Cytokine control in human endometrium

Rodney W. Kelly, Anne E. King and Hilary O. D. Critchley

MRC Human Reproductive Sciences Unit Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh EH3 9ET

Cytokines within endometrium participate in both menstruation and implantation but also contribute to the defence mechanisms of the mucosal epithelium. Endometrium is under the control of steroid hormones, particularly progesterone and, thus, control of cytokines by this steroid is important. Although appreciable numbers of progesterone receptors are not found in endometrial leucocytes, progesterone can modulate cytokines by acting on uterine cells expressing the receptor. The NFκB pathway is important in the control of cytokine synthesis and can modulate production of chemokines, matrix metalloproteinases and the inducible prostaglandin synthesis enzyme COX-2. NFκB activity can be inhibited by progesterone by either stimulating synthesis of IκB, the molecule that restrains NFκB in the cytosol, or after binding to the nuclear receptor, competing with NFκB for recognition sites on the relevant gene. In this way, progesterone can limit pro-inflammatory pathways. The major palliatives for endometrial dysfunctions such as menorrhagia and dysmenorrhoea have been the non-steroidal anti-inflammatory drugs that inhibit prostaglandin synthesis. Prostaglandins have major effects on cytokine production but the direct action of prostaglandin E on leucocytes is not a pro-inflammatory response but is to stimulate interleukin 10 and inhibit interleukin 12 synthesis. The likely effect of the non-steroidal anti-inflammatory drugs is on the cells surrounding the small blood vessels, where a synergistic action between prostaglandin and chemokine will induce leucocyte entry and activation leading to lysis of connective tissue and menstruation. At the time of implantation, tight control of cytokine synthesis is required. Although leukaemia inhibitory factor is essential to implantation, the mouse knockout models show that the prostaglandin system is also essential but that there are mutually supportive pathways that compensate for the knockout of many cytokines.
occurs. Consequently, there are two phases: one that is initiated by decreasing progesterone and might in early stages be reversible, and a second that is inevitable after hypoxia and reperfusion. This second phase is effectively progesterone independent and involves leucocytes and epithelial cells as well as stromal cells. Most of the cells participating in this second phase will have no progesterone receptors at this point in the ovarian cycle since epithelial cells will have lost their receptors and uterine leucocytes do not possess nuclear progesterone receptors (King et al., 1996).

This review examines the control of cytokines in endometrium during menstruation and in the event of conception. Both these processes involve exposure to progesterone, which is transient in the normal cycle but prolonged after implantation. Cytokines within human endometrium are controlled either directly by steroids or indirectly through cyclical changes in factors such as growth, secretion, immune defence and, after fertilization, the implanting embryo (Fig. 1). In recognition of the complexities involved, emphasis will be placed on cytokine–steroid, cytokine–prostaglandin and cytokine–cytokine interactions. Several areas such as angiogenesis and its control are reviewed elsewhere (Smith, 1998) and will not be addressed further here.

Morphological components of human endometrium

The main functions of human endometrium are the provision of a hormone-defined implantation window (Tabibzadeh et al., 1998), the ability to instigate its own demise in the absence of pregnancy, and the function shared with all other mucosal surfaces of protection against invading pathogens. These different functions involve interactions between diverse constituent cell types and are both influenced by ovarian steroid hormones and controlled in a paracrine fashion within microenvironments (Tabibzadeh, 1995). Human endometrium has a mucosal epithelial surface consisting of surface and glandular epithelium, a heterologous stroma and a characteristic vascular system found only in menstruating species (old-world primates and certain bats (Rasweiler, 1991)). These components interact in the control of cytokine synthesis and release under ultimate hormonal control.

Stroma

The stroma of human endometrium consists of fibroblasts, some macrophages and T cells but few B cells (Loke and King, 1995). A population of large granular lymphocytes (LGL) appears in the late secretory phase and numbers increase further in early pregnancy. These cells are natural killer (NK) cells, which display abundant surface expression of a specific adhesion molecule CD56 but are CD3- and CD16- negative. The function of these NK cells is not certain but it is known that they interact with the class 1 human leucocyte antigens (HLA) expressed on...
extravillous trophoblast and may limit trophoblast invasion (Loke and King, 1996). In later decidua, the number of LGLs declines and these cells are sparse at term (Loke and King, 1995). Endometrial LGLs produce interferon-γ (IFN-γ), particularly when interacting with macrophages or stimulated with interleukin 12 (IL-12) and IL-2 (Maruszcz et al., 1997). In addition, IFN-γ is secreted by uterine neutrophil-like cells in the stroma (Yeaman et al., 1998) or from lymphoid aggregates in the basalis (the lower one-third of endometrium, which is not shed at menstruation) (Tabibzadeh, 1994). The uterine lymphoid aggregates appear to be structured with T (CD8+?) and B cells surrounded by a ‘halo’ of monocytes and macrophages (Yeaman et al., 1997). These structures, which are predominant at mid-cycle and in the secretory phase, may play an important role in implantation and, as a source of IFN-γ, may stimulate endometrial stromal cell production of monocyte chemotactic protein (MCP-1), IL-6 and granulocyte colony-stimulating factor and reduce production of IL-8 (Nasu et al., 1998).

At about day 23 of the menstrual cycle, when progesterone concentrations are still high, endometrial stromal cells begin to undergo a transformation to a phenotype characteristic of cells in early decidua. The process commences in cells surrounding the spiral arterioles and gradually spreads through the endometrium (Buckley and Fox, 1989) becoming particularly evident if pregnancy ensues. The decidualised cell is rounded, has myofibroblast characteristics (Oliver et al., 1999) and secretes prolactin. Although progesterone is likely to be the initiating agent in vivo, a combination of progestosterone and agents that raise intracellular cAMP is necessary for effective decidualization in vitro (Frank et al., 1994; Tang et al., 1994; Telgmann and Gellersen, 1998; Brosens et al., 1999). Agents such as relaxin (Chen et al., 1988) PGE (Frank et al., 1994) and FSH (Tang et al., 1994) all increase cAMP concentrations in endometrial stromal cells in conjunction with progestosterone. In human endometrial stromal cells, continuous stimulation of protein kinase A by cAMP is necessary to maintain prolactin production and this is achieved by a reduction in the availability of the negative regulatory subunit R1α (Telgmann and Gellersen, 1998). The absolute necessity of progesterone has been questioned since women with very low peripheral blood progesterone concentrations can have normal pregnancies (Tang et al., 1994) and decidualization can occur in vitro with increased cAMP alone (Telgmann and Gellersen, 1998). In addition, in rodents, progesterone alone is sufficient to induce decidualization (Paria et al., 1999). These findings indicate that, in women, some other unidentified agent influenced by progesterone and cAMP may be elaborated in secretory phase endometrium that is directly responsible for decidualization and prolactin production. Decidualization can be prevented by IL-1 (Kariya et al., 1991; Frank et al., 1995; Mizuno et al., 1999), which reduces prolactin production as well as preventing differentiation to the decidual phenotype. However, it is not known whether IL-1 interacts with the adenylate cyclase system in endometrial cells.

Epithelium

The epithelial surfaces of the endometrium have a dual function in both providing for implantation and for defence against infection. The role of the endometrial epithelium in implantation has been reviewed elsewhere (Aplin, 1997) and will not be addressed further here. Defence mechanisms include transepithelial passage of antibodies in the form of IgA (Kelly and Fox, 1979) as part of the adaptive immune response, but depend to a large extent on innate defences. Luminal secretions contain peptides of low molecular weight with antibacterial activity, defensins (Quayle et al., 1998; Valore et al., 1998) and lysozyme (Tauber et al., 1993), as well as compounds such as secretory leucocyte protease inhibitor (SLPI), which have anti-viral, anti-fungal and anti-bacterial activity (Hienstra et al., 1996; Tomee et al., 1997; Wiedow et al., 1998). SLPI is expressed in human endometrial epithelial cells (King et al., 2000) and may contribute to the luminal defences of the uterus. Other components of the innate immune defences with anti-microbial activity, such as the θ defensins, are still being revealed (Tang et al., 1999) and it now appears that defensins can also link to the adaptive immune system by attracting both dendritic and memory T cells (Yang et al., 1999).

Endometrial epithelial cells are the major sources of several vasoactive substances such as prostaglandins (Lumsden et al., 1984) and endothelins (Salamonsen et al., 1999) that have been implicated in menstruation. However, these compounds are found in other mucosal epithelial tissues such as the gut (Egidy et al., 2000) and may have a prime function as modulators of epithelial function, as well as contributing to constriction of the endometrial spiral arterioles.

Vascularity

Cells surrounding the spiral arterioles are reported to be the origin of the decidualized stromal cells and have been shown to have myo-fibroblast characteristics. These stromal cells replicate during the secretory phase of the cycle (Abberton et al., 1999), retain their progesterone receptors throughout the cycle (Critchley and Healy, 1998) and are likely to have a critical role in vascular control. Significant health care resources are used to treat excessive blood loss at menstruation (menorrhagia) (Stirrat, 1999). It is important to consider the role cytokine control associated with endometrial blood vessels may play in this complaint. The blood supply to the superficial two-thirds of the endometrium is provided by spiral arterioles, structures found only in menstruating species. These vessels grow with increasing coiling until day 3 after ovulation (Ferenczy et al., 1979). The factors governing new blood vessel growth have been reviewed elsewhere (Smith, 1998) and will not be addressed further here. The rate of proliferation of smooth muscle cells associated with the blood vessels increases after ovulation, and a deficiency in proliferation has been associated with menorrhagia (Abberton et al., 1999). Studies on keratinocyte growth factor (KGF) show that this factor is progesterone dependent and contributes
to myofibroblast cell growth (Koji et al., 1994). Withdrawal of steroid during the late second half of the secretory phase leads to shrinkage of the functionalis and compression of the vessels (Markee, 1940). Several vasoactive agents may be released at this time and, although compounds such as endothelins, which are predominantly synthesized in glandular tissue, may contribute (Campbell and Cameron, 1998), it is hypothesized that a subset of stromal cells plays a role in the initiation of menstruation. Mechanisms that induce the initial vasoconstriction are triggered by decreasing progesterone concentrations and, in the late secretory phase of the cycle, progesterone receptors are found in stromal perivascular cells but not in the epithelial cells of the functionalis layer (Critchley et al., 1994a), placing the stromal cell in a key position. Once change is established, tissue rearrangement, involving epithelial cells as well as stromal cells, commences in an essentially irreversible process. Thus, menstruation can be considered as two seamlessly connected events.

Two phases of menstruation

Phase 1: initiation of vasoconstriction – cytokine changes due to steroid withdrawal

Menstruation involves sloughing-off of all but the basal third of the endometrium and there is associated extensive tissue destruction. Lytic enzymes such as MMPs, which degrade the extracellular matrix (ECM), and proteases are clearly involved in this process and are likely to be derived from epithelial stromal and recruited leucocytes (Salamonsen and Woolley, 1999). However, menstruation is probably initiated by progesterone withdrawal and, therefore, initial events are likely to be triggered by cells that express progesterone receptors. By the latter half of the secretory phase, progesterone receptors are absent from the glandular and surface epithelium in the superficialis (Critchley et al., 1994a) and have not as yet been identified in leucocytes. It is significant that progesterone receptors are expressed in stromal cells including those surrounding the blood vessels (Perrot-Aplanat et al., 1994; Critchley and Healy, 1998). Although there are important paracrine interactions between stromal and epithelial cells (Tabibzadeh, 1995), a more likely location for early responses to a decrease in progesterone is the grouping of myofibroblast cells surrounding the spiral arterioles. The ECM associated with these perivascular cells will have been stabilized in the presence of progesterone and oestradiol (Lockwood et al., 1998) and is therefore vulnerable to progesterone withdrawal. These perivascular cells are distinguished by a marked expression of both prostaglandins and cytokines (Cheng et al., 1993a,b; Critchley et al., 1994b, 1999; Jones et al., 1997). If prostaglandins are modulating vascular permeability through actions on the perivascular cells, control of prostaglandins by the catalytic enzyme prostaglandin-15-dehydrogenase becomes critical. The activity of this enzyme decreases in the perivascular cells of decidua after progesterone antagonism (Cheng et al., 1993b) and prostaglandin dehydrogenase (PGDH) is likely to be maintained in decidual stromal cells by a combination of progesterone and increased intracellular cAMP (Greenland et al., 2000). Since the perivascular cells are thought to proliferate in early pregnancy to form the population of myofibroblast-like, decidualized stromal cells, they are pivotal in their response to progesterone, initiating menstruation in response to decreasing steroid concentrations or, conversely, supporting pregnancy in response to increasing steroid concentrations (Fig. 2).

Perivascular cells in human endometrium may have a distinct mechanism for initiating prostaglandin and cytokine synthesis since they display an abundant CD40 signal on their surface (King et al., in press). CD40 is a member of the tumour necrosis factor (TNF) receptor superfamily, and its ligand is a TNF-α-like protein CD40L or CD154. Although first recognized on B cells, the CD40–CD40L interaction has been shown to stimulate prostaglandin and IL-8 release from fibroblasts (Sempowski et al., 1998; Zhang et al., 1998). CD40–CD40L interactions may result in the activation of the NFkB pathway (Rothe et al., 1995; Liu et al., 1996; Takeuchi et al., 1996) (Fig. 3) or, alternatively, CD40 activation may affect gene transcription through the JAK–STAT pathway (Hanissian and Gehr, 1997). The source of CD40L within endometrium has not yet been identified but possible sources include lymphocyte aggregates or lymphocytes that are attracted into the tissue by chemokines. Control of the CD40–CD40L system in endometrium is unknown, but where the NFkB pathway is involved, an influence of progesterone is expected (Kalkhoven et al., 1996). Thus progesterone withdrawal could activate such a system in a receptor-dependent process.

In the secretory phase of the menstrual cycle, the circulating concentrations of progesterone are of the order of 10–30 pmol l−1 whereas, in placenta and decidua, concentrations of 20 µmol l−1 have been reported (Challis and Mitchell, 1988). The high concentrations of progesterone within the pregnant uterus are consistent with non-genomic membrane effects of progesterone and these have been implicated in both its immunosuppressive action on T cells (Ehring et al., 1998) and its action on the oxytocin receptor in rats (Grazzini et al., 1998). Several of these progesterone effects can be related to the blockage of potassium channels, which is not receptor-mediated (Ehring et al., 1998). However, in the non-pregnant uterus, the low progesterone concentrations, the cyclical variation of progesterone receptors and the profound changes brought about by the progesterone receptor antagonist RU486 (Cameron et al., 1996) indicate a classical receptor-mediated mechanism.

There are similarities between glucocorticoids and progesterone in structure, receptor sequence and response elements. Moreover, both glucocorticoids and progestins inhibit cytokine expression and the way in which they affect cytokine synthesis has now been recognized as an NFkB-mediated event (McKay and Cidlowski, 1999).
NFκB is a transcription factor responsible for the upregulation of genes involved in the inflammatory response. It is sequestered in an inactive state in the cytoplasm by the endogenous inhibitor IκB. Most activators of NFκB cause the degradation of IκB (via a phosphorylation–ubiquitination–proteasome pathway) allowing free NFκB to enter the nucleus (Baldwin, 1996). The molecular mechanisms leading to the degradation of IκB were unclear until recently but it is now apparent that a series of protein kinases are likely to be involved in the signalling. IκB is phosphorylated by an IκB kinase (IKK) complex consisting of several proteins, including the kinases IKKα and IKKβ (DiDonato et al., 1997) and the scaffolding protein IKKγ. IKKα and IKKβ may have different functions and it appears to be IKKβ that is predominantly involved in proinflammatory signalling to NFκB (Delhase et al., 1999; Takeda et al., 1999). Upstream mitogen-activated protein kinase kinase kinases (MAPKKK) are involved in the phosphorylation of the IKK complex. Particularly, NFκB-inducing kinase (NIK; Malinin et al., 1997) and MAPK Erk kinase kinase 1 (MEKK1; Lee et al., 1997) activate the kinase activity of the complex. These agents are activated by distinct stimuli (Nakano et al., 1998) but may also act synergistically (Nemoto et al., 1998). An inducible form of IKK (IKKι) has been reported in rats (Shimada et al., 1999) and, if there is a similar system in humans, an alternative control mechanism in the NFκB cascade will have been established.

Glucocorticoid function in controlling cytokine synthesis and release is better understood than progesterone function due, in part, to the limited expression of progesterone receptors in endometrial cell lines, which means that much of the experimental data on progesterone action is derived from studies on the breast cancer epithelial line T47D, which constitutively expresses progesterone receptors (Horwitz et al., 1982). Both glucocorticoids and progesterone exert major control via effects on the NFκB pathway. However, not all glucocorticoid suppression of cytokines is NFκB-dependent (Bourke and Moynagh, 1999) and the same may yet be shown for progesterone. Glucocorticoids stimulate the production of IκBα and, in the T47D cell line, progesterone has a similar action (Wissink et al., 1998) (Fig. 4). A second mechanism by which progesterone might affect NFκB activity is by direct competition between different transcription factors, in this case steroid receptors and NFκB for adjacent binding sites on the gene. This mechanism has been suggested for both the glucocorticoid receptor (Caldenhoven et al., 1995) and

Fig. 2. The concentration of progesterone to which the endometrium is exposed is a major factor in governing cytokine concentrations in endometrium. If progesterone increases due to support from the corpus luteum, decidualization changes occur to support the implanting blastocyst. However, if progesterone decreases, changes are started that culminate in oedema and cellular (monocytes and neutrophils) influx, which participate in endometrial breakdown and sloughing. MMP, matrix metalloproteinase; PGDH, prostaglandin dehydrogenase.
the progesterone receptor (Kalkhoven et al., 1996). A third mechanism could be the competition between NFκB and the steroid receptors for a common essential cofactor (McKay and Cidlowski, 1999).

There is experimental evidence from in vitro systems that progesterone suppresses the release of cytokines such as IL-8 (Ito et al., 1994; Kelly et al., 1994) and MCP-1 (Kelly et al., 1997) that are known to be, at least in part, under the control of NFκB. In T47D cells, the production of MCP-1 is attenuated by progesterone concentrations consistent with those seen in the secretory phase of the menstrual cycle but, in these cells, no effect of glucocorticoid is seen (Kelly et al., 1997).

Studies in vivo have shown that there is reduced chemokine release from endometrium under the influence of progesterone and that progesterone withdrawal or the administration of antiprogestin stimulates chemokine expression and release (Critchley et al., 1996; Jones et al., 1997).

Phase 2: activation of lytic mechanisms

The consequences of increased cytokine production in a perivascular location may be twofold. First, both PGE and IL-8 are synthesized and, as a result of their synergistic action (Foster et al., 1989; Rampart et al., 1989; Colditz, 1990), neutrophils will be attracted into the tissue. Second, the effects of progesterone withdrawal will induce vasoconstriction–vasodilatation cycles with associated hypoxia and reperfusion which will, in turn, induce NFκB (Royds et al., 1998). NFκB activation will further induce prostaglandin and cytokine release, which will affect lytic enzyme activity (Luca et al., 1997). These effects are likely to be seen in all tissue affected by the intense vasoconstriction, although studies in rhesus monkeys show that such constriction is not uniform throughout the endometrium.

The exact role for infiltrating leucocytes in menstruation has yet to be clarified but they are likely to be a major source of MMPs and proteases (Salamonsen and Woolley, 1999). The neutrophil has specific granules that contain neutrophil collagenase (MMP-8) and is also a potential source of large amounts of protease (elastase). Local control of MMPs will be by cytokines since a major stimulator of MMP-1 is IL-1α derived from the glandular epithelium (Singer et al., 1997). A withdrawal of progesterone dominance will allow both synthesis of IL-1 and the action of IL-1 to release MMP-1 and thus allow a geared enhancement of MMP-1 (Singer et al., 1997). Although other MMPs such as MMP-9 in endometrium are stimulated by

Fig. 3. Cytokine control by NFκB and CD40. CD40 is expressed in the cells surrounding the small blood vessels of human endometrium and myometrium although the nature of the ligand is not known. CD40 can alternatively act through the JAK–STAT pathway to affect cytokine transcription. IKK, IκB kinase; MEKK, mitogen-activated protein kinase Erk kinase kinase; NIK, NFκB-inducing kinase; TRAF, tumour necrosis factor receptor-associated factor.
cytokines, such stimulation is not sustainable, whereas MMP-1 concentrations remain high for 48 h (Singer et al., 1999). It appears that TIMPs, the endogenous inhibitors of MMPs, are not increased by cytokines in parallel with the MMPs (Lockwood et al., 1998; Singer et al., 1999) and thus cytokine effects should result in the destruction of the supporting matrix of the endometrium and eventually lead to sloughing of tissue.

Thus, there are two pathways for activation of the lytic enzymes induced by decreasing progesterone concentrations: the induction of leucocyte entry by raising the synthesis and activity of chemotactic and vascular-active agents or a direct action on the local control of MMPs. Which of these mechanisms is triggered initially by the demise of the corpus luteum is a matter of current debate (Salamonsen and Woolley, 1999).

Cytokine changes with implantation

If corpus luteum activity is maintained by embryo secretions, control of many of the cytokines by progesterone will continue. However, other cytokine interactions that favour survival of the conceptus will occur in local microenvironments and, inevitably, decidual cells will be affected by local production of progesterone by the trophoblast. Other cytokine changes must occur at the time of implantation to allow accommodation of the trophoblast by the maternal immune system. The trophoblast restricts expression of major histocompatibility complex (MHC) antigen but there is considerable evidence that other protective mechanisms are in place during pregnancy. There is evidence of T-cell toxicity by trophoblast (Munn et al., 1998) and animal studies have indicated a predominance of Th-2 cytokines (which favour a humoral or antibody immune response) over Th-1 cytokines such as IFN-γ (which favour a cell-mediated immune response) (Wegmann, 1990). Notwithstanding this accommodation, infection can never be allowed to threaten the survival of the mother and thus, although progesterone may raise the threshold of cytokine production, cytokine-mediated inflammatory responses are possible. During early pregnancy, before extensive changes to the vascular architecture are established, blood reaches the placenta via the capillary network (Carter, 1997) and implantation results in an increase in blood flow to the site. Prostaglandins are implicated in this phenomenon (Kennedy, 1980) but other agents such as nitric oxide (NO) may also be involved. NO is important at the time of implantation since antagonism of both NO and progesterone results in an almost complete absence of implantation sites in rats (Chwalisz et al., 1999). In women, NO synthase is present in glandular epithelium stroma and myometrial blood vessels (Telfer et al., 1995) and, at the time of implantation, expression of the inducible form of the synthase (iNOS) is mediated by progesterone (Buhimschi et al., 1996).

The following section covers some of the complex interactions at the time of implantation.

Leukaemia inhibitory factor and gp130-related cytokines

A group of cytokines that react with receptors associated with gp130 appears to play an important role in implantation. This group comprises leukaemia inhibitory factor (LIF), IL-6, oncostatin M, ciliary neurotrophic factor (CNTF), cardiotrophïn (CT-1) and IL-11. Whereas many gene ablation experiments have failed to show clear effects because of redundancy of function, the homozygous LIF knockout mice are infertile since they fail to accommodate implantation (Stewart et al., 1992). Similarly, ablation of the LIF receptor leads to implantation failure (Ware et al., 1995). Since LIF is involved in the decidual reaction (Stewart, 1994), necessity for LIF in implantation may be restricted to those species with relatively invasive implantation. In sheep, in which implantation is synepitheliochorial, LIF may be facilitatory but not obligatory (Vogiagis and Salamonsen, 1999).
Although targeted disruption of the IL-6 gene leads to fertile mice, those lacking the IL-11 receptor are infertile (Bilinski et al., 1998) (Table 1). Defects associated with decidual development are observed after implantation has occurred. Since LIF, IL-11 and IL-6 are all implicated in acute phase protein expression in the liver, and since some of the proteins such as α2-macroglobulin (Bell, 1979) that are expressed in early decidua are also acute phase proteins, there may be a specific role for the gp130-associated receptors in controlling protein synthesis and release. This hypothesis would certainly accord with the lack of optimum decidualization associated with both LIF (Stewart, 1994) and IL-11 (Bilinski et al., 1998) deficiency, with LIF possibly acting at an earlier stage in the implantation process. Such stimulation by LIF is likely to be regulated by IL-1, TNF-α and transforming growth factor β (TGFβ) within the decidua (Sawai et al., 1995) and is consistent with early reports that favoured an effect of LIF on the blastocyst (Stewart, 1994).

A possible alternative interaction is revealed by the demonstration that LIF receptors are expressed on human trophoblast and decidual leucocytes are a major source of LIF. This finding, together with the finding that LIF stimulates chorionic gonadotrophin production by trophoblast (Sawai et al., 1995), indicates that LIF is an essential mediator between maternal decidua and invading trophoblast (Sharkey et al., 1999).

Interleukin 1 and interleukin 1-like receptors

If one cytokine was to be singled out as having the widest impact, IL-1 would be a strong contender. IL-1 has an effect on many cell types and has crucial roles in haematopoiesis acute-phase protein expression and kidney function. It is perhaps surprising that the knockout mouse with deleted type 1 receptor (the only functional receptor) is viable and reportedly fertile (Abbondanzo et al., 1996). In addition, mice deficient in IL-1β (Zheng et al., 1995) and IL-1β-converting enzyme (Kuida et al., 1995; Li et al., 1995) are also fertile. Although redundancies can be invoked as an explanation, the survival of these mice is not fully understood at present and substitutes would have to cover a wide range of IL-1 activities within the uterus (Table 2). Compounds such as IL-18 (IFN-γ-inducing factor) are similar to IL-1, and the IL-18 receptor was previously known as IL-1 receptor-like protein.

In non-reproductive systems, IL-1 frequently acts in a synergistic fashion with other cytokines. Synergistic action of IL-1 with TNF-α has been observed for IL-8 (Matsushima and Oppenheim, 1989) and PGE production (Dinarello, 1992; Fujishima et al., 1993) and similar synergistic induction of COX-2 has also been reported (Bry and Hallman, 1991). IL-1 amplifies the effect of bradykinin in stimulating PGE (Angel et al., 1994), a pathway that is important in pain transmission by either PGE2 or PGI2.

Table 1. Studies on gene ablation that reveal essential mediators in implantation

<table>
<thead>
<tr>
<th>Gene knocked out</th>
<th>Observations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIF</td>
<td>LIF –/– animals fail to implant due to a decidual defect. Numbers of stem cells in spleen and bone marrow may be reduced.</td>
<td>Stewart, 1994</td>
</tr>
<tr>
<td>COX-2</td>
<td>The COX product essential for implantation has not been identified. Although PGE will be important, PGI2 may interact through the PPARδ receptor.</td>
<td>Lim et al., 1997; Lim et al., 1999a</td>
</tr>
<tr>
<td>IL-11 receptor</td>
<td>The IL-11, LIF and IL-6 receptors are all gp130 linked and all appear to play a role in implantation.</td>
<td>Bilinski et al., 1998; Robb et al., 1998</td>
</tr>
<tr>
<td>CSF-1</td>
<td>Early studies show that this gene is important but effects may be central since CSF affects migroglial cells involved in GnRH release.</td>
<td>Cohen et al., 1999</td>
</tr>
<tr>
<td>Hoxa 11</td>
<td>Hoxa 11 is essential for differentiation of uterine stromal and epithelial cells.</td>
<td>Gendron et al., 1997</td>
</tr>
<tr>
<td>Hoxa 10</td>
<td>The defect is associated with a deficiency of EP3 and EP4 receptors. LIF is not affected.</td>
<td>Benson et al., 1996; Lim et al., 1999b</td>
</tr>
<tr>
<td>Cyclin D3</td>
<td>Implicated in implantation.</td>
<td>Das et al., 1999</td>
</tr>
<tr>
<td>SRC-1</td>
<td>Decreased organ growth but still fertile.</td>
<td>Xu et al., 1998</td>
</tr>
<tr>
<td>Prolactin receptor</td>
<td>There is an implantation defect in mice lacking the prolactin receptor but this defect may also be a central effect.</td>
<td>Ormandy et al., 1997; Bole-Feyos, et al., 1998</td>
</tr>
<tr>
<td>Progesterone receptor</td>
<td>Ablation of the progesterone receptor leads to inappropriate inflammation in the uteri of mice.</td>
<td>Lydon et al., 1995</td>
</tr>
</tbody>
</table>

CSF, colony stimulating factor; EP, prostaglandin E receptor; IL, interleukin; LIF, leukaemia inhibitory factor; PG, prostaglandin; PPAR, peroxisome proliferator; SRC, steroid receptor coactivator.
Other subtle interactions are seen with IL-1 since macrophages primed with IFN-γ have a reduced COX-2 expression after IL-1 treatment (Barrios-Rodiles and Chadee, 1998). IL-1 stimulates production of MCP-1, a compound that is both chemotactic and a modulator associated with the Th-1–Th-2 dichotomy (Chensue et al., 1996) and these effects are enhanced by IL-4 and IFN-γ, although no such increase is seen with TNF-α stimulation (Seitz et al., 1994). IL-1 has major effects on endothelial cells, affecting prostaglandins and intercellular adhesion molecule 1 (ICAM-1), IL-1, IL-6 and MHC expression. Many of the effects of IL-1 in the uterus involve endothelial cells (Table 2). Notwithstanding the fertility of mice with deletions in the IL-1 pathway, some studies indicate that intraperitoneal injection of IL-1ra prevents implantation (Simon et al., 1998), although others indicate that the receptor antagonist has no effect (Abbondanzo et al., 1996). Simon et al. (1998) reported that, where implantation is prevented by IL-1 receptor antagonist, it is due to a disturbance of the integrin expression on the epithelial cell surface (Simon et al., 1998).

IL-1 is present in the uterus throughout the menstrual cycle and therefore is unlikely to be directly modulated by progesterone. Such an expression pattern is consistent with a controlling function in both epithelial and endothelial cells and thus may not be directly related to implantation or the early stages of menstruation.

Transforming growth factor βs

TGFβ is a regulator of growth and differentiation but the role it plays in endometrial physiology is not clear, although TGFβs 1–3 are implicated in the process of decidualization (Ando et al., 1998). TGFβs are produced and released from cells as inactive precursors that are dependent on proteolytic activation for full activity. The exact mechanisms of activation are uncertain but urokinase type plasminogen activator (uPA) and cathepsin D are competent activators (Lyons et al., 1988). TGFβ is likely to be short-lived in vivo because of its rapid binding to α2-macroglobulin.

Four TGFβs (1–4) have been reported in endometrium (Chegini et al., 1994; Tabibzadeh et al., 1998) and, although they play an immunosuppressive role in decidua (Lea et al., 1992), there is some doubt about whether the

<table>
<thead>
<tr>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α is stimulated by IL-1</td>
<td>Laird et al., 1996</td>
</tr>
<tr>
<td>mRNA for IL-8 is stimulated by IL-1</td>
<td>Arici et al., 1996</td>
</tr>
<tr>
<td>TNFα and IL-1 induce mRNA for LIF</td>
<td>Arici et al., 1995; Knight et al., 1999</td>
</tr>
<tr>
<td>IL-1α from epithelium stimulates stromal fibroblast production of MMP-1.</td>
<td>Singer et al., 1999</td>
</tr>
<tr>
<td>IL-1β raises mRNA for MMP-9 and reduces that for TIMP-1 and TIMP-3 in endometrium. IL-1α raises MMP-9 activity in trophoblast.</td>
<td>Huang et al., 1998; Meissner et al., 1999</td>
</tr>
<tr>
<td>Susceptibility to apoptosis in epithelial cells is blocked by IL-1 receptor antagonist.</td>
<td>Tanaka, et al., 1998</td>
</tr>
<tr>
<td>IL-1 receptor antagonist reduces levels of α-4, α-5 and β-3 integrins.</td>
<td>Simon et al., 1998</td>
</tr>
<tr>
<td>Stimulated by IL-1 in fibroblasts (also stimulated by TGFβ).</td>
<td>Meissner, et al., 1999</td>
</tr>
<tr>
<td>In an endometrial epithelial cell line, IL-1α stimulated PGE₂ and PGF₂α. COX-1 remained constant.</td>
<td>Jacobs, et al., 1994; Kniss, et al., 1997</td>
</tr>
<tr>
<td>IL-1β increases soluble ICAM – a possible immunomodulatory pathway since ICAM is necessary for initial adhesion before leukocyte passage through vessel walls.</td>
<td>Vigano, et al., 1998</td>
</tr>
<tr>
<td>This prostaglandin receptor is increased in the amnion in response to IL-1β.</td>
<td>Spaziani, et al., 1997</td>
</tr>
<tr>
<td>Raised in the secretory phase. Stimulated by IL-1β specifically in stromal cells.</td>
<td>Tseng, et al., 1996; Vandermolen and Gu, 1996</td>
</tr>
<tr>
<td>Monocyte IL-1 and TNFα modulate trophoblast steroid synthesis.</td>
<td>Feinberg, et al., 1994</td>
</tr>
</tbody>
</table>

COX, cyclooxygenase; EP, prostaglandin E receptor; SIICAM, soluble intercellular adhesion molecule; IL-8, interleukin 8; LIF, leukaemia inhibitory factor; MMP, matrix metalloproteinase; PG, prostaglandin; TGFβ, transforming growth factor β; TNF-α, tumour necrosis factor α.
latent forms are converted to active forms before the decrease in progesterone at the end of the menstrual cycle allows the upregulation of proteases such as uPA (Sandberg et al., 1998).

Several actions of TGF-β are associated with the control of agents affecting ECM. TGF-β stimulates both the plasminogen activator uPA (Sandberg et al., 1998) and the uPA inhibitor PAI (Sandberg et al., 1997). MMPs and their inhibitors (TIMPS) are also affected, and TGF-β is thought to mediate the effect of progesterone in suppressing matrilysin (MMP-7) in endometrial epithelial cells (Bruner et al., 1995) although in stromal cells the evidence so far is that a similar effect is mediated by an increase in TIMPs 1 and 3 (Huang et al., 1998).

Effects of TGF-β on endometrial growth have been reported, with stromal cell growth stimulated in studies in vitro (Marshburn et al., 1994; Tang et al., 1994). The effect of progesterone in stimulating TGF-β (Bruner et al., 1995) is of interest since it identifies one mechanism by which stromal cells (which retain progesterone receptors in the secretory phase) can influence glandular epithelium from which progesterone receptors are lost in the second half of this phase of the menstrual cycle.

TGF-β 1, together with IL-10 and PGE₂, is one of the main suppressive molecules secreted by the macrophage (Bogdan et al., 1992). Many properties of PGE and TGF-β are similar and their exact interaction has yet to be established. TGF-β and PGE may both promote tolerance for trophoblast antigen in decidua and if this occurs their action would be similar to their action in gut, where oral tolerance, the essential accommodation of food antigen, is dependent on local ‘suppressiv’e cytokine secretion (Groux et al., 1997; MacDonald, 1999; Newberry et al., 1999).

Prostaglandins

Prostaglandins have several actions relevant to cytokines and menstrual dysfunction since they are involved in both the initiation of menstruation and in pain associated with menstruation. Prostaglandins have an hyperalgesic effect, accentuating cytokine actions at nociceptors (Ferreira et al., 1973). Thus, the analgesic effects of nonsteroidal anti-inflammatory drugs (NSAIDs) can be understood in the context of the two-mediator hypothesis, which impinges on many prostaglandin effects (Williams and Morley, 1973). A study in which the prostacyclin (PGI) receptor was ablated in mice showed that such animals had a higher pain threshold (Murata et al., 1997) and, although little PGI is synthesized in human endometrium (Abel and Kelly, 1979), this effect might be relevant to menstrual pain originating in myometrium, where PGI is the major prostaglandin.

Prostaglandins are involved in the control of cytokine release, cell growth, differentiation and vasoactive effects. It is probably this vasoactive proinflammatory action that accounts for the anti-inflammatory action of aspirin, ibuprofen and fenamates such as mefenamic acid (Ponstan). Mefenamic acid is widely used for the
management of menstrual problems (menorrhagia and dysmenorrhoea) and although part of the action is undoubtedly analgesic, effects on blood loss have been acknowledged (Guillebaud et al., 1978; Cameron et al., 1987; Bonnar and Sheppard, 1996). These effects are thought to be due to the vasoactive properties of both PGE$_2$ and PGF$_{2\alpha}$. There is an increasing awareness that not all NSAID effects are mediated through the cyclooxygenase pathway (Shiff and Rigas, 1999; Zhang et al., 1999) and therefore other possibilities, such as the action of the peroxisome proliferator (PPAR) and other nuclear receptors, ought to be considered.

Since the early studies of Pickles (1967), prostaglandins have been implicated in the mechanism of menstruation and subsequent findings have supported this tenet (Baird et al., 1980). Prostaglandin dehydrogenase (PGDH) provides strong catabolizing activity (Casey et al., 1980), which may account for some of the reduction. Greenland et al. (2000) have shown that PGDH is progesterone-dependent in reproductive tissues. Progesterone may also inhibit the inducible synthesis of COX-2 in endometrium (Bracken et al., 1997; Critchley et al., 1999) and decidua (Ishihara et al., 1995). Since COX-2 can be induced via the NFkB pathway (Fig. 3), this may be a major point of action of progesterone (Kalkhoven et al., 1996).

Thus, progesterone withdrawal is a stimulus to prostaglandin production in certain microenvironments, for example, in early decidua, where prostaglandin dehydrogenase becomes undetectable and PGE is clearly evident in the cells surrounding the small blood vessels (Cheng et al., 1993a,b). Towards the end of the menstrual cycle, there is a physiological withdrawal of progesterone and again COX-2 expression is increased at this location (Jones et al., 1997).

The COX-2-deficient mouse has defective decidualization and implantation (Lim et al., 1997) and other knockout mice, such as HOX-10-deficient knockout mice, have a deficiency in the progesterone control of prostaglandin receptors (Lim et al., 1999b). These findings indicate an important role for prostaglandins in implantation as well as in decidualization. Decidualization is a cAMP-dependent process and, in experiments in vitro, PGE enhances decidualization (Frank et al., 1994). The process is mediated by COX-2 in vivo (Han et al., 1996) but progesterone is also essential and combinations of progesterone and cAMP-increasing mediators are effective in inducing decidualization in vitro (Brosens et al., 1999). The cAMP would by-pass any PGE effect since PGE interacts with EP2 or EP4 receptors to give an increased intracellular cAMP concentration. However, for implantation, the evidence is strongest for a role in implantation for COX-2 rather than for PGE and it has been suggested that prostacyclin is the key prostaglandin interacting with nuclear PPARα (Lim et al., 1999b) although, in NIH 3T3 cells at least, the main product from activation of nuclear COX-2 is PGE (Spencer et al., 1998). In women, the synthesis of PGI$_2$ and therefore its involvement in implantation is less likely since human endometrium produces very little of this prostaglandin (Abel and Kelly, 1979).

Cytokines such as IL-1 and TNF-α stimulate prostaglandin production, and PGE is a major inhibitor of lipopolysaccharide-induced IL-1 production by monocytes (Kunkel et al., 1986) and thus a negative feedback regulation of immune responses in such cells is apparent. PGE is involved in stimulating MMP production (Lindsey et al., 1996; Zeng et al., 1996; Shankavaram et al., 1997), stimulation of IL-8 and IL-10 production (Strassmann et al., 1994; Agro et al., 1996; Denison et al., 1999), antibody class switching in B cells (Phipps et al., 1991; Roper et al., 1990) and inhibition of IL-12 synthesis from activated monocytes (Kraan et al., 1995). All of these properties of PGE are consistent with the damping of any Th-1 (cell-mediated) response within decidua, where a major source of PGE would be the trophoblast (Kelly et al., 1995).
suppression of IL-12 is important since it has been shown to activate maternal lymphocytes (both peripheral and decidual) to attack trophoblast (Hayakawa et al., 1999).

Chemokines

Chemokines are chemotactic cytokines of 8–10 kDa that are classified by their distribution of cysteines. These compounds have similarities in gene sequence, protein sequence and tertiary structure. There are two critical cysteine bonds with either one (α- or CXC (cystein-any amino acid-cysteine) chemokines) or no (β- or CC (cysteine-cysteine) chemokines) amino acids separating the N-terminal cysteines. A further group (fraktalkines) has three amino acids (CX3C) separating the N-terminal cysteines. The individual classes can be further subdivided: in the α-group, those with a ELR (Glu-Leu-Arg) motif next to the cysteine nearest the N-terminus, primarily attract neutrophils. Chemokines not only attract cells but also activate them and contribute to angiogenesis and haematopoiesis. Activation may depend on cell type and β-chemokines such as MCP-1 skew T-cell populations into a Th-2 (humoral response pattern of cytokine release) as opposed to a Th-1 (cell-mediated) response (Chensue et al., 1996). The MCP-1 –/– mouse has been used to demonstrate an absolute necessity for MCP-1 in mounting a Th2 response (Gu et al., 2000). Some chemokines can selectively attract haematopoietic progenitor cells out of bone marrow, for example, during inflammatory events and thus locally derived decidual signals may attract leucocytes to decidua.

The presence of the α-chemokine IL-8 and the β-chemokine MCP-1 have been demonstrated in perivascular cells (Critchley et al., 1994b, 1999; Jones et al., 1997) and the mRNA and protein for these chemokines increase perimenstrually, indicating a role in the early stages of menstruation (Critchley et al., 1999; Milne et al., 1999). Eotaxin, an eosinophil chemotactic agent, has also been identified in a perivascular location in the late secretory phase of the cycle (Zhang et al., 2000). In human endometrium, chemokines may also be responsible for the increasing number of monocytes in the second half of the menstrual cycle (Kamat and Isaacson, 1987).

Epithelial cells act as both a physical barrier to and a target for infection in endometrium. Thus, these cells must possess a competent response to infection, and the uterine epithelium is a source of several chemokines such as MCP-1 (Jolicoeur et al., 1998), macrophage inflammatory protein 1α (MIP-1α) (Akiyama et al., 1999) regulated-upon-activation, normal T cell expressed and presumably secreted (RANTES) (Altman et al., 1999) and eotaxin (Zhang et al., 2000), although here their primary role may be to participate in any immune defences raised against infection. Expression of MCP-1 in glandular cells is particularly noticeable in endometriotic tissue (Jolicoeur et al., 1998) or in tissue that is otherwise stimulated. RANTES is also produced by endometrial stromal cells and its synthesis is enhanced by lipopolysaccharide, TNF and IL-1 (Arima et al., 2000). This effect of lipopolysaccharide indicates that these cells also can recognize infectious agents.

Conclusions

Menstruation has been shown to involve cytokines and MMPs and is initiated by the decrease in the circulating concentrations of ovarian progesterone. However, the first stages in menstruation are not clear and the cells that first respond to the decrease in progesterone have not been identified. Many of the vasoconstricting agents that may affect blood loss during menstruation (for example, endothelins and prostaglandins) are produced mainly in the glandular epithelium, a site not obviously relevant to the blood vessels. Attention may now have to be directed to the cells immediately surrounding the spiral arterioles. These cells have been shown to respond to progesterone and are potent sources of cytokines and prostaglandin. Moreover, these cells appear to possess components of the CD40 signalling system, which exerts control over cytokine production in cells as diverse as B cells and fibroblasts. Concentration on such signalling pathways over the next decade may result in a new approach to the control of endometrial function that will allow better medical intervention in distressing complaints such as dysmenorrhoea and menorrhagia.

References

Key references are identified by asterisks.

Abel MH and Kelly RW (1979) Differential production of prostaglandins within the human uterus Prostaglandins 18 821–828

Angel J, Auducbert F, Bismuth G and Fournier C (1994) IL-1β amplifies bradykinin-induced prostaglandins E2 production via a phospholipase D-linked mechanism Journal of Immunology 152 5032

Cameron IT, Leask R, Kelly RW and Baird DT (1987) The effect of danazol mefenamic acid norethisterone and a progesterone impregnated coil on endometrial prostaglandin concentrations in women with menorrhagia Prostaglandins 34 99–110

Cameron ST, Critchley HOD, Buckley H, Kelly RW and Baird DT (1996) Effects of Mifepristone and Onapristone on the development by the human endometrium of progesterone-dependent factors (leukemia inhibitory factor prostaglandin dehydrogenase and glycoldein) of potential importance for implantation Human Reproduction 1 40–49

Cheng N, Zhao Y, Williams K and Flanders KC (1994) Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-β1 (TGFβ1) and TGFβ3 and TGFβ type II receptor messenger ribonucleic acid and protein and contains [125I]TGFβ1-binding sites Endocrinology 135 439–449

Colditz IG (1990) Effect of exogenous prostaglandin E2 and actinomycin D on plasma leakage induced by neutrophil activating peptide-1/ interleukin-8 Immunology and Cell Biology 68 397–403

Das SK, Lim H, Paria BC and Dey SK (1999) Cyclin D3 in the mouse uterus is associated with the decidualization process during early pregnancy Journal of Molecular Endocrinology 22 91–101

Goldberg MA and Schneider TJ (1994) Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin Journal of Biological Chemistry 269 4355–4359

Han SW, Lei ZM and Rao CV (1996) Up-regulation of cyclooxygenase-2 gene-expression by choricronic gonadotropin during the differentiation of human endometrial stromal cells into decidua Endocrinology 137 1791–1797

Hansson NH and Geha RS (1997) Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells Immunity 6 379–387

Horwitz KB, Mockus MB and Lessey BA (1982) Variant T47D human breast cancer cells with high progesterone-receptor levels despite estrogen and antioestrogen resistance Cell 28 633–642

Kamat BR and Isaacson PG (1987) The immunocytochemical distribution via free access
Cytokine control in human endometrium

of leukocytic subpopulations in human endometrium American Journal of Pathology 127 66–73

Kelly JK and Fox H (1979) The local immunological defence system of the human endometrium Journal of Reproductive Immunology 1 39–45

Knight DA, Lydell CP, Zhou DY, Weir TD, Schellenberg RR and Bai TR (1999) Leukemia inhibitory factor (LIF) and LIF receptor in human lung development and regulation of LIF release American Journal of Respiratory Cell and Molecular Biology 20 834–841

Kunkel SL, Chen SW and Phan SH (1986) Prostaglandins as endogenous mediators of interleukin 1 production Journal of Immunology 136 186–192

Lea RG, Flanders KC, Harley CB, Manuel J, Baswatt D and Clark DA (1992) Release of a transforming growth factor (TGF)-β-related suppressor factor from postimplantation murine decidual tissue can be correlated with the detection of a subpopulation of cells containing RNA for TGF-β2 Journal of Immunology 148 778–787

Lee FS, Hagler J, Chen ZJ and Maniatis T (1997) Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway Cell 88 213–222

Li P, Allen H, Banerjee S et al. (1995) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic-shock Cell 80 401–411

Lim H, Gupta RA, Ma WG, Paria BC, Moller DF, Morrow JD, DuBois RN, Trzaskos JM and Dey SK (1999a) Cyclooxygenase-2-derived prostaetacclin mediates embryo implantation in the mouse via PPARδ and Dey SK (1999b) Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse Molecular Endocrinology 13 1005–1007

Lindsey JD, Kashiwagi K, Boyle D, Kashiwagi F, Firestein GS and Weinreb RN (1996) Prostaglandins increase proMMP-1 and proMMP-3 secretion by human ciliary smooth muscle cells Current Eye Research 15 869–875

Liu ZG, Hsu H, Goeddel DV and Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death Cell 87 565–576

MacDonald TT (1999) Effector and regulatory lymphoid cells and cytokines in mucosal sites Current Topics in Microbiology and Immunology 236 113–135

Malinin NL, Boldin MP, Kovalenko AV and Wallach D (1997) MAP3K-related kinase involved in NF-κB activation by TNF CD95 and IL-1 Nature 385 540–544

Markee JE (1940) Menstruation in intraocular endometrial transplants in the rhesus monkey Contributions to Embryology of the Carnegie Institution 177 211–308

Matsushima K and Oppenheim JJ (1989) Interleukin 8 and MCAF: novel
inflammatory cytokines inducible by L1 and TNF Cytokine 1 2–13
Sandberg T, Cassens B, Gustavsson B and Benraad TJ (1998) Human endothelial cell migration is stimulated by urokinase plasminogen activator:plasminogen activator inhibitor 1 complex released from endometrial stromal cells stimulated with transforming growth factor beta1: possible mechanism for paracrine stimulation of endometrial angiogenesis Biology of Reproduction 59 759–767

Downloaded from Bioscientifica.com at 10/20/2018 02:12:31AM
via free access