Introduction

Current developments in IVF and animal cloning have resulted in an increasing demand for large quantities of oocytes and ovarian follicles at specific stages of development. The reliable culture of preantral follicles would go some way towards meeting this demand, while also potentially enabling the preservation and long-term storage of female germ cells. Various degrees of progress have been made in the culture of follicles from a number of species (for reviews, see Hartshorne, 1997; Telfer, 1998). Although there has been success in the culture of mouse preantral follicles with live pups being born (Spears et al., 1994), there has been less success in the culture of pig preantral follicles (Hirao et al., 1994; Flowers and Turner, 1996; Telfer, 1996). Hirao et al. (1994) reported the culture of pig preantral follicles with the result that some oocytes acquired meiotic competence and were penetrated by spermatozoa, although the resulting one-cell zygotes did not develop further. More recently, pig preantral follicles have been cultured to antral stages with the resulting oocytes being capable of fertilization and embryonic development (Wu et al., 2001). However, in both of these studies, follicles were cultured in medium containing serum and, although the use of serum in culture medium is widespread, it invariably introduces unknown growth factors (with inter-batch variability) and has also been shown to cause pig granulosa cells in vitro to undergo luteolysis (Picton et al., 1999).

The basis of any follicle culture technique requires the ability to isolate large numbers of healthy follicles from ovarian tissue. Murine follicles may be isolated by microdissection using fine needles (Qvist et al., 1990; Nayudu and Osborn, 1992). Although there has been success in the culture of mouse preantral follicles with live pups being born (Spears et al., 1994), there has been less success in the culture of pig preantral follicles (Hirao et al., 1994; Flowers and Turner, 1996; Telfer, 1996). Hirao et al. (1994) reported the culture of pig preantral follicles with the result that some oocytes acquired meiotic competence and were penetrated by spermatozoa, although the resulting one-cell zygotes did not develop further. More recently, pig preantral follicles have been cultured to antral stages with the resulting oocytes being capable of fertilization and embryonic development (Wu et al., 2001). However, in both of these studies, follicles were cultured in medium containing serum and, although the use of serum in culture medium is widespread, it invariably introduces unknown growth factors (with inter-batch variability) and has also been shown to cause pig granulosa cells in vitro to undergo luteolysis (Picton et al., 1999).

The basis of any follicle culture technique requires the ability to isolate large numbers of healthy follicles from ovarian tissue. Murine follicles may be isolated by microdissection using fine needles (Qvist et al., 1990; Nayudu and Osborn, 1992). Although there has been success in the culture of mouse preantral follicles with live pups being born (Spears et al., 1994), there has been less success in the culture of pig preantral follicles (Hirao et al., 1994; Flowers and Turner, 1996; Telfer, 1996). Hirao et al. (1994) reported the culture of pig preantral follicles with the result that some oocytes acquired meiotic competence and were penetrated by spermatozoa, although the resulting one-cell zygotes did not develop further. More recently, pig preantral follicles have been cultured to antral stages with the resulting oocytes being capable of fertilization and embryonic development (Wu et al., 2001). However, in both of these studies, follicles were cultured in medium containing serum and, although the use of serum in culture medium is widespread, it invariably introduces unknown growth factors (with inter-batch variability) and has also been shown to cause pig granulosa cells in vitro to undergo luteolysis (Picton et al., 1999).

The basis of any follicle culture technique requires the ability to isolate large numbers of healthy follicles from ovarian tissue. Murine follicles may be isolated by microdissection using fine needles (Qvist et al., 1990; Nayudu and Osborn, 1992). Although there has been success in the culture of mouse preantral follicles with live pups being born (Spears et al., 1994), there has been less success in the culture of pig preantral follicles (Hirao et al., 1994; Flowers and Turner, 1996; Telfer, 1996). Hirao et al. (1994) reported the culture of pig preantral follicles with the result that some oocytes acquired meiotic competence and were penetrated by spermatozoa, although the resulting one-cell zygotes did not develop further. More recently, pig preantral follicles have been cultured to antral stages with the resulting oocytes being capable of fertilization and embryonic development (Wu et al., 2001). However, in both of these studies, follicles were cultured in medium containing serum and, although the use of serum in culture medium is widespread, it invariably introduces unknown growth factors (with inter-batch variability) and has also been shown to cause pig granulosa cells in vitro to undergo luteolysis (Picton et al., 1999).

The basis of any follicle culture technique requires the ability to isolate large numbers of healthy follicles from ovarian tissue. Murine follicles may be isolated by microdissection using fine needles (Qvist et al., 1990; Nayudu and Osborn, 1992). Although there has been success in the culture of mouse preantral follicles with live pups being born (Spears et al., 1994), there has been less success in the culture of pig preantral follicles (Hirao et al., 1994; Flowers and Turner, 1996; Telfer, 1996). Hirao et al. (1994) reported the culture of pig preantral follicles with the result that some oocytes acquired meiotic competence and were penetrated by spermatozoa, although the resulting one-cell zygotes did not develop further. More recently, pig preantral follicles have been cultured to antral stages with the resulting oocytes being capable of fertilization and embryonic development (Wu et al., 2001). However, in both of these studies, follicles were cultured in medium containing serum and, although the use of serum in culture medium is widespread, it invariably introduces unknown growth factors (with inter-batch variability) and has also been shown to cause pig granulosa cells in vitro to undergo luteolysis (Picton et al., 1999).

The basis of any follicle culture technique requires the ability to isolate large numbers of healthy follicles from ovarian tissue. Murine follicles may be isolated by microdissection using fine needles (Qvist et al., 1990; Nayudu and Osborn, 1992). Although there has been success in the culture of mouse preantral follicles with live pups being born (Spears et al., 1994), there has been less success in the culture of pig preantral follicles (Hirao et al., 1994; Flowers and Turner, 1996; Telfer, 1996). Hirao et al. (1994) reported the culture of pig preantral follicles with the result that some oocytes acquired meiotic competence and were penetrated by spermatozoa, although the resulting one-cell zygotes did not develop further. More recently, pig preantral follicles have been cultured to antral stages with the resulting oocytes being capable of fertilization and embryonic development (Wu et al., 2001). However, in both of these studies, follicles were cultured in medium containing serum and, although the use of serum in culture medium is widespread, it invariably introduces unknown growth factors (with inter-batch variability) and has also been shown to cause pig granulosa cells in vitro to undergo luteolysis (Picton et al., 1999).
serum-free medium. A similar medium has been developed for the culture of pig granulosa and theca cells that supported the maintenance of follicular phenotype in vitro and implicated the role of FSH and long R3 insulin-like growth factor I (IGF-I) (Picton et al., 1999; Shores et al., 2000).

Angiotensin II is the principal effector of the renin–angiotensin system. Although classically associated with the regulation of blood pressure and salt balance (Levy, 1998), the renin–angiotensin system has also been implicated in the mammalian ovary (August and Sealey, 1990). Components of the renin–angiotensin system including prorenin, renin and angiotensin II receptors have been demonstrated within pig ovaries (Hagemann et al., 1992; Nielsen et al., 1995; Shuttleworth et al., 2001). Given that it has been shown that AT1 receptors are localized to prepubertal granulosa cells (Shuttleworth et al., 2001), it would be pertinent to assess the effect of addition of angiotensin II to the culture medium.

Therefore, the aims of the present study were to establish a serum-free medium for the long-term culture of pig preantral follicles and to confirm the viability of follicles grown in this ‘optimum’ medium using a range of techniques. The role of angiotensin II in preantral folliculogenesis and steroidogenesis was also assessed.

Materials and Methods

Materials

All reagents were obtained from Sigma Chemical Co. (Poole). All unsupplemented tissue culture media were obtained from Invitrogen Corporation (Paisley) and all tissue culture disposable plastics were obtained from Nunc (Paisley) unless otherwise specified. All culture media compositions used were equilibrated to 37°C, 5% CO₂. Prepubertal (age 12–15 weeks) ovarian tissue (Large White hybrid pigs) was obtained from a local abattoir and transported to the laboratory within 1 h of collection in warm medium 199 (M199) containing 0.2 iu penicillin l⁻¹ and 200 mg streptomycin l⁻¹ (M199+).

Isolation of preantral follicles

Ovaries were sliced into pieces (1–2 mm thickness) and incubated in 10 ml M199+ containing 0.2% (w/v) collagenase (type 1A) in a shaking waterbath (39°C; Hirao et al., 1994) for a maximum of 30 min, until test pieces of tissue could be teased apart easily using 25G needles. The tissue was washed in four changes of M199+ plus 0.4% (w/v) bovine serum albumin (BSA: fraction V, cell culture tested). The preantral follicles were isolated and washed in three changes of Way+ (Waymouth medium: 2 mg sodium pyruvate l⁻¹, 200 iu penicillin ml⁻¹, 200 μg streptomycin l⁻¹, 0.1% (w/v) BSA, 2.5 mg transferrin l⁻¹, 4 μg insulin l⁻¹ and 10 μg selenium l⁻¹). Follicles were assessed under a dissecting microscope and only those possessing an intact round structure with a centrally located spherical oocyte with intact granulosa cell contacts were used in the study. Initial studies demonstrated that oocytes retrieved from non-cultured (t = 0) preantral follicles fulfilling these criteria all scored +++ after vitality staining using 5(6)-carboxyfluorescein diacetate (CFSD; Shuttleworth, 2000).

Culture of preantral follicles

Collagen gel for culture was prepared from rat tails (Torrance et al., 1989) with modifications to allow for serum-free culture (replacing serum with 10 × PBS; E. E. Telfer, personal communication). The inner wells of a 24-well culture plate were coated with 250 μl prepared collagen and placed at 37°C for 15 min to set. The wells were washed with four × 1 ml × 5 min washes of Way+ at 37°C and 5% CO₂ before addition of three × 1 ml × 5 min changes with equilibrated follicle culture medium. The culture medium (Way++) was prepared by the addition of 10 μg FSH l⁻¹ (USDA-pFSH-I-2; USDA, Beltsville, MA), 100 μg long R3 IGF-I l⁻¹ (GroPep Pty Ltd, Adelaide) and 0.2 mmol l⁻¹ freshly made ascorbic acid to Way+. Preantral follicles were allocated randomly to treatment groups, placed on top of the collagen base and cultured in groups of three per well, taking care to position the follicles so that they were not in contact with each other. Follicle diameters were measured on day 0 and every subsequent second day by taking two perpendicular measurements and recording the average. At the same time, follicles were assessed for the presence of an antrum and 500 μl of the culture medium was removed and replaced with 500 μl fresh, equilibrated medium. Media samples were stored at −20°C for steroid analysis.

Experiment 1: 16 and 30 day culture of follicles in Way++ medium

Follicles isolated from ovaries from four pigs on two occasions were cultured in Way++ medium to day 16 or 30. On each occasion, 12 follicles were isolated per animal and were assigned randomly to groups to be cultured for 16 or 30 days. A total of 96 follicles was cultured to either day 16 (n = 48 follicles, 16 wells) or day 30 (n = 48 follicles, 16 wells). At day 14 (16 day culture) or day 28 (30 day culture), the wells containing follicles were randomly divided in half (n = 24 follicles, eight wells per group) and testosterone was added to one group only to a final concentration of 100 μmol l⁻¹. The other wells had no further supplementation to the replacement medium.

Experiment 2: 16 and 30 day culture of follicles in Way++ medium containing angiotensin II

Twenty-four follicles were isolated on two occasions from ovaries from two pigs, yielding a total of 96 follicles. Follicles were cultured to day 16 (n = 48 follicles, 16 wells in total) or 30 (n = 48 follicles, 16 wells in total) to assess the effect of 10⁻¹⁰ mol angiotensin II l⁻¹ (a physiological concentration; n = 8 wells per time point) and the effect of
Culture of pig ovarian preantral follicles

Results

Oocyte viability. CFSD stain was used to assess oocyte viability. Oocytes from antral follicles were isolated, transferred to microdroplets of Way++ containing 5 µg CFSD ml⁻¹ at 37°C, 5% CO₂ for 30 min. The oocytes were rinsed in 1 x PBS + 3% (w/v) BSA, transferred to clean microscope slides and viewed using a fluorescent microscope (Olympus Optical Co. Ltd, London) with a L435 filter. Viable cells fluoresce green at 570 nm. Oocytes were given a score from viable (+++) to non-viable (–). Negative controls comprised oocytes that had been isolated and stored in unsupplemented Waymouth medium at 4°C for 4 weeks.

Steroid analysis. The concentrations of oestradiol, progesterone and androstenedione were measured using radioimmunoassays as detailed by Grant et al. (1989) and Thomson et al. (1989). Aliquots (100 µl) were used to measure progesterone and oestradiol content of the undiluted media samples without prior extraction. Samples taken at days 16 and 30 after addition or non-addition of testosterone were assayed in duplicate and were also assayed for androstenedione. For oestradiol and progesterone assays, the inter- and intra-assay coefficients of variation, and limits of sensitivity were 13.3%, 7.4% and 7.1 pg per tube, and 16.5%, 9.4% and 6.0 pg per tube, respectively. For the androstenedione assay, the intra-assay variation was 8.7% and the limit of sensitivity was 3.1 pg per tube. Samples from wells containing antral follicles were analysed separately from wells in which no follicles contained an antrum to determine whether the presence of an antrum was exerting an effect on steroid synthesis.

Statistical analysis

Changes in follicle diameter and steroid composition were analysed by ANOVA modified for repeated measures on Genstat for Windows computer package (Genstat 5, Third Edition, Release 4.1). Pooled variance was used to calculate the standard error of the difference (SED) between means. For all analyses, effects were considered significant at P < 0.05. Differences in determined number of cells between days 0, 16 and 30 of culture were analysed using the Kruskal–Wallis one-way ANOVA by ranks. Further post hoc analysis between sample groups was completed using Mann–Whitney U test. The proportion of follicle degeneration or antrum formation, and the proportion of oocytes determined as viable using CFSD were analysed using the chi-squared test.

Experiment 1: 16 and 30 day culture of follicles in Way++ medium

Changes in follicle diameter and number of somatic cells, and an example of oocytes stained with CFSD are shown (Fig. 1a, Fig. 1b,c and Fig. 2, respectively). Follicle diameter increased significantly (P < 0.001) over both 16 and 30 days of culture. Over 16 days of culture, 12 follicles (25%) formed antra (three in one well, two in three wells and one in three wells) and two follicles (one antral, one non-antral) from different wells appeared to have degenerated towards the end of culture. These were not assayed for number of viable cells, as they could not be...
removed from culture. A further three antral follicles were damaged when removed from culture and some somatic cells were lost; these three follicles were not assayed for number of viable cells, although it was possible to retrieve the oocyte for CFSD staining. Therefore, it was possible to assay 35/36 non-antral and 8/12 antral follicles for number of viable cells (Fig. 1b). The oocytes from the 12 antral follicles were deemed viable using CFSD (eight scored +++; four scored ++; none scored +; none scored −).

Over 30 days of culture, 14 follicles formed antra (29%; three in two wells, two in one well and six in separate wells: 12 were retrievable for neutral red assessment) and nine follicles from separate wells appeared degenerate (two antral and seven non-antral follicles). Two of the non-antral follicles that appeared degenerate on day 26 were included for assay for cell viability; the other seven degenerate follicles could not be retrieved for assay. Therefore, it was possible to assay 29/34 non-antral and 12/14 antral follicles for number of viable cells (Fig. 1c). Oocytes from all antral follicles were available for CFSD staining, including those that appeared degenerate. These were included as the follicles had only started showing signs of degeneration at days 24 and 26, and although it was not possible to remove the shell from culture, it was possible to excise the oocyte. However, both of these oocytes only scored +. In total, five scored ++++, three scored ++, six scored + and none scored −.

Oestradiol secretion did not begin to increase until day 14 during both 16 day (data not shown as there was no increase) and 30 day culture periods (Fig. 3). The increase
was subsequently maintained and was significant over time ($P < 0.001$; 30 day culture). The presence of an antrum did not result in a further significant difference in oestradiol secretion. Addition of testosterone at days 14 and 28 resulted in highly significant ($P < 0.001$) increases in oestradiol secretion on days 16 and 30, respectively, by follicles compared with secretion at days 14 and 28 (Fig. 3a–c). Further analysis using the Mann–Whitney U test revealed that there was a significant difference (day 16, $P < 0.05$; day 30, $P < 0.001$) when comparing wells without testosterone addition or antrum formation with wells in which there was both testosterone addition and antrum formation. However, at day 30, there was a significant effect of addition of testosterone versus non-addition of testosterone on both antral ($P < 0.01$) and preantral ($P < 0.05$) follicles. When considering progesterone secretion (data not shown), there appeared to be a significant increase in secretion by antral follicles ($P < 0.001$) over 14 days of culture, which was maintained to day 28 of culture. There was also a significant increase ($P < 0.01$) in progesterone secretion after testosterone addition at days 16 and 30, although inspection of these data using the Mann–Whitney U test revealed no further interactions.

Experiment 2: 16 and 30 day culture of follicles in Way++ medium containing angiotensin II

There was a significant ($P < 0.001$) increase in follicle diameter with time (Fig. 4a). However, there was no significant effect on growth with the addition of angiotensin II to the culture media over 16 or 30 days of culture (although there appeared to be an increasing trend towards increased follicle diameter with angiotensin II addition over 30 days of culture). As there was no significant effect over 16 days of culture, these data are not shown. Antrum formation was observed only in follicles > 400 μm in diameter. Over 16 days of culture, only the follicles cultured without angiotensin II developed antra ($n = 12$; $P < 0.001$) and one follicle from each condition deteriorated. All oocytes were retrieved from antral follicles and stained...
with CFSD; six scored +++, four scored ++, two scored + and none scored –. Over 30 days of culture, 11 follicles cultured without angiotensin II developed antra (not significant), and three and two follicles, respectively, deteriorated. When considering the viability of oocytes, 5/11 oocytes retrieved from follicles cultured with angiotensin II scored +++ compared with 2/7 of those cultured without angiotensin II. Of the remaining follicles cultured with angiotensin II, one oocyte scored ++, four scored + and none scored –. Of the oocytes from follicles cultured without angiotensin II, two had a CFSD score of ++, three had a score of + and none had a score of –. The addition of angiotensin II at both time points resulted in no significant change in the number of viable cells per follicle diameter compared with follicles cultured without angiotensin II (Fig. 4b,c).

Oestradiol secretion increased markedly after 10 days, although the increase was only significant ($P < 0.001$) over 30 days of culture (Fig. 5a). Addition of 10^{-10} mol angiotensin II l^{-1} did not result in a significant change in oestradiol secretion above control values. When testosterone was added with or without angiotensin II, there was an increase in oestradiol secretion in all cases (Fig. 5b,c) although it was only possible to analyse this between preantral follicles cultured with angiotensin II to day 16 ($P < 0.01$). There appeared to be an increasing trend reflecting this at day 30 between preantral and antral follicles cultured with or without angiotensin II, indicating that angiotensin II may exert an effect on testosterone in increasing oestradiol secretion.

Progesterone secretion assessed over 30 days of culture did not increase until day 16 (with an antrum) or day 26 (without an antrum), although there was a significant increase with time over 30 days of culture ($P < 0.01$; Fig. 5d).

![Graph](image-url)
At day 16 of culture (Fig. 5e), in preantral follicles, both angiotensin II and testosterone were required to elicit a significant ($P < 0.01$) increase in progesterone secretion with addition of testosterone. It was not possible to analyse the effect of angiotensin II and the presence of an antrum on the effect of testosterone at day 16, as there were no antral follicles present. However, at day 30 (Fig. 5f), the combination of antral follicles cultured in testosterone and angiotensin II showed the highest synthesis, although this could not be analysed due to large inter-individual variation.

The concentrations of androstenedione were below the limit of detection and so are not reported. In all experiments, the incidence of follicular degeneration did not differ between treatments.

Discussion

In the present study, data indicating a serum-free medium suitable for the long-term culture of pig preantral follicles that was suitable for testing the effects of angiotensin II on early follicle development in culture are presented.

The *in vitro* development of antral follicles has been extremely successful in mice (Spears *et al.*, 1994), although this is facilitated by the small size of the follicle at ovulation.
Fig. 5. For legend see facing page.
and the short time (6 days) required for preantral follicles to reach Graafian follicle status *in vitro*. Follicles from larger domestic species require much longer periods of time to develop to antral stages *in vivo*, which may also be expected *in vitro*. Success is reported in the present study in which culture conditions were based on those developed for the serum-free culture of pig granulosa cells (Picton et al., 1999). This strategy has also been used for culture of bovine preantral follicles (Gutiérrez et al., 1997, 2000). In the present study, follicles increased in diameter by approximately 150 μm over 16 days and 300 μm over 30 days of culture, which is comparable to the results of Gutiérrez et al. (2000). However, Gutiérrez et al. (2000) reported that 55% of follicles formed an antrum, although fewer were cultured to 28 days than in the present study. Culture of ovine granulosa-oocyte complexes (GOCs), which lack a basement membrane and thecal cell layer, in serum-free media showed much larger increases putatively as a result of the lack of a restrictive basement membrane, and 25% formed an antrum (Newton et al., 1999). Our data show that 25–29% of follicles cultured in Way++ developed an antrum, which is an improvement on previous studies using pigs in which only 19% formed an antral cavity (Hirao et al., 1994). Hirao et al. (1994) demonstrated that follicles increased in size two- to threefold over 16 days of culture, potentially as a result of the lack of a restrictive thecal layer surrounding follicles in their culture system, but possibly also as a result of the addition of a further undefined element in the serum used in the culture protocol. A more recent study in which serum was used reported an 87% rate of antrum formation despite the fact that a thecal layer was present (Wu et al., 2001). These results, together with those of the present study and the study of Hirao et al. (1994), indicate the importance of retaining thecal cells in culture of pig preantral follicles.

In the present study, antrum formation was not detected until approximately day 10 of culture and only when follicles were > 400 μm in diameter. This size is in agreement with development *in vivo* as demonstrated in previous histological studies in pigs (Morbeck et al., 1992) and is also in agreement with the results of Wu et al. (2001). Previous studies *in vitro* on preantral follicles showed antrum formation at day 10 in cows (Gutiérrez et al., 2000), days 6–8 in pigs (Donnelly and Telfer, 1994) and day 13 in ovine GOCs (Newton et al., 1999). These time scales are all comparable to those observed in the present study and may represent the effect of a period of adjustment required by follicles after isolation. However, it has been reported by Wu et al. (2001) that antrum formation in cultured pig preantral follicles may occur in as few as 2 days. This may be a factor of using a serum-based system or a result of the smaller volumes of media used for culture (280 μl), thereby increasing the net concentration of any secreted factor involved in stimulating antrum formation.

Formation of an antrum in one follicle of the three per well did not suppress antrum formation in the other follicles. It has been suggested that murine follicles may secrete a diffusible inhibitory factor (Baker et al., 1999). If such a diffusible factor is responsible for antrum suppression in pig follicles, it may have been at too low a concentration to be effective in the culture system used in the present study and would have been impaired further by the deliberate lack of contact between follicles in culture. Spears et al. (1996) demonstrated that follicles cultured in close proximity would co-join and develop a shared thecal layer. Although this extent of clustering was not observed in the present study, it was noted that although follicles were placed as far away from each other as possible within the well, they frequently appeared to ‘grow’ towards each other. Thus, although the follicles are not exerting an inhibitory effect on their neighbours, they may be secreting a factor encouraging growth towards each other. In a recent pig follicle culture experiment, it was contended that the optimum number of pig follicles in culture is three, which may be a result of optimization of potential interfollicular secretion in much smaller media volumes than those used in the present study (Wu et al., 2001).

The amounts of oestradiol synthesized over 28 days in Way++ medium reached a maximum of 136 pg per 100 μl per 48 h, and progesterone synthesis reached a maximum of 168 pg per 100 μl per 48 h. In support of the concept of ‘settling in’ time required by follicles, it is apparent that increased oestradiol synthesis occurred after day 14 of culture. In comparison with culture of human follicles, oestradiol secretion was tenfold higher and showed an increase over time that was not observed in cultures of human follicles even though the medium was replaced once a week (Abir et al., 1997). Earlier studies culturing human preantral follicles for 5 days demonstrated an increase in oestradiol, progesterone and androstenedione up to rates of 0.25 pg per follicle per day, 75 pg per follicle per day and 3 pg per follicle per day, respectively (Roy and Treacy, 1993). As in the present study, more progesterone

![Fig. 5.](image-url)
than oestradiol was synthesized and concentrations of androstenedione were low, which may indicate that, although we were unable to demonstrate the presence of androstenedione in the media and our system, this may be a result of a dilution effect. The lack of a measurable concentration of androstenedione in the present study might also be a result of rapid conversion of this steroid to oestradiol under these culture conditions.

The addition of testosterone to follicles cultured in Expt 1 resulted in a significant increase in oestradiol but not progesterone secretion. Antral GOCs supplemented with testosterone secreted oestradiol (approximately 2.4 ng ml\(^{-1}\)) at a comparable rate to that reported in the present study even without further testosterone supplementation (Newton et al., 1999). In the present study, isolated follicles possessed a thecal cell layer and it was expected that these cells would provide additional substrate to the granulosa cells. The results indicate that although they provided some substrate, further testosterone supplementation resulted in a significant increase in oestradiol secretion. Thus, a fine balance must be reached between isolating sufficient numbers of thecal cells to enable steroid synthesis while also maintaining follicular growth, which may benefit from reduced numbers of thecal cells at the synthesis while also maintaining follicular growth, which may benefit from reduced numbers of thecal cells at the same time as being detrimental to antrum formation (Hirao et al., 1994). However, if it is deduced from the neutral red results that each follicle possessed approximately 10 000 cells, then the amount of oestradiol secreted per follicle in each experiment is comparable to the amount secreted per 10 000 pig granulosa cells in culture (Picton et al., 1999). This result indicates that there is a functioning steroid cascade within the granulosa cell layer of the cultured follicles and also that they are responding to the same supplements as those used by Picton et al. (1999).

In initial studies (Shuttleworth, 2000), culturing follicles with high concentrations (10\(^{-8}\) mol l\(^{-1}\)) of angiotensin II resulted in an increase in the number of somatic cells per unit follicle diameter as determined by neutral red analysis. This may be due to an increase in granulosa cell proliferation that is not matched by synthesis of basement membrane, even though the medium was supplemented with the ascorbic acid necessary for membrane remodelling (Murray et al., 2001). Culture for 30 days with angiotensin II in the present study resulted in a small increase in follicle diameter above that observed without angiotensin II, although this increase was not significant. This trend was not observed initially over 16 days of culture, which may be due to the hypothesized resting period. Furthermore, culture with angiotensin II to day 16 did not result in any follicles forming an antrum, in contrast to those cultured without angiotensin II, although these follicles possessed more somatic cells per unit follicle diameter. This finding indicates that angiotensin II may stimulate the division of granulosa cells, with the result that antra do not form, and is in contrast to a previous study which indicated that FSH-responsive pig granulosa cells were not responsive to angiotensin II (Flores et al., 1991).

Long-term culture with angiotensin II resulted in rates of oestradiol and progesterone synthesis comparable to those observed without angiotensin II supplementation. This finding is in contrast to previous studies in which pig granulosa cells were cultured with serum, and angiotensin II was shown to inhibit steroidogenesis by interacting with the 3\(\beta\)-hydroxysteroid dehydrogenase (3\(\beta\)-HSD) gene or mRNA stability (Li et al., 1995). Studies on bovine luteal cells indicate that angiotensin II may act earlier in the steroid cascade by inhibiting the cholesterol side chain cleavage enzyme responsible for the conversion of cholesterol to pregnenolone (Stirling et al., 1990). In the present study, it does not appear that angiotensin II is having an effect on these components. Studies in rats have demonstrated that angiotensin II did not affect aromatase activity and progesterone concentrations (Pucell et al., 1988). However, in a recent study perfusion of bovine antral follicles with 10\(^{-5}\) mol angiotensin II l\(^{-1}\) (a high non-physiological concentration) resulted in an increase in both progesterone and oestradiol concentrations (Acosta et al., 1999). In the present study, angiotensin II concentrations were much lower (10\(^{-10}\) mol l\(^{-1}\)) and the discrepancy may be due to this as well as to species differences. However, addition of testosterone at days 14 and 28 resulted in significant increases in oestradiol secretion when angiotensin II was present, which was enhanced further by the presence of an antrum. This was not observed when progesterone secretion at day 30 is considered, although there were trends comparable to oestradiol secretion at day 16 by preantral follicles. It may be that the initial effect of angiotensin II is in the control of progesterone synthesis. This would correspond with the ‘resting period’ and, once the follicles resume growth, angiotensin II may switch to emphasizing oestradiol synthesis and stimulating aromatase action. Pepperell et al. (1994) proposed such a biphasic action of angiotensin II on the action of aromatase. It must also be considered that follicles are secreting angiotensin II in addition to the angiotensin II supplementing the medium, and also that the culture media contains insulin-like growth factor I (IGF-I), which has been suggested to enhance ovarian angiotensin II production further (Yoshimura et al., 1996). These two factors would increase the overall concentration in the culture medium.

In conclusion, the results of the present study demonstrate that a serum-free medium is suitable for the long-term culture of pig preantral follicles. The follicles synthesized measurable quantities of oestradiol and progesterone. Furthermore, this culture system was effective for testing the influence of other compounds on follicular development. Addition of 10\(^{-10}\) mol angiotensin II l\(^{-1}\) stimulated increases in the number of somatic cells and steroid synthesis, and provides evidence for the presence and function of an active pig ovarian renin–angiotensin system.

The authors would like to thank V. Brankin for kindly completing the androstenedione assay.
References

Hulshof SCJ, Figueiredo JR and Beckers JF (1994) Isolation and characterisation of pre-antral follicles from bovine ovaries. *Veterinary Quarterly* 16 78–80

Pucell AG, Bumpus FM and Husain A (1988) Regulation of angiotensin II receptors in cultured rat ovarian granulosa cells by follicle-stimulating hormone and angiotensin II. *Journal of Biological Chemistry* 263 11954–11961

Downloaded from Bioscientifica.com at 11/03/2018 12:17:28AM via free access

Received 11 October 2001.
First decision 4 December 2001.
Revised manuscript received 18 January 2002.
Accepted 14 February 2002.