rats.

Plasma pituitary hormones

LH concentrations in the acyclic control, 25-month-old rats were significantly higher ($P < 0.05$) than those observed in the acyclic control, 23-month-old rats (Fig. 2). Melatonin treatment for 2 months significantly reduced ($P < 0.05$) LH concentrations in cyclic and acyclic rats. FSH concentrations in the 25-month-old acyclic control rats were significantly higher ($P < 0.01$) than in the 23-month-old acyclic controls and in the 5-month-old cyclic control rats. Melatonin treatment did not modify FSH concentrations in the 5-month-old cyclic control rats. However, significantly lower FSH concentrations ($P < 0.01$) were observed in the 25-month-old acyclic rats. Prolactin concentrations were significantly lower ($P < 0.05$) in the 25-month-old rats compared with the 23-month-old acyclic control rats.

![Fig. 1. Concentrations of plasma (a) LH, (b) FSH and (c) prolactin in cyclic and acyclic rats before and 15, 30, 60 and 90 min after the injection of 50 ng GnRH per 100 g body weight to control and melatonin-treated rats (150 μg melatonin per 100 g body weight for 1 month). □, Cyclic control rats; ■, cyclic melatonin-treated rats; ■, acyclic control rats; ■, acyclic melatonin-treated rats. (a) Significant differences: a, $P < 0.01$ compared with the same treatments at 15, 30, 60 and 90 min after GnRH; b versus c, $P < 0.05$. (b) Significant differences: a versus b, c versus d, $P < 0.05$, e versus f, g versus h, i versus j, k versus l, m versus n, o versus p, $P < 0.01$. (c) Significant differences: a versus b, c versus d, e versus f, g versus h, i versus j, i versus k, $P < 0.01$.](image)
Melatonin treatment significantly decreased prolactin concentrations \((P < 0.01)\) in the cyclic rats, but significantly increased \((P < 0.05)\) prolactin concentrations in the acyclic rats.

Plasma ovarian hormones

There were no differences in oestradiol or progesterone concentrations between the cyclic and acyclic control rats (Fig. 3). The lack of difference in oestradiol concentration between persistent oestrous and persistent dioestrous acyclic rats may be due to the instability of the persistent oestrous condition. Only 20% of the acyclic rats used in the present study showed persistent oestrous but vaginal smears taken over the 15 day period of study showed some of these rats to be in the dioestrous condition. No effect of melatonin treatment was observed on the steroid hormones studied in cyclic or acyclic rats.

Discussion

The results of the present study show a pituitary LH positive response to a bolus of GnRH in both cyclic and acyclic rats. The magnitude of the response was higher in acyclic than it was in the cyclic control rats, which indicates altered pituitary responsiveness to GnRH in old acyclic rats. An altered age-dependent physiological response has been observed in pituitary studies *in vitro* of old rats in persistent oestrous, in which GnRH significantly increased LH release above basal concentrations in young and persistent oestrous rats, and the magnitude of the response was significantly lower in pituitaries from persistent oestrous rats (Jih and Wu, 1995). In addition, a smaller increase in serum LH after GnRH injection has been observed in aged compared with young rats in pro-oestrus, oestrous or at day 2 of dioestrus (Watkins *et al.*, 1975).
Results indicate that changes in the ability of the pituitary to release LH in older noncyclic female rats occurs as a consequence of the altered endocrine status of these animals and not as a direct result of chronological age (Cooper et al., 1984). In the present study, the young cyclic rats were at day 1 of dioestrus, when pituitary responsiveness to GnRH is lower (Smith et al., 1982) and, consequently, the magnitude of the positive response is lower in the young cyclic rats. In postmenopausal women, in whom mean LH and FSH concentrations did not change with chronological age, it was found that the LH pulse frequency decreased significantly and the response to GnRH increased (Lambalk et al., 1997). In ewes, Clarke and Cummins (1985) reported that, as the frequency of GnRH pulses decreases, the amplitude of the LH response increases.

The results of the present study indicate that administration of melatonin to young cyclic rats did not modify the pituitary responsiveness to GnRH. However, in old acyclic rats, melatonin treatment restored the response to the concentrations observed in young cyclic rats. These results indicate that melatonin may be involved in the pituitary responsiveness to GnRH during ageing and that melatonin administration may act upon the hypothalamo–pituitary coupling mechanism rather than upon the ovary, at least when the ovary is at a quiescent stage. No increase in FSH secretion was observed in response to GnRH injections, and there is considerable support for the hypothesis that one component of FSH secretion is independent of GnRH. Hall et al. (1988) demonstrated that when GnRH receptors were blocked by a GnRH antagonist in women, LH pulses and plasma concentrations were reduced. In contrast, FSH concentrations did not change. A marked asynchrony between LH and FSH pulses was found in ovariectomized rats with clear LH but not FSH pulses after every injection of GnRH (Lambalk et al., 1988). The age-related loss of synchrony between LH and FSH pulses indicates a hidden FSH-gonadotropin-stimulating mechanism that drives FSH episodic release independently and more promptly than GnRH (Genazzani et al., 1997). Although no prolactin response to GnRH was observed in the present study, melatonin treatment slightly affected prolactin concentrations in acyclic rats, decreasing these concentrations to amounts similar to those observed in young cyclic control rats at the end of the test. Dopamine, through its inhibitory action, appears to control prolactin secretion (Thyagarajan et al., 1995). Dopamine activity from adulthood through middle-age to senescence shows marked reductions at old age (22–24 months of age) (Mohankumar et al., 1994). This age coincides with the age (24-month-old) in which the GnRH test was performed in acyclic rats and may explain the significantly higher basal prolactin values observed in both acyclic control and melatonin treated groups compared with their respective cyclic groups.

The chronological pattern of gonadotrophins and prolactin indicate that an important change in secretory processes occurs from 23- to 25-month-old rats, with gonadotrophins increasing while prolactin decreases. In addition, the increase in serum FSH that accompanies female reproductive ageing may occur before changes in oestradiol concentration. The decrease in inhibin B also precedes the decrease in inhibin A and occurs in concert with an increase in oestradiol, indicating that inhibin B negative feedback is the most important factor controlling the early increase in FSH with ageing (Welt et al., 1999). These mechanisms may explain the increased basal FSH concentrations that occur without significant differences in basal oestradiol or progesterone concentrations in 23–25-month-old acyclic control rats compared with cyclic control rats at the dioestrous phase of the sexual cycle. It is likely that no differences in prolactin concentration were observed between acyclic control (25-month-old) rats and cyclic control (5-month-old) rats because of the low prolactin concentrations that occur during the dioestrous phase of the sexual cycle in cyclic rats (Mohankumar et al., 1994). The increased prolactin concentrations observed in acyclic control (24-month-old) rats may be due to method of extraction used, as the stress of ether anaesthesia has been reported to affect prolactin release (Wiggins et al., 1983). However, in rats at 25 months of age, non-stressed prolactin concentrations were obtained from blood drawn by decapitation. The results obtained from acyclic melatonin-treated rats under the same blood drawing procedures indicate increased prolactin concentrations that are independent of the stressful procedure. Melatonin treatment produces an age-dependent effect on prolactin concentrations since, in young cyclic rats, melatonin resulted in reduced prolactin concentrations. However, the opposite effect was found in the old acyclic rats.

In summary, the results of the present study indicate that ageing increases gonadotrophin release but only affects GnRH-stimulated LH release. Melatonin treatment during ageing restores pituitary responsiveness, showing a similar response to that in young cyclic rats. During ageing, gonadotrophin but not ovarian hormone concentrations after melatonin treatment were decreased, providing evidence that the influence of melatonin is exerted mainly at the hypothalamo–pituitary axis rather than upon the ovary, at least when the ovary is at a quiescent stage.

The authors wish to express their gratitude to the NIADDK, NHPP and to A. F. Parlow for the supply of radioimmunoassay materials for LH, FSH and prolactin radioimmunoassays. This work has been supported for the Spanish Ministry of Health, Fondo de Investigación Sanitaria; FIS number 97/0988. And to D. Skenne for her grammatical assistance in preparing the manuscript. And to the Statistics Department of The University of Oviedo, Spain.

References

Scarbrough K and Wise PM (1990) Age-related changes in pulsatile luteinizing hormone release precede the transition to estrous acyclicity and depend upon estrous cycle history. Endocrinology 126: 884–890

Navot D, Drews MR, Bergh PA, Guzman I, Karstaedt A and Scott RJ, Jr (1994) Age-related decline in female fertility is not due to diminished capacity of the uterus to sustain embryo implantation. Fertility and Sterility 61: 97–101