REDOX regulation of early embryo development

Alexandra J. Harvey, Karen L. Kind and Jeremy G. Thompson*

Reproductive Medicine Unit, Department of Obstetrics and Gynaecology, Adelaide University, The Queen Elizabeth Hospital, Woodville Road, Woodville SA 5011, Australia

Preimplantation embryonic development is associated with a change in preference in energy metabolism pathways. Although oxidative phosphorylation is obligatory in most species throughout preimplantation development, an increasing role for energy derived from glycolysis is associated with compaction and blastulation. Such a shift in metabolic pathway preference is desirable as the embryo faces an increasingly hypoxic environment in utero. We hypothesize that this shift in metabolic preference is associated with a change in the reduction–oxidation (REDOX) state within the embryo, affecting not only the energy production required for development, but also the activity of REDOX-sensitive transcription factors, which may alter gene expression patterns. Shifts in intracellular REDOX state may also contribute to spatial differences in cell activity, especially after compaction, and perhaps even major embryonic events such as fertilization, genome activation and cellular differentiation.

Early embryo development requires energy (that is, the formation of adenosine triphosphate, ATP), which is produced through two possible mechanisms: glycolysis, using glucose as a substrate, and oxidative phosphorylation, using pyruvate or oxaloacetate as a substrate. The pioneering work of Brinster, Biggers, Whitten, Whittingham and Wales from the late 1950s to the early 1970s revealed that for mouse embryo development to the blastocyst stage, pyruvate or oxaloacetate are essential for early cleavage, but that glucose is an effective substrate from the eight-cell stage (Bavister, 1995; Wales, 1975). These studies were the first to reveal that a change in metabolic state is involved in the control of early development and led many other workers to examine the concentrations of exogenous energy substrates required for optimal ex vivo embryo development (Bavister, 1995).

Another key energy substrate (although usually not considered as such) is oxygen (Fig. 1). Oxygen is essential for the conversion of ADP to ATP in oxidative phosphorylation through its role as an electron acceptor in the electron transport chain. However, the use of oxygen as an energy substrate also results in the production of reactive oxygen species (ROS), particularly the superoxide anion (O₂⁻) and the hydroxyl radical (OH•). ROS are highly active electron acceptors, able to strip electrons from other molecules that, in turn, become free radicals. Hydrogen peroxide (H₂O₂) is not a radical per se, but is a product of O₂⁻ and metal ion catalysis. However, both H₂O₂ and O₂⁻ can form the extremely reactive OH•. The over-generation of intracellular ROS during culture of mammalian embryos in vitro is generally thought to be detrimental to embryo development (reviewed by Johnson and Nasr-Esfahani, 1994; Guerin et al., 2001). The consensus view is that ‘over-production’ of ROS is unfavourable for embryo development, coincident with perturbed metabolic activity. We believe this to be an overly simplistic view and prefer to think in terms of altered reduction–oxidation (REDOX) states, in which a prolonged oxidized state within the embryo, especially after early cleavage, is not favourable for embryo development. Other in vitro culture conditions may also shift the REDOX state unfavourably. Furthermore, there are some specific events in development that appear to be associated with a change in the REDOX state, indicating that REDOX state has a causative role. These events include sperm-mediated oocyte activation, embryonic genome activation and embryonic hatching from the zona pellucida.

Intracellular reduction–oxidation states

The intracellular REDOX state describes a complex interaction of the relative concentrations of reduced and oxidized forms of a variety of molecules, including the nicotinamide adenine nucleotides (NAD(P)⁺/NAD(P)H), flavins (FAD⁺/FADH), ubiquinones, peroxides and thiols–disulphides (for example, glutathione (GSH/GSSG)), and others (Fig. 1). Estimation of the REDOX state is difficult to measure with accuracy, and is usually achieved by direct or indirect measurement of REDOX molecules, such as intracellular glutathione or peroxides, [NAD⁺]/[NADH] or [pyruvate]/[lactate].

REDOX state is also significantly influenced by factors that stimulate the generation or neutralization of intracellular ROS. ROS are produced primarily through electron transport at the inner mitochondrial membrane, but also by cytoplasmic or membrane-bound NADPH-oxidase, cytochrome p450 enzymes and the xanthine–xanthine oxidase systems (Gilbert and Colton, 1999). Mammalian cells have...
several mechanisms to protect against the generation of ROS. Several enzymes catalyse their destruction, including Cu–Zn and Mn-superoxide dismutases, catalase and glutathione peroxidase, some of which are known to be transcribed in preimplantation mammalian embryos (Harvey et al., 1995). Many compounds have antioxidant activity and act as electron donors for oxidant species and either yield inactive molecules themselves (such as thiols forming disulphides) or are sufficiently stable as radicals to be virtually non-reactive (for example, \(\alpha\)-tocopherol). However, ROS present a paradox in that they may act as second messengers in mammalian cells (Schreck and Baeuerle, 1991; Wenger, 2000). Several genes are activated in response to alterations in ROS concentration including those for protein kinases (Burdon, 1996), tyrosine kinases and growth factors (Nose, 2000). The interaction of cytokines and growth factors with cell receptors has been shown to elicit increases in ROS production (Nose, 2000). However, it is most likely that the balance between ROS production and elimination (that is, the REDOX state), rather than ROS themselves, determines these responses.

Therefore, REDOX state regulation has important functions for optimal growth responses (Burdon, 1996).

Environment of the reproductive tract

After ovulation, fertilization, and early embryo development in the oviduct, embryos migrate to the uterus, where implantation occurs. The timing of implantation relative to the development of the embryo differs among species. Despite these differences, the timing of the transition from oviduct to uterus for most species occurs around the time of compaction and blastulation (Boyd and Hamilton, 1952), indicating that the oviduct is excluded physiologically as a site for significant post-hatching development.

Oviductal O\(_2\) concentration is about 40% or less than atmospheric concentration (Leese, 1995) and it appears that the uterine environment has an even lower O\(_2\) concentration than that of the oviduct (Fischer and Bavister, 1993). Thus embryos encounter a decreasing O\(_2\) concentration gradient as they progress down the reproductive tract. Furthermore, during early implantation, hypoxic and even anoxic environments are common.
conditions confront the invading trophectoderm (reviewed by Leese, 1995). In addition, fluid compositional studies have established that oviductal fluid generally has relatively low glucose concentrations (< 1 mmol l⁻¹) compared with those in uterine fluid, indicating an environment more favourable for glycolytic activity in the uterus.

Metabolic evidence for REDOX regulation of embryo development

Energy (ATP) production increases at the onset of compaction and blastocyst development to support increased protein synthesis and activity of ion-transport systems, notably the Na⁺/K⁺-dependent ATPase (Wales, 1975; Leese, 1995). An increase in ATP production is inferred from the increases in uptake of oxygen and energy substrates, such as pyruvate and glucose (Houghton et al., 1996; Thompson et al., 1996). Furthermore, measurements of ATP:ADP ratios imply that demand for ATP increases after major activation of the embryonic genome (Rozell et al., 1992). The increase in glucose uptake and metabolism from compaction appears to be a common phenomenon for embryos across a range of species. This increase has been attributed to increased glycolytic enzyme activity (Houghton et al., 1996) and increased capacity for glucose uptake by facilitated transporters (Pantaleon and Kaye, 1998). During development to the blastocyst stage, there is a significant shift from a dependence on ATP generation by oxidative phosphorylation to a dependence on ATP generation by glycolysis. In particular, glycolytic activity leading to lactate production accounts for all glucose uptake in post-compaction stage embryos of several species including rats (Brison and Leese, 1991), sheep (Gardner et al., 1993), cows (Thompson et al., 1996) and humans (Gott et al., 1990). Collectively, these data can be interpreted as signifying that post-compaction development is associated with a significant shift in the REDOX state to a more reduced state, favoured by post-compaction embryos to accommodate an increasingly hypoxic environment. This is not to say that oxidative phosphorylation is not important during post-compaction development. Indeed, mouse blastocysts that have a reduced capacity for oxidizing substrates via the Krebs cycle (that is, they convert 100% glucose to lactate) are associated with poor post-transfer development (Lane and Gardner, 1998).

Manipulation of substrates and metabolic pathways during development in vitro

Studies using inhibitors of oxidative phosphorylation have revealed significant differences in developmental ability, dependent on whether treatment is applied before or after compaction. Rat (Brison and Leese, 1994), cattle (Thompson et al., 2000) and pig (Macháty et al., 2001) embryos continue development after compaction when oxidative phosphorylation is either partly or completely inhibited. In contrast, application of inhibitors during pre-compaction development is highly inhibitory to development (Thomson, 1967; Brison and Leese, 1994; Thompson et al., 2000).

However, compounds that either suppress glycolysis, such as ethylene diamine tetra-acetic acid (Gardner and Lane, 1996), or stimulate the tricarboxylic acid (TCA) cycle, such as 2-dichloroacetic acid (Penzieas et al., 1993), during pre-compaction development, have been found to improve development.

Decreasing the O₂ concentration within the incubation atmosphere from atmospheric to more physiological concentrations during culture in vitro is beneficial for mammalian embryo development (for examples, see Thompson et al., 1990; Li and Foote, 1993; Dumoulin et al., 1999). Both the number of cells and the proportion of embryos developing to the blastocyst stage increase when oxygen concentrations during incubation are in the 5–7% range. Furthermore, metabolic activity of embryos cultured under decreased O₂ tension correlates more closely with that of in vivo recovered embryos (Hooper et al., 2001). These results have largely been interpreted in terms of reduced O₂ tension decreasing the production of ROS within the embryo. However, this conclusion is based on little direct evidence. Fluorescence of the intracellular peroxide sensor, dichlorodihydrofluorescein diacetate (DCHFDA), was not correlated with O₂ concentrations during incubation in one study (Nasr-Esfahani et al., 1992) but was in another (Goto et al., 1993). In addition, reducing O₂ tension is more effective in promoting embryo development in vitro than is treatment with detoxifying enzymes (superoxide dismutase (SOD) and catalase) (Orsi and Leese, 2001). Furthermore, restricting O₂ availability after compaction by further reducing the O₂ tension from 7 to 2% is beneficial for bovine embryo development after compaction (Thompson et al., 2000). More convincingly, incubation in 5% O₂ compared with 20% O₂ increases oxygen uptake and pyruvate oxidation (Hooper et al., 2001). This finding is significant as the effect of a reduction in O₂ tension from atmospheric levels to 5% within embryos has also been examined using a mathematical model (Byatt-Smith et al., 1991). Byatt-Smith et al. (1991) showed that for small mammalian embryos, such as mouse embryos, O₂ from a 5% atmosphere would be able to sustain oxidative phosphorylation throughout development, albeit under hypoxic conditions. However, larger embryos, such as human or cattle embryos, would establish a significant gradient leading to anoxia in the centre of the embryo, which may explain some of the metabolic differences among embryos of different species. Such a gradient, especially during compaction, may also provide spatial information to cells within the embryo (Fig. 2). This prediction is supported by the observation that the metabolic profile of inner cell mass cells differs from that of trophectoderm (Hewitson and Leese, 1993).

Intracellular NAD⁺/NADH during embryo development

Mouse embryos contain concentrations of NAD⁺ and NADH of 0.25 and 0.85 mmol kg⁻¹, respectively, similar
concentrations to those in adult tissues (Wales, 1975). The intracellular ratio of [NAD\(^{+}\)]:[NADH] does not vary greatly with embryonic stage; however, this finding does not account for possible variations within mitochondrial and cytoplasmic pools (Wales, 1975), which would be influenced by concentrations of [pyruvate]:[lactate] in the cytosol. However, considerable variation occurs among individual embryos at either the one- or two-cell stage (Wales, 1975). Blastocyst development from the two-cell stage is significantly affected by the relative concentration of pyruvate and lactate in the medium, which is postulated to affect intracellular [pyruvate]:[lactate], with an optimum ratio of approximately 1:10 of pyruvate:D,L-lactate.

Intracellular glutathione and NADP\(^{+}\)/NADPH during embryo development

Glutathione, a tripeptide of glycine, cysteine and glutamine, is an important regulator of REDOX status (Munday and Winterbourn, 1989; Fig. 3) and has been detected in reproductive tract fluid (Gardiner et al., 1998). Glutathione plays a major role in regulating ROS concentrations within the cytoplasm, both directly as a free-radical scavenger, and as a substrate with NADPH for detoxifying ROS using GSH peroxidase (Guerin et al., 2001). Glutathione concentrations measured throughout preimplantation embryo development decrease as early cleavage proceeds (Gardiner and Reed, 1995). Preimplantation stage embryos have little capacity for GSH synthesis (Gardiner and Reed, 1995). However, increasing intracellular concentrations of reduced glutathione, especially during oocyte maturation, are associated with both improved fertilization and subsequent embryo development in vitro (Abeydeera et al., 1999; de Matos and Furnus, 2000). Appropriate GSH status is also usually achieved by the inclusion of its constituent amino acids, cysteine, glycine and glutamine, within the incubation medium.

Pronuclear formation after fertilization in mice is also accompanied by increased glycolysis and glucose oxidation through the pentose phosphate cycle, with no change in pyruvate or glutamine entry into the TCA cycle (Pantaleon et al., 2001). This is a sperm-mediated effect, as parthenogenesis does not affect metabolism whereas the degree of polyspermy influences metabolic rate (Pantaleon et al., 2001). As the pentose cycle regulates concentrations of NADPH (Fig. 3), such activity may alter [NADP\(^{+}\)]:[NADPH]. Similarly, a cell cycle-linked REDOX mechanism (experimentally mediated through addition of thioredoxin) has been implicated in the cessation of sperm-mediated Ca\(^{2+}\) spiking after fertilization (Day et al., 2000).

Periods of ROS production or extinction during embryo development

The effect of ROS on embryo development is paradoxical. Most studies have shown that prolonged, experimentally induced ROS production severely inhibits embryo development (Johnson and Nasr-Esfahani, 1994; Guerin et al., 2001). Controversially, the inclusion of antioxidants or radical-detoxifying enzymes to embryo culture medium produces a varied response (Noda et al., 1991; Payne et al., 1992; Orsi and Leese, 2001). Hydrogen peroxide concentrations increase during the two–four-cell transition period, at about the time of embryonic genome activation, in mouse embryos cultured in vitro, but not in those developed in vivo (Nasr-Esfahani et al., 1990). This finding indicates that an increase in ROS may be associated with the arrest of development at the two-cell stage, observed under some in vitro culture conditions. However, increases in H\(_2\)O\(_2\) concentrations in vitro were also observed in embryos from a strain of mice that develop successfully in vitro. A very brief pulse of H\(_2\)O\(_2\) delivered to bovine embryos at the eight-cell stage, the developmental stage at which major activation of the embryonic genome occurs in cattle, had a positive (although not significant) influence on their capacity to develop to the blastocyst stage (Morales et al., 1999). Treatments administered at other stages of development inhibited development. Similarly, mouse embryo hatching, in embryos derived both in vivo and in vitro, has also been associated with a specific burst of ROS production (Thomas...
et al., 1997). The production of ROS may also be an important regulatory system for programmed cell death (apoptosis) in the blastocyst (Pierce et al., 1991).

Transcription factors mediated by the REDOX state

Can a change in metabolic activity during early embryo development elicit a molecular response? As mentioned earlier, a number of genes are known to be responsive to a change in REDOX state. Such transcriptional control is mediated largely by transcription factors sensitive to the intracellular REDOX state and several such factors may be involved in embryo development. Members of the hypoxia inducible factor family of transcription factors are influenced directly by the intracellular oxygen concentration, and may be important for embryonic development within
the hypoxic reproductive tract, whereas nuclear factor kappaB may be involved in stress-related and maternal recognition (cytokine) responses.

Hypoxia inducible factor family

Hypoxia inducible factors (HIFs) are basic helix–loop–helix Per-ARNT-Sim (bHLH-PAS) transcription factors that mediate oxygen-dependent expression of a range of genes involved in cellular and systemic processes (Fig. 4), including angiogenesis, erythropoiesis, glucose transport and glycolysis (reviewed in Semenza, 1999, 2000; Wenger and Gassman, 1999; Wenger, 2000). HIF-1, the first HIF to be identified, is a heterodimer composed of HIF-1α and HIF-1β subunits. HIF-1α was identified as a novel protein, whereas the HIF-1β subunit is identical to the aryl hydrocarbon receptor nuclear translocator (ARNT). HIF-1α protein concentrations are regulated precisely according to cellular oxygen concentration. More recently, other similar hypoxia responsive bHLH-PAS proteins, HIF-2α and HIF-3α, have also been identified.

Regulation of HIF-1 activity can occur at a number of levels, including mRNA expression, nuclear localization and transcriptional activation, and changes in the protein stability of HIF-1α appear to be the principal control mechanism (reviewed in Semenza, 1999, 2000; Wenger and Gassman, 1999; Fig. 4). Under normoxic conditions, HIF-1α protein is degraded rapidly by the ubiquitin–proteasome system. This process is mediated through binding of the von Hippel-Lindau (pVHL) tumour suppressor protein to HIF-1α. Multiple mechanisms have been proposed to account for the nature of the oxygen sensor that detects changes in oxygen concentration (Semenza, 1999; Wenger and Gassman, 1999). A study by Jaakkola et al. (2001) indicates that the binding of pVHL to HIF-1α is promoted through oxygen-regulated hydroxylation of a proline residue in HIF-1α. Under hypoxic conditions, the HIF-1α protein is not targeted for degradation and can translocate to the nucleus to dimerize with the β subunit, thus forming the active DNA-binding complex. HIF-1 can activate the expression of a number of genes involved in the adaptation to low oxygen, including erythropoietin, vascular endothelial growth factor, inducible nitric oxide synthase, haem oxygenase 1, glucose transporter 1 and several glycolytic enzymes (Wenger and Gassman, 1999; Semenza, 1999, 2000). Many of these genes are known to play important roles during late preimplantation development and early placentation.

The involvement of HIF in embryonic development has been demonstrated by the production of gene knockout mice. Homozygote hif-1α−/− mice die around embryonic day 10.5–11.0 and exhibit neural tube defects, cardiovascular malformations, cell death within the cephalic mesenchyme and impaired vascularization (Iyer et al., 1998, Kotch et al., 1999). Similarly, hif-1β knockout mice die at midgestation, with primary defects including defective yolk sac angiogenesis and compromised fetal capillary development (Maltepe et al., 1997) or failure of the embryonic part of the placenta to vascularize and form the labyrinthine spongiosotrophoblast (Kozak et al., 1997). Mice lacking HIF-2α also die between embryonic day 12.5 and embryonic day 16.5, primarily as a result of defects in catecholamine synthesis (Tian et al., 1998).

Preliminary data indicate a differential pattern of expression of HIF-1α in mouse embryos derived in vivo and bovine embryos derived in vitro (Harvey et al., 2001, 2002). HIF-2α mRNA has also been observed in cultured bovine blastocysts (Harvey et al., 2001). HIF-1β (ARNT) mRNA has been detected in rabbit morulae and blastocysts derived in vivo (Tscheudschilsuren et al., 1999). Nevertheless, further studies are required to determine whether HIF-1α or HIF-2α protein nuclear translocation and DNA binding are responsive to hypoxic conditions in the preimplantation embryo.

Nuclear factor kappaB

The transcription factor nuclear factor kappaB (NFκB) has key roles in the regulation of cell proliferation and programmed cell death, as well as in immune, inflammatory and stress responses, and controls numerous genes, including those involved in cell adhesion and the cell cycle (Janssen-Heininger et al., 2000). NFκB consists of two subunits and is normally sequestered in the cytoplasm through its association with the inhibitory molecule IkappaB (IκB) (Mercurio and Manning, 1999). NFκB can be activated by a variety of stimuli associated with stress, and potentially that encountered during culture in vitro. Potent inducers include the cytokines tumour necrosis factor α (TNF-α) and interleukin-1β (IL-1β). ROS have been shown to be involved in NFκB activation through REDOX mechanisms in many, but not all, cell lines (Meyer et al., 1994; Brennan and O’Neill, 1995). NFκB has also been shown to be induced by hypoxia (Koong et al., 1994). In addition to investigations showing knockout embryo lethality, recent evidence documents the expression and distribution of NFκB during preimplantation embryo development in mice (Parrott and Gay, 1998; Nishikimi et al., 1999). The expression of NFκB subunits during embryo development may be required for responses to environmental stimuli such as stress (Parrot and Gay, 1998). It has been suggested that activation of NFκB at the early one-cell stage is required for the development of mouse embryos beyond the two-cell stage (Parrot and Gay, 1998).

Other REDOX-sensitive transcription factors

Activator protein-1 (AP-1) and p53 are other transcription factors that are REDOX-regulated (Yao et al., 1994; Giaccia and Kastan, 1998). AP-1 is a heterodimer of c-fos and c-jun proteins and tends to elicit opposing effects to those elicited by NFκB. It is unclear whether AP-1 protein is present in the mammalian embryo; indeed, c-fos and c-jun proteins were not detectable in the early cleaving mouse embryo (Ahmad and Naz, 1993). The tumour-suppressor
protein p53, which is known to regulate apoptosis, interacts with HIF-1α, providing an alternative protein stabilization pathway (Carmeliet et al., 1998). Moley and Mueckler (2000) have suggested that hyperglycaemic-induced apoptosis in mouse embryos is mediated through HIF-1α stabilization with p53.

Concluding remarks

Many studies have examined the effect of medium composition, in particular energy substrate concentrations, on embryo development up to the blastocyst stage as the end-point. Few of these studies examine the mechanism by which substrate concentrations and culture conditions affect development. We propose here that one mechanism that should receive close attention is alteration of the intracellular REDOX state. A perturbed REDOX state, as a consequence of sub-optimal culture conditions, may not only alter ATP production, but also gene expression patterns during development, leading to altered placental and fetal growth patterns.

The authors would like to thank Professor Henry Leese, University of York, for his support and valuable input to this review. Supported by the National Health and Medical Research Council Project Grant 157941. A. J. Harvey was supported by NWABS.

References

Key references are identified by asterisks.

Downloaded from Bioscientifica.com at 09/11/2019 12:11:13AM via free access
Janssen-Heininger YM, Poynter ME and Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor xB. Free Radical Biology and Medicine 28 1317–1327

Koong AC, Chen EY and Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor kappab through the phosphorylation of kappab alpha on tyrosine residues Cancer Research 54 1425–1430

Maltpepe E, Schmidt JV, Baunoch D, Bradfield CA and Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT Nature 386 403–407

Meyer M, Pahl HL and Baeuerle PA (1999) Multiple signals converging on NF-kappaB and AP-1 by redox changes Chemical Biological Interactions 91 91–100

Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1 Annual Reviews: Cell and Developmental Biology 15 551–578

