The mechanisms underlying the hormonal stimulation of meiotic maturation are not understood. The most prevalent hypothesis is that hormone-induced maturation is stimulated by an increase in the intracellular messengers, cAMP or Ca²⁺. This study investigated whether Ca²⁺ transients in somatic cells can lead to Ca²⁺ transients in the oocyte, and whether hormones that stimulate meiotic maturation of mouse oocytes in vitro and in vivo stimulate an increase in intracellular Ca²⁺. Of a range of potential agonists of Ca²⁺ release, ATP and UTP were the only agents that stimulated Ca²⁺ release in cumulus cells. ATP-induced Ca²⁺ release is from intracellular stores, as the response is not blocked by chelation of extracellular Ca²⁺, but is inhibited by the Ca²⁺-ATPase inhibitor, thapsigargin. ATP and UTP are equipotent, consistent with the receptor being of the P2Y2 type.

Confocal microscopy was used to show that ATP-induced Ca²⁺ release in cumulus cells leads to a Ca²⁺ increase in the oocyte. Inhibition of gap-junctional communication using carbenoxolone, as assayed by dye transfer, inhibited the diffusion of the Ca²⁺ signal from the cumulus cells to the oocyte. Thus, provided that a Ca²⁺ signal is generated in the somatic cells in response to maturation-inducing hormones, it is feasible that a Ca²⁺ transient is generated in the oocyte. However, FSH and EGF, both of which stimulate maturation in vitro, have no effect on Ca²⁺ in cumulus–oocyte complexes. Furthermore, LH, which leads to meiotic maturation in vivo, did not stimulate Ca²⁺ release in acutely isolated granulosa cells from pre-ovulatory mouse follicles. These studies indicate that ATP may play a role in modulating ovarian function and that diffusion of Ca²⁺ signals through gap junctions may provide a means of communication between the somatic and germ cells of the ovarian follicle. However, our data are not consistent with a role for Ca²⁺-mediated communication in hormone-mediated induction of meiosis in mice.

Introduction

Mammalian oocytes are arrested in the first meiotic division until they are stimulated to undergo meiotic maturation just before ovulation. Meiotic maturation involves the progression from prophase of the first meiotic division to metaphase of the second meiotic division. In all mammalian species, the signal responsible for stimulating the resumption of meiosis is a surge of LH. LH receptors are present on theca and granulosa cells and, in some species, the cumulus cells but not the oocyte. How this signal in the somatic compartment of the follicle is transduced to the oocyte to stimulate meiotic maturation is not understood.

Meiotic maturation can also be stimulated by release of the oocytes from the follicle into culture medium. This ‘spontaneous’ maturation indicates that the follicular environment may be responsible for maintaining meiotic arrest (Pincus and Enzmann, 1935; Edwards, 1965). To override meiotic arrest, LH may lead to the suppression of the putative inhibitory follicular signals or, alternatively, may provide a positive stimulus to override the follicular inhibition. One favoured mechanism for removing inhibitory follicular signals is the breakdown of gap junctions in the follicle (Larsen et al., 1986; Downs, 1995), which would effectively restrict the flow of any inhibitory signals from the follicular cells to the oocyte. However, gap-junctional coupling persists between the cumulus cells and the oocyte until after germinal vesicle breakdown (GVBD) in sheep and mouse oocytes (Moor et al., 1981; Eppig, 1982). The evidence that meiotic arrest is released by a positive stimulus is that hormonal stimuli in the form of LH (Dekel and Beers, 1978), FSH (Downs et al., 1988) and epidermal growth factor (EGF) (Downs, 1989; Downs et al., 1988) can override meiotic arrest in vitro. The action is apparently mediated by the cumulus cells and transmitted through gap junctions, as both are required for the hormonal stimulus to work (Fagbohun and Downs, 1991; Downs, 2001). Thus, with appropriate hormonal stimulation, the somatic compartment of the follicle can be induced to drive the resumption of meiosis in vitro. However, the nature of the signal is not known.

Clues to the identity of the signalling molecules responsible for maturation may be provided by messengers in the signal transduction pathways of the LH receptor. The LH receptor is a classic G-protein-coupled seven
transmembrane receptor (Segaloff and Ascoli, 1993). It activates adenylate cyclase with the result that receptor stimulation leads to a rapid increase in the concentration of cAMP (Sanchez-Yague et al., 1993; Davis, 1994). Other reports indicate that LH may signal by stimulating the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP$_2$), resulting in the production of 1,4,5-triphosphate (InsP$_3$) and the release of intracellular Ca$^{2+}$ (Davis et al., 1986, 1991; Dimino et al., 1987; Goren et al., 1990; Gudermann et al., 1992; Flores et al., 1998). The ability of the messengers

Fig. 1. Monitoring of Ca$^{2+}$ concentration in mouse oocytes and cumulus cells. Fluorescence from fura 2-loaded, partially denuded oocytes was recorded. (a) Trace showing fluorescence ratio in cumulus cells (solid lines) and oocytes (dashed lines, circled) during application of carbachol (100 µmol l$^{-1}$) to the bath to increase Ca$^{2+}$ in the oocytes and application of ionomycin (10 µmol l$^{-1}$) to increase Ca$^{2+}$ in both the oocytes and cumulus cells. Each trace represents a single region of interest (ROI) in either the cumulus cells or oocyte. (b) A series of representative images showing pseudocoloured fluorescence ratio (i) before application of carbachol, (ii) at the peak of the carbachol increase, (iii) after recovery of the carbachol response and (iv) after application of ionomycin. A cumulus cell and oocyte are labelled in (i).
InsP₃, Ca²⁺ and cAMP to participate in cell signalling via gap junctions (Saez et al., 1989; Sandberg et al., 1992) indicates that they may be good candidates for the messengers responsible for stimulation of oocyte maturation.

There are two main models for meiotic resumption involving these messengers. In the first model, maturation is stimulated by a transient increase in cAMP. Although cAMP is normally considered to be a negative regulator of meiotic maturation (Cho et al., 1974; Eppig, 1993; Downs, 1995), a number of lines of evidence indicate that it may also act as a positive regulator. Firstly, transient exposure of oocytes arrested with 200 µmol dibutyryl cAMP l⁻¹ to 1 mmol dibutyryl cAMP l⁻¹ stimulates the resumption of meiosis (Eppig, 1993; Downs, 1995). Secondly, a transient increase in cAMP in intact isolated follicles stimulates oocyte maturation (Dekel and Sherizly, 1983; Dekel et al., 1988; Yoshimura et al., 1992). Thirdly, a transient increase in cAMP has been reported in the oocyte several hours after the addition of LH to the follicle (Moor and Heslop, 1981). Thus, cAMP meets some of the requirements expected of a physiological regulator of meiotic maturation, but a causal link has yet to be established.

In the second model, Ca²⁺ transients generated in the follicular compartment diffuse to the oocyte, with a resultant increase in Ca²⁺ in the oocyte (Eppig, 1993; Homa et al., 1993). In support of this model are the findings that, in intact follicles, the ability of LH to stimulate meiotic resumption is inhibited by Ca²⁺-free medium (Goren et al., 1990) and that Ca²⁺ oscillations and phosphoinositide turnover occur during resumption of meiosis (Carroll and Swann, 1992; Carroll et al., 1994; Pesty et al., 1994; Homa, 1995). More recently, inhibitors of phosphoinositide metabolism and intracellular Ca²⁺ buffers have been shown to inhibit hormone-induced maturation in vitro (Coticchio and Fleming, 1998). Perhaps the most direct evidence for a role for Ca²⁺ is the finding that in sheep cumulus–oocyte complexes (COCs), LH stimulates a Ca²⁺ increase in the cumulus cells that is transmitted to the oocyte (Mattioli et al., 1998). Whether these Ca²⁺ changes occur in the granulosa cells of other species and what role they play in meiotic resumption is not known.

In this study, Ca²⁺ imaging techniques were used to test a number of hypotheses to determine whether increases in intracellular Ca²⁺ are important in LH-induced resumption of meiosis in mice.

Materials and Methods

Oocyte collection and culture

Female MF1 mice were injected with 5–10 iu equine chorionic gonadotrophin (eCG) at 48 h before oocyte collection. For collection of the COCs, mice were killed by cervical dislocation and the ovaries were removed to warm M2 (Fulton and Whittingham, 1978). The large antral follicles on the surface of the ovary were punctured with a 27-gauge needle and oocytes with an intact layer of cumulus cells were collected. The COCs were washed three times and maintained in M2 at 37°C.

Monitoring of Ca²⁺ in cumulus–oocyte complexes

For the initial imaging experiments, COCs were pipetted through a pipette smaller than the diameter of the complex but larger than the diameter of the oocyte. This technique breaks the complex open, removing some of the cumulus cells in the process. These partially denuded complexes were incubated in 2 µmol fura 2 l⁻¹ in M2 containing 0.02% (w/v) pluronic acid for 20 min at 37°C. This allowed suitable loading of fura 2 into cumulus cells and the oocyte, and provided the basis of an assay to determine whether agonists could stimulate Ca²⁺ release in either the cumulus cells or the oocyte. Ca²⁺ was monitored by placing partially denuded complexes in a chamber containing 500 µl M2 without BSA. After a few minutes to allow the complexes to stick to the glass coverslip base, an additional 500 µl complete M2 was added to the chamber. The heated chamber containing the COCs was placed on the stage of a Zeiss Axiosvert and imaged at ×20 magnification with a 0.75 NA objective. Fluorescence was collected using a Coolview camera and processed using IonVision software (Improvision, Coventry). Data are presented as ratio of emission intensities acquired at excitation wavelengths of 340 and 380 nm. The agonists were made up in M2 at...
Fig. 3. ATP stimulated an increase in Ca$^{2+}$ in mouse cumulus cells and this increase was inhibited by suramin. (a) Representative ratio images (i) before and (ii) after application of 1 mmol ATP L$^{-1}$ to mouse cumulus-oocyte complexes. Note the increase in fluorescence in the cumulus cells but not in the oocytes. (b) Each trace is the fluorescence ratio from either the oocyte or the cumulus cells, as labelled. (c) Suramin (100 μmol L$^{-1}$) preincubation inhibited ATP-induced Ca$^{2+}$ release in cumulus cells.
3

10–100 stock solutions and the appropriate volume was pipetted into the chamber during the recording to monitor the effects of agonists on Ca²⁺ in cumulus cells and oocytes. Images were acquired at 2–10 s intervals depending on the duration of the experiment.

Confocal imaging of changes in Ca²⁺ was performed using a BioRad µRadiance confocal scanning head attached to a Zeiss Axiovert microscope. For injection of Ca²⁺ dyes into the oocyte, a holding pipette attached to a micrometer syringe was used to orient the COC while the injection pipette was inserted through the cumulus cell layers to the oocyte plasma membrane. Penetration of the plasma membrane was achieved by brief over-compensation of the negative capacitance. Fluo3 (5 mmol l⁻¹ in the pipette) in injection buffer (120 mmol KCl l⁻¹ and 20 mmol Hepes l⁻¹) was pressure-injected using a Picopump (WPI) to a final concentration of 50–100 μmol l⁻¹. The cumulus cells were loaded by incubating intact COCs for 30 min at 37°C in 20 μmol fluo3 AM l⁻¹ in M2 containing 200 μmol dibutyryl cAMP l⁻¹ and 0.02% (w/v) pluronic acid.

For microinjection of fluorescein to assess gap junction permeability, pipettes were backfilled with a solution of 1 mg fluorescein ml⁻¹ in injection buffer before microinjection as described above. The complexes were placed in heated chambers as described above and the fluo3 was excited using the 488 nm line from an argon laser. Images were acquired every 2 s for Ca²⁺ experiments or every minute for fluorescein experiments. Data were analysed off-line using Metamorph software.

Results

Monitoring of Ca²⁺ in cumulus cells and oocytes

Agonists known to increase intracellular Ca²⁺ were applied to establish that changes in cumulus cells and oocytes could be monitored using partially denuded COCs. Carbachol (100 μmol l⁻¹) increases Ca²⁺ concentration in oocytes via activation of muscarinic acetylcholine receptors (Carroll and Swann, 1992). An immediate increase in Ca²⁺ concentration in the oocyte was observed after addition of carbachol to fura 2-loaded COCs (Fig. 1). No Ca²⁺ increase was observed in the cumulus cells; however, a large Ca²⁺ increase was reported after application of 10 μmol ionomycin l⁻¹ (n = 8). These findings demonstrate that the experimental conditions allowed measurement of Ca²⁺ concentrations in oocytes and their attached cumulus cells.

Agonist-induced Ca²⁺ release in cumulus cells

Several candidate agonists were screened to examine the hypothesis that a Ca²⁺ increase in the somatic compartment of the follicle is passed to the oocyte via gap junctions. EGF and FSH stimulate mucification of the cumulus cells (Downs et al., 1988; Downs, 1989) and increase Ca²⁺ in a variety of cell types (Flores et al., 1990, 1992). Addition of EGF (20 ng ml⁻¹; n = 9) or FSH (10 μg ml⁻¹; n = 10) to COCs failed to cause an increase in Ca²⁺ in either the cumulus cells or oocyte (Fig. 2), despite induction of cumulus expansion in parallel experiments (data not shown). Angiotensin II (n = 5) and GnRH (n = 5) increased Ca²⁺ in cultured granulosa cells (Currie et al., 1992); however, in the present study, no effect of either agent on Ca²⁺ concentrations in cumulus cells was observed. In addition, no increase in Ca²⁺ in response to dibutyryl cAMP (1 mmol l⁻¹; n = 6) or forskolin (200 μmol l⁻¹; n = 6) was observed (data not shown), although both have been reported to modify Ca²⁺ in ovarian cells of some species (Flores et al., 1992). LH was not tested because mouse cumulus cells do not express LH receptors (Eppig et al., 1997).

Effect of ATP on Ca²⁺ release in mouse cumulus cells via activation of P2 receptors

The final agonist of Ca²⁺ release tested in the present study was ATP, as it stimulates Ca²⁺ release in ovarian cells from many species (chicken: Morley et al., 1994; human: Role of Ca²⁺ in oocyte maturation 45

![Fig. 4.](image-url) ATP-induced release of Ca²⁺ from intracellular Ca²⁺ stores. (a) Addition of EGTA (2 mmol l⁻¹ final concentration) to the bath before application of ATP (500 μmol l⁻¹) had no effect on the ability of ATP to trigger Ca²⁺ release in mouse cumulus cells. (b) Depletion of intracellular Ca²⁺ with thapsigargin (10 μmol l⁻¹) inhibited the ability of ATP to stimulate Ca²⁺ release in mouse cumulus cells.
Lee et al., 1996; Squires et al., 1997; pig: Aguirre et al., 2000). ATP (between 250 μmol l⁻¹ and 1 mmol l⁻¹) stimulated a significant increase in intracellular Ca²⁺ concentration in cumulus cells (n = 33) (Fig. 3a,b). There was no evidence of any increase in Ca²⁺ in the oocyte (Fig. 3a,b), indicating that gap-junctional coupling may be incapable of propagating the Ca²⁺ increase to the oocyte or that the gap junctions were not patent in the conditions of the experiment (see below).

Suramin is an effective inhibitor of P2 receptors and acts by blocking the ATP binding site. Application of 100 μmol suramin l⁻¹ before ATP inhibited the ability of ATP to increase Ca²⁺ concentration (n = 9) (Fig. 3c). P1 receptors linked to phosphoinositide turnover do not appear to be present on cumulus cells, as adenosine and 2-chloroadenosine did not increase intracellular Ca²⁺ concentration (data not shown).

Partial characterization of the P2 receptor subtype

P2 receptors occur in two major forms: ligand-gated ion channels (P2X receptors) and G-protein-coupled receptors (P2Y) (Burnstock and King, 1996). The roles of extracellular and intracellular Ca²⁺ in the response to ATP were examined to determine whether the cumulus cells expressed the P2X or P2Y receptors. Removal of extracellular Ca²⁺ by addition of 2 mmol EGTA l⁻¹ to the chamber before addition of ATP had little effect on ATP-induced Ca²⁺ release (n = 21) (Fig. 4a). This finding indicates that intracellular stores are probably the source of Ca²⁺ in response to ATP. The Ca²⁺-ATPase inhibitor, thapsigargin, was applied before ATP to deplete intracellular Ca²⁺. Application of ATP after depletion of intracellular Ca²⁺ stores failed to elicit an increase in Ca²⁺ (n = 15), further implicating P2Y receptors in the ATP response (Fig. 4b).

Effects of other di- and tri-nucleotides on Ca²⁺ in cumulus cells

The effects of other tri- and di-nucleotides were examined to characterize further the P2Y receptor present on cumulus cells. UTP stimulated Ca²⁺ release in cumulus cells with approximately equal potency to ATP. Dose–response curves for ATP and UTP are shown (Fig. 5). No response was observed at 10 μmol l⁻¹, whereas a small increase was observed at 20 μmol l⁻¹, which increased from 100 μmol l⁻¹ to 500 μmol l⁻¹. This finding indicates that the receptor stimulated by these agents is equally sensitive to both agonists and, therefore, would be placed tentatively in the P2Y2 category (Burnstock and King, 1996).

No change in Ca²⁺ concentration was detected in

Fig. 5. ATP and UTP stimulated Ca²⁺ release in mouse cumulus cells with similar potencies. A dose–response curve for Ca²⁺ release in response to 10, 20, 100 and 500 μmol l⁻¹ (a) ATP and (b) UTP is shown. Time of addition of ATP or UTP is indicated by the arrow.
response to 1–100 μmol ADP l\(^{-1}\) (data not shown); however, higher concentrations (between 500 μmol l\(^{-1}\) and 1 mmol l\(^{-1}\)) caused a small Ca\(^{2+}\) increase in the cumulus cells that appeared to be followed by an increase in Ca\(^{2+}\) concentration in the oocytes (n = 9) (Fig. 6a). In one experiment (n = 3), a further addition of 500 μmol ADP l\(^{-1}\) caused an additional Ca\(^{2+}\) increase in the oocytes but not in the cumulus cells (Fig. 6a). This finding indicates that the ADP-induced Ca\(^{2+}\) increase in the oocytes is independent of the Ca\(^{2+}\) change in the cumulus cells, consistent with previous data for ATP and UTP. Further support for this is provided by the observation that ADP also increases Ca\(^{2+}\) concentration in oocytes denuded completely of cumulus cells (n = 3) (Fig. 6b). These experiments indicate that both cumulus cells and oocytes may have an ADP-sensitive receptor. One feature of the ADP response is that in all the COCs tested (n = 5), the oocyte remained capable of responding to an additional application of ADP, whereas cumulus cells did not (Fig. 6a,b).

Effect of ATP on Ca\(^{2+}\) in the oocyte of intact cumulus–oocyte complexes

As described above, ATP-induced Ca\(^{2+}\) release in partially denuded COCs did not lead to any increases in intracellular Ca\(^{2+}\) concentration in the attached oocytes. This finding indicates that Ca\(^{2+}\) and InsP\(_3\) are unable to traverse the processes and gap junctions between the cumulus cells and oocyte. To determine whether this is also true in intact COCs, fluo3 was microinjected into the oocyte and the cumulus cells were loaded with fluo3 AM; Ca\(^{2+}\) changes in the oocyte and cumulus cells were monitored using confocal microscopy. In intact COCs, ATP caused an increase in Ca\(^{2+}\) in the cumulus cells, which was followed 46.8 ± 8.1 s (n = 17) later by an increase in Ca\(^{2+}\) in the oocyte (Fig. 7a,b). This finding indicates that increases in Ca\(^{2+}\) in the cumulus cells lead to increases in Ca\(^{2+}\) in the oocyte provided that the cumulus cell layer is intact.

The increase in Ca\(^{2+}\) concentration in the oocyte may be brought about by two mechanisms. Firstly, the Ca\(^{2+}\) or InsP\(_3\) generated in the cumulus cells may diffuse through gap junctions and, secondly, ATP may induce the release of a messenger from cumulus cells that simulates a Ca\(^{2+}\)-mobilizing receptor on the oocyte plasma membrane. The gap junction inhibitor, carbenoxolone, was applied (500 μmol l\(^{-1}\) for 20 min) before application of ATP to examine the role of gap junctions. Preincubation with carbenoxolone completely abolished the transfer of FITC–dextran from the oocyte to the cumulus cells, indicating that gap-junctional coupling was probably inhibited (n = 5) (Fig. 8a,b). In carbenoxolone-treated COCs, ATP-induced Ca\(^{2+}\) transients did not propagate from the cumulus cells to the oocyte (n = 6) (Fig. 9a,b). In two experiments, the ability of the oocyte to generate a Ca\(^{2+}\) increase was verified by application of carbachol (not shown). Thus, increases in Ca\(^{2+}\) in the cumulus cells can be transmitted to the oocyte via gap-junctional coupling.

Effect of LH on Ca\(^{2+}\) in granulosa cells

The ability of LH to increase Ca\(^{2+}\) in the somatic compartment of the follicle would provide support for a role for Ca\(^{2+}\) in meiotic resumption in vivo. However, to date, the physiological agonists FSH and EGF have not been found to influence Ca\(^{2+}\) in cumulus cells. Granulosa cells were recovered from individual follicles from PMSG-primed ovaries to determine whether LH may stimulate a Ca\(^{2+}\) increase in mouse follicular cells. The application of LH (1–10 μg ml\(^{-1}\)) did not cause an increase in Ca\(^{2+}\) in granulosa cells in three separate experiments. ATP was applied to confirm that the granulosa cells were responding to agonists. Similar to its effects on cumulus cells, ATP caused an increase in Ca\(^{2+}\) concentration in granulosa cells (Fig. 10).
Discussion

The cell signalling pathway underlying hormone-induced meiotic maturation is essentially a problem of cell–cell signalling. How does the oocyte detect the binding of LH to receptors on the theca and granulosa cells? In the present study, conventional and confocal imaging techniques were used to monitor Ca$^{2+}$ concentration in oocytes, cumulus cells and granulosa cells. It was found that ATP and UTP, but not FSH or EGF, cause Ca$^{2+}$ transients in mouse follicular cells, that ATP-induced Ca$^{2+}$ changes in cumulus cells can be passed to the oocyte via gap junctions and, finally, that LH has no effect on Ca$^{2+}$ concentration in granulosa cells. These data provide evidence against a role for phosphoinositide turnover and Ca$^{2+}$ transients in hormone-induced maturation in mice.

Experiments in the present study were designed to identify agonists of Ca$^{2+}$ release in cumulus cells with the aim of determining whether changes in Ca$^{2+}$ in cumulus cells could diffuse to the oocyte. Despite the fact that there are many agents that release Ca$^{2+}$ in populations of ovarian cells from a number of species (Flores et al., 1990, 1992; Currie et al., 1992), the results of the present study indicate that mouse cumulus cells respond to few agonists of Ca$^{2+}$ release. Of the agonists tested, only ATP and UTP consistently resulted in an increase in Ca$^{2+}$ in cumulus cells. The P2 receptor subtype is apparently the G-protein-coupled P2Y family, as the ability of ATP to increase Ca$^{2+}$ concentration was not dependent on extracellular Ca$^{2+}$ and required intracellular Ca$^{2+}$ stores. Furthermore, the similar sensitivity of the response to both ATP and UTP indicates that the receptor may be a P2Y2 receptor (Fredholm et al.,...
In addition to the putative P2Y2 receptor, there is also evidence from the present study for an ADP receptor on both the cumulus cells and the oocyte. In most tissues, ecto-ATPases are responsible for metabolizing ATP, producing ADP in the process (Dubyak and El-Moatassim, 1993). This process provides a source of extracellular ATP, perhaps from hypoxic (Forrester, 1990) or dying cumulus cells, to initiate Ca^{2+} transients in the oocyte. ATP increases Ca^{2+} concentration in chicken, pig and human granulosa cells (chicken: Morley et al., 1994; human: Lee et al., 1996; Squires et al., 1997; pig: Aguirre et al., 2000), which indicates that P2 receptor-mediated regulation of follicular function is widely conserved. P2 signalling pathways regulate many physiological processes (Gordon, 1986; Dubyak and El-Moatassim, 1993), but their role in ovarian function is not known. One possibility is that ATP from sympathetic nerve terminals or dying cells (Stefenson et al., 1981; Gordon, 1986) leads to the release of Ca^{2+} in the somatic compartment of the follicle and that this Ca^{2+} modulates the sensitivity of follicular cells to steroid and peptide hormones (Sadighian et al., 1989; Bodis et al., 1993; Davis, 1994). Thus, ATP may act as a paracrine mediator of follicular development. Recent evidence showing that ATP activates MAP kinase in human granulosa-lutein cells supports this idea (Tai et al., 2001).

The finding of an agonist, ATP, that stimulates Ca^{2+} increases specifically in the cumulus cells provides the opportunity to determine whether a Ca^{2+} increase in the somatic compartment of the follicle is followed by a Ca^{2+} transient in the oocyte. Our data using confocal microscopy demonstrate clearly that ATP-induced Ca^{2+} increases in cumulus cells are followed by Ca^{2+} increases in the oocyte. Early experiments using conventional imaging of partially denuded COCs indicated that no cell–cell communication was taking place. The difference between intact and partially denuded COCs indicates that a full complement of gap junctions is required for sufficient diffusion of the messengers, or that the partial denuding process, perhaps by stimulating an increase in intracellular Ca^{2+} (Arelanno et al., 1990), inhibits gap-junctional communication in the remaining cells. Whatever the mechanism, these findings demonstrate that, during in vitro maturation, an intact COC is required for normal gap-junctional communication between the oocyte and cumulus cells.

The increase in Ca^{2+} concentration in oocytes after stimulation of intact COCs with ATP appeared to be stimulated via diffusion through gap junctions. Gap junction inhibitors that prevent dye transfer between oocyte and cumulus cells also abolished the ability of ATP-induced Ca^{2+} transients in the cumulus cells to reach the oocyte. The messenger diffusing through gap junctions may be InsP₃ or Ca^{2+}. In the case of the COC, where the gap junction forms at the end of a narrow process that winds through the zona pellucida (Anderson and Albertini, 1976), the distance required for diffusion is at least 7 µm. As Ca^{2+} is heavily buffered by cytosol (Allbritton et al., 1992), it is likely that InsP₃ is the diffusible messenger. Irrespective of which messenger molecule is diffusing between cumulus cells and oocytes, these studies demonstrate that if the hormone responsible for meiotic maturation leads to an increase in Ca^{2+} in the somatic compartment of the follicle, it may be transmitted to the oocyte.

Hormone-induced in vitro maturation is stimulated by FSH and EGF (Downs et al., 1988; Eppig, 1991), and the signal responsible for stimulation of maturation apparently requires intact gap-junctional communication (Fagbohun and Downs, 1991). Thus, Ca^{2+} is a good candidate as the mediator of hormone-induced meiotic maturation.
However, in this system there was no evidence to implicate Ca$^{2+}$ in FSH- or EGF-induced maturation. The finding that neither agonist promoted an increase in Ca$^{2+}$ indicates that their mode of action is via the stimulation of other signal transduction pathways, probably involving cAMP and tyrosine kinases, respectively. The lack of evidence for Ca$^{2+}$ in hormone-induced maturation is in contrast to a recent study in which inhibition of phosphoinositide signalling and Ca$^{2+}$ transients using lithium chloride, neomycin and BAPTA all inhibited hormone-induced but not spontaneous maturation (Cottichio and Fleming, 1988). As there was no evidence for an increase in Ca$^{2+}$ in response to FSH and EGF in the present study, it remains to be shown that the inhibitors used to block phosphoinositide metabolism and Ca$^{2+}$ transients were operating in the intended manner. In contrast to Ca$^{2+}$, there is compelling evidence for a role for cAMP in mediating FSH-induced maturation. Firstly, it is well established that FSH stimulates cAMP production in granulosa cells (Richards, 1980) and, secondly, analogues of cAMP can mimic the ability of FSH to induce meiotic...
maturation in vitro (for reviews, see Eppig, 1993; Downs, 1995). Thus, the stimulus (FSH) increases cAMP and an increase in cAMP is sufficient to stimulate maturation. A lack of a specific method for inhibiting the generation of cAMP means that further studies must be undertaken to determine whether it is a necessity for hormone-induced maturation. On the basis of these data, an increase in cAMP, rather than Ca2+, remains the best candidate for mediating hormone-induced maturation in vitro in mice.

In vivo maturation is stimulated by the action of LH on the granulosa cells. It is not clear how LH leads to the stimulation of maturation. The studies described above do not discount a role for Ca2+ in the induction of maturation in intact follicles. If LH stimulates an increase in Ca2+ in the granulosa cells, it remains possible that this Ca2+ may reach the oocyte via gap-junctional communication (Eppig, 1993; Homa et al., 1993). This hypothesis was tested in the present study but it was found that LH had no effect on Ca2+ in granulosa cells from mouse follicles. Thus, there is little evidence to support a role for Ca2+ in stimulating maturation in intact follicles in mice. Species differences are apparent. LH has been shown to increase InsP3 production in granulosa cells (Davis et al., 1986; Dimino et al., 1987), although there is a delay of several minutes between LH application and detection of InsP3. The differentiation status of granulosa cells in culture may explain some of these differences. The most recent data indicating that Ca2+ transients may be involved in hormone-induced maturation is the finding that in sheep COCs, LH triggers a Ca2+ increase that is observed in the oocyte within 5 min. Like ATP-induced Ca2+ changes in mice, the Ca2+ transient in the sheep oocyte is apparently dependent on intact gap junctions.

In conclusion, the results of the present study demonstrate that Ca2+ waves generated in the somatic compartment of mouse follicles can travel between heterologous gap junctions and stimulate Ca2+ transients in the oocyte. This finding demonstrates that Ca2+ may be an important mediator of cell–cell communication between the oocyte and the somatic cells of the ovary. However, the inability of FSH, EGF and LH to stimulate Ca2+ release in mouse follicular cells indicates that Ca2+ is probably not central to the mechanism of hormone-induced oocyte maturation in mice.

The authors would like to thank the extensive purinergic community at UCL for advice and reagents throughout this study, in particular B. King, G. Burnstock, F. Edwards and S. Robertson. The authors would also like to thank K. Swann for discussions and comments on the manuscript. This work was supported by grants from the MRC.

References

Aguirre C, Jayes FC and Veldhuis JD (2000) Luteinizing hormone (LH) drives diverse intracellular calcium second messenger signals in isolated porcine ovarian thecal cells: preferential recruitment of intracellular Ca2+ oscillatory cells by higher concentrations of LH Endocrinology 141 2220–2228

Allbritton NL, Meyer T and Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate Science 258 1812–1815

Coticchio G and Fleming S (1998) Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks FSH-induced but not spontaneous meiotic resumption in mouse oocytes Developmental Biology 203 201–209

Currie WD, Li W, Baimbridge KG, Yuen BH and Leung PC (1992) Cytosolic free calcium increased by prostaglandin F2 alpha (PGF2 alpha), gonadotropin-releasing hormone, and angiotensin II in rat granulosa cells and PGF2 alpha in human granulosa cells Endocrinology 130 1837–1843

Davis JS, Weakland LL, Farese RV and West LA (1991) Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells Journal of Biological Chemistry 262 8515–8521

Dekel N, Galiani D and Sherizly I (1988) Dissociation between the inhibitory and the stimulatory action of FSH on maturation of rat oocytes Molecular and Cellular Endocrinology 56 115–121

Eppig JJ (1991) Intercommunication between mammalian oocytes and companion somatic cells BioEssays 13 569–574
Flores JA, Veldhuis JD and Leong DA (1990) Follicle-stimulating hormone evokes an increase in intracellular free calcium ion concentrations in single ovarian (granulosa) cells Endocrinology 127 3172–3179
Flores JA, Leong DA and Veldhuis JD (1992) Is the calcium signal induced by follicle-stimulating hormone in swine granulosa cells mediated by adenosine cyclic 3',5'-monophosphate-dependent protein kinase? Endocrinology 130 1863–1866
Flores JA, Aguirre C, Sharma OP and Veldhuis JD (1998) Luteinizing hormone (LH) stimulates both intracellular calcium ion ([Ca 2+]i) mobilization and transmembrane cation influx in single ovarian (granulosa) cells: recruitment as a cellular mechanism of LH-[Ca 2+]i dose response Endocrinology 139 3606–3612
Gudermann T, Birnhaumer M and Birnhaumer L (1992) Evidence for dual coupling of the murine luteinizing hormone receptor to adenyl cyclase and phosphoinositide breakdown and Ca 2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells Journal of Biological Chemistry 267 4479–4488
Larsen WJ, Wert SE and Brunner GD (1986) A dramatic loss of cumulus cell gap junctions is correlated with germinal vesicle breakdown in rat oocytes Developmental Biology 113 517–521
Richards JS (1980) Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation Physiological Reviews 60 51–89
Saez JC, Connor JA, Spray DC and Bennett MW (1989) Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions Proceedings National Academy of Sciences USA 86 2708–2712
Sanchez-Yague J, Hipkin RW and Ascoli M (1993) Biochemical properties of the agonist-induced desensitization of the follicle-stimulating hormone and luteinizing hormone/chorionic gonadotropin-responsive adenyl cyclase in cells expressing the recombinant gonadotropin receptors Endocrinology 132 1007–1016
Segaloff DL and Ascoli M (1993) The lutropin/chorionic gonadotropin receptor 4 years later Endocrine Reviews 14 324–347