Alteration of the polyunsaturated fatty acid (PUFA) composition of milk by dietary supplementation of cows may be beneficial to human health. However, dietary PUFAs may influence synthesis of both prostaglandins and steroid hormones. This study examined the effects of dietary PUFAs on reproductive parameters in lactating cows. Cows were fed an isoenergetic control ration (n = 8) or a diet supplemented with LinPreme (n = 7) or SoyPreme (n = 8). These proprietary feeds are derived from linseed or soybeans and contain high concentrations of linolenic acid (LNA, n-3) or linoleic acid (LA, n-6) protected PUFA, respectively. Both PUFA-supplemented diets reduced plasma progesterone, particularly in the early luteal phase, and increased the number of medium-sized (5–10 mm in diameter) follicles. The diameter of the first dominant follicle, insulin-like growth factor I (IGF-I) concentrations at oestrus and cholesterol concentrations were all higher in cows fed a diet supplemented with LA (n-6) than in cows that did not receive this supplement. In cows fed a diet supplemented with LNA (n-3), there was an increase in oestradiol during the follicular phase. Diet had no effect on non-esterified fatty acid or insulin concentrations, or on the duration of the oestrous cycle. The plasma concentration of 13,14,diydro-15 keto PGF2α after administration of 50 IU oxytocin was unaffected by diet on day 15 and day 16 of the oestrous cycle, but showed a greater response on day 17 in the LA (n-6) supplemented group. Therefore, the PUFA content of the diet can influence both ovarian and uterine function in cows. However, further studies using larger numbers of cows are required to test whether fertility is also affected by such diets.

Introduction

The report of the Committee on Medical Aspects of Food Policy (Cardiovascular Review Group, Department of Health, 1991) recommended that UK consumers should reduce the proportion of saturated fats and increase the n-3:n-6 polyunsaturated fatty acid (PUFA) ratio. Epidemiological evidence indicates that this change in diet would lead to a reduced risk of cardiovascular disease. Milk and milk products contribute up to 30% of the total human fat intake and currently only 4% of milk fatty acids are unsaturated (Mansbridge and Blake, 1997). The proportion of unsaturated fatty acids in milk can be altered by the inclusion of vegetable or fish oil in the diets of cattle (Wrenn et al., 1976; Schingoethe et al., 1996; Ashes et al., 1997; Demeyer and Doreau, 1999). These oils include various amounts of the two families of essential PUFAs, which are derived from linoleic acid (LA, 18:2, n-6) and α-linolenic acid (LNA, 18:3, n-3). LA predominates in most plant oils such as soybean and sunflower oil, whereas LNA predominates in green leaf forages including grass and is also present in linseed oil. LA can be converted to the longer chain gamma linolenic (18:3, n-6) and arachidonic acid (20:4, n-6) by a process of elongation and desaturation, whereas extension of LNA can produce eicosapentaenoic acid (20:5, n-3) and docosahexaenoic acid (22:6, n-3) (Sargent, 1997). Dietary unsaturated fatty acids normally undergo extensive biohydrogenation in the rumen and so do not reach the circulation (Demeyer and Doreau, 1999). However, this process can be reduced by various physical and chemical means of protection (Gulati et al., 1997), thus increasing the absorption of unsaturated fatty acids for subsequent incorporation into tissues and milk.

Studies in a variety of species have shown that dietary PUFAs can modulate prostaglandin synthesis and metabolism (for a review, see Abayasekara and Wathes, 1999; Mattos et al., 2000). Eicosanoids, comprising prostaglandins, thromboxanes, leukotrienes and lipoxins, are all synthesized from C20 fatty acids (Smith, 1989). The most biologically active two series prostaglandins are derived from arachidonic acid, but the less active three series prostaglandins can be produced from eicosapentaenoic acid by the action of the same enzymes (Needleman et al., 1979; Lands, 1992). In most cells, arachidonic acid is present in an esterified form in cellular phospholipids and generation of free
cholesterol availability (Wehrman et al., 1991) and arachidonic acid by either phospholipase A_2 or phospholipase C is a rate-limiting step in prostaglandin synthesis (Irvine, 1982; Lapetina, 1982). The composition of cellular phospholipids is related to the dietary lipid intake and thus will play an important role in determining both the amount and type of prostaglandins produced. Although LA and LNA can both act as precursors for prostaglandin synthesis, high amounts of precursor can also reduce both arachidonic acid generation and prostaglandin synthesis via inhibition of phospholipase A_2 and cyclo-oxygenase (Thatcher et al., 1999). Arachidonic acid has also been implicated in the acute regulation of steroid synthesis. Trophic hormone-induced steroid synthesis requires increased expression of steroidogenic acute regulatory protein (StAR), which mediates transfer of cholesterol from the cytosol to the inner mitochondrial membrane (Stocco and Clark, 1996). Arachidonic acid increases the expression of StAR (Wang and Stocco, 1999).

Materials and Methods

Animals and diets

Twenty-two first lactation Friesian/Holstein cows in early lactation were assigned randomly to one of three treatment groups: (i) control ($n=8$), (ii) high LNA (n-3) ($n=7$) or (iii) high LA (n-6) ($n=7$). The two treatment diets contained either: (ii) an additional 240 g n-3 PUFA (from LinPreme, Borregaard UK Ltd, Warrington) day$^{-1}$ or (iii) 270 g n-6 PUFA (from SoyPreme, Borregaard UK Ltd) day$^{-1}$. These PUFAs are non-enzymatically browned full fat linseed or soyabean products, respectively (Abel-Caines et al., 1998). During manufacture, steam is applied to a mixture of xylose solution and cracked soyabeans (or linseed), resulting in the Maillard reaction. This reaction reduces the degradability of the protein in the soyabean and results in the ‘protection’ of the oils, which are encapsulated by the protein bodies from microbial action in the rumen. The abomasal pH subsequently allows the protein to be digested, thus releasing the oils for digestion and absorption. It has been estimated that this process provides approximately 50% protection (Abel Caines et al., 1998). The PUFA contents of LinPreme and SoyPreme and details of the dietary formulations are provided (Tables 1 and 2, respectively). Each diet was formulated to be isoenergetic and isonitrogenous, and provided metabolic hormones (insulin and insulin-like growth factor I (IGF-I)), cholesterol and non-esterified fatty acid (NEFA) concentrations were monitored to investigate whether dietary PUFAs influence reproductive performance via alterations in energy balance.

Table 1. Polyunsaturated fatty acid contents of LinPreme and SoyPreme

<table>
<thead>
<tr>
<th>Fatty acid (g (100 g$^{-1}$ fat))</th>
<th>LinPreme</th>
<th>SoyPreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4:0–C15:0</td>
<td>All < 1</td>
<td>All < 1</td>
</tr>
<tr>
<td>C16:0</td>
<td>5.6</td>
<td>10.6</td>
</tr>
<tr>
<td>C18:0</td>
<td>1.3</td>
<td>3.9</td>
</tr>
<tr>
<td>C18:1</td>
<td>10.3</td>
<td>20.4</td>
</tr>
<tr>
<td>C18:2 (n-6)</td>
<td>7.6</td>
<td>53.7</td>
</tr>
<tr>
<td>C18:3 (n-3)</td>
<td>42.6</td>
<td>8.4</td>
</tr>
<tr>
<td>C18:4 (n-3)</td>
<td>13.4</td>
<td>< 1</td>
</tr>
</tbody>
</table>

Arachidonic acid by either phospholipase A_2 or phospholipase C is a rate-limiting step in prostaglandin synthesis (Irvine, 1982; Lapetina, 1982). The composition of cellular phospholipids is related to the dietary lipid intake and thus will play an important role in determining both the amount and type of prostaglandins produced. Although LA and LNA can both act as precursors for prostaglandin synthesis, high amounts of precursor can also reduce both arachidonic acid generation and prostaglandin synthesis via inhibition of phospholipase A_2 and cyclo-oxygenase (Thatcher et al., 1999). Arachidonic acid has also been implicated in the acute regulation of steroid synthesis. Trophic hormone-induced steroid synthesis requires increased expression of steroidogenic acute regulatory protein (StAR), which mediates transfer of cholesterol from the cytosol to the inner mitochondrial membrane (Stocco and Clark, 1996). Arachidonic acid increases the expression of StAR (Wang and Stocco, 1999).

Previous studies on cattle have shown a number of influences of dietary fat supplementation on reproductive function (for a review, see Staples et al., 1998). Fats are often included in cattle diets to increase the energy supplied, although these fats are generally either saturated or unprotected, in which case the majority of the unsaturated fat present will be saturated by microbial action in the rumen before absorption. Effects on fertility (for example, see Burke et al., 1997), ovarian follicular development (for example, see Thomas et al., 1997) and steroidogenesis (for example, see Oldick et al., 1997) have all been reported. The mechanism of action is not clear, although it has been suggested that improved energy status (Hightshoe et al., 1991; Sklan et al., 1994), increased cholesterol availability (Wehrman et al., 1991) and increased serum insulin concentrations (Lammoglia et al., 1997) all enhance ovarian activity.

Dairy cow fertility is already poor: first service conception rates in most herds are below 50%. Furthermore, there has been a steady downward trend in conception rates in some countries over the past 30 years coupled with increasing milk yields (Lamming et al., 1998). As cows are managed more intensively, there has been a decreased dependence on grass as forage and a subsequent increase in the n-6:n-3 ratio (Pike and Barlow, 2000). It is therefore important to understand how changing the composition of dairy cow diets to benefit human health and to increase milk production may affect cattle fertility. Furthermore, studies of human populations have indicated that the dietary PUFA intake may alter aspects of human reproduction, including the duration of the menstrual cycle (Reichman et al., 1992) and gestation (Olsen et al., 1992).

The present study was conducted to assess and compare the effects of diets supplemented with plant-derived n-6 PUFA (predominantly in the form of LA) or n-3 PUFA (predominantly LNA) on reproduction in lactating dairy cows. Ovarian function was monitored by steroid hormone analysis and ultrasonography, and uterine activity was assessed by measuring the 13,14, dihydroxy-15 keto PGF2α (PGFM) produced in response to administration of oxytocin. Metabolic hormones (insulin and insulin-like growth factor I (IGF-I)), cholesterol and non-esterified fatty acid (NEFA) concentrations were monitored to investigate whether dietary PUFAs influence reproductive performance via alterations in energy balance.
Experimental design

The ovarian activity of each cow was monitored three times a week by a milk progesterone radioimmunoassay (Bulman and Lamming, 1978) throughout the trial. On day 1 of the trial, the cows were treated with a progesterone releasing intravaginal device (PRID; Sanofi Animal Health, Watford) for 10 days to synchronize oestrous cycles. PRID insertion occurred on day 36, 37 and 38 after calving in the three treatment groups. Prostaglandin F2\(_\alpha\) analogue, Cloprostenol (500 mg in 2 ml, i.m.; Schering-Plough Ltd, Welwyn Garden City) was administered at PRID removal. The cows then went through four treatment cycles, designated as cycles 1–4 (Fig. 1).

Blood samples (10 ml) were collected each day throughout the trial from the jugular or ventral coccygeal vein into a heparinized vacutainer (NVS, Stoke-on Trent) or via a jugular catheter (see below) for progesterone radioimmunoassay. Oestradiol was also measured each day during the first two cycles and samples were collected at weekly intervals for analysis of NEFAs, cholesterol and insulin. All blood samples were collected on to ice, centrifuged at 1600 \(g\) for 10 min at 4°C and the plasma stored at –20°C.

Starting from the oestrus immediately after PRID removal (termed E1), the ovaries were scanned on alternate days until the subsequent ovulation (E2) by transrectal ultrasonography using an Aloka SSD-500 ultrasound scanner with a 7.5 MHz linear array transducer (BCF Technology Ltd, Livingstone). Each follicle that measured > 5 mm in diameter was recorded and the presence of corpora lutea was also noted. At the end of cycle 1 (starting from approximately day 17 after E1), scanning frequency was increased to twice a day at 09:00 h and 17:00 h until the next ovulation had occurred. At the same time that scanning frequency increased, a jugular vein catheter was inserted (1.5 mm by 30 cm Steriflex; Vygon (UK) Ltd, Cirencester) under mild sedation (0.5 ml, 2% (v/v) Rompun, i.v.; 23.32 mg Xylazine ml\(^{-1}\); Bayer plc, Bury St Edmunds) and local anaesthesia (1 ml Lignocaine, s.c. (30 mg ml\(^{-1}\); Vetoquinol, Bicester). The catheter was kept patent with heparin–saline solution (5000 units heparin l\(^{-1}\); NVS). Blood samples were subsequently collected every 4 h until ovulation for measurement of LH. Between luteolysis and ovulation, oestradiol sample collection was increased to twice a day and additional samples collected twice a day were obtained for measurement of IGF-I.

During cycle 2, oxytocin was administered on days 15, 16 and 17 after oestrus E2. Blood samples were collected from the i.v. catheter every 15 min for 1 h before and 3 h after i.v. administration of 50 IU oxytocin (Intervet UK Ltd, Cambridge) for subsequent measurement of PGFM by radioimmunoassay.

Cows were re-synchronized during cycle 3 by injection of Cloprostenol (500 µg in 2 ml i.m.) in the mid-luteal phase (days 7–14). At the induced oestrus, the cows were artificially inseminated (AI) and 12–18 days later were killed at the local abattoir and the reproductive tracts were collected. The uterine tracts were flushed with 30 ml sterile

Table 2. Constituents and composition of the diets fed to cows during the trial

<table>
<thead>
<tr>
<th>Diet</th>
<th>Control</th>
<th>LNA (n-3)</th>
<th>LA (n-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass silage (kg day(^{-1}))</td>
<td>40.8</td>
<td>40.8</td>
<td>40.8</td>
</tr>
<tr>
<td>Wheat (kg day(^{-1}))</td>
<td>4.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Sugar beet pulp (kg day(^{-1}))</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Rapeseed meal (kg day(^{-1}))</td>
<td>2.4</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Soya 48 (kg day(^{-1}))</td>
<td>0.75</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>LinPreme (kg day(^{-1}))</td>
<td>–</td>
<td>1.3</td>
<td>–</td>
</tr>
<tr>
<td>SoyPreme (kg day(^{-1}))</td>
<td>–</td>
<td>–</td>
<td>2.8</td>
</tr>
<tr>
<td>Dairy minerals (kg day(^{-1}))</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter (kg day(^{-1}))</td>
<td>18.5</td>
<td>17.9</td>
<td>17.8</td>
</tr>
<tr>
<td>Metabolizable energy (MJ day(^{-1}))</td>
<td>213</td>
<td>207</td>
<td>208</td>
</tr>
<tr>
<td>MJ kg(^{-1}) dry matter</td>
<td>11.5</td>
<td>11.6</td>
<td>11.7</td>
</tr>
<tr>
<td>Protein in dry matter (%)</td>
<td>18.0</td>
<td>17.4</td>
<td>17.3</td>
</tr>
<tr>
<td>ERDP (g day(^{-1}))</td>
<td>2022</td>
<td>1844</td>
<td>1852</td>
</tr>
<tr>
<td>DUP (g day(^{-1}))</td>
<td>777</td>
<td>758</td>
<td>740</td>
</tr>
<tr>
<td>NDF (%)</td>
<td>39</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Oil in dry matter (%)</td>
<td>2.7</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>n-3 PUFA (g day(^{-1}))</td>
<td>198.3</td>
<td>439.9</td>
<td>234.6</td>
</tr>
<tr>
<td>n-6 PUFA (g day(^{-1}))</td>
<td>117.3</td>
<td>159.0</td>
<td>388.9</td>
</tr>
<tr>
<td>Ratio n-6:n-3</td>
<td>0.39</td>
<td>0.36</td>
<td>1.66</td>
</tr>
</tbody>
</table>

DUP: digestible undegraded protein; ERDP: effective rumen degradable protein; LA: linoleic acid; LNA: linolenic acid; NDF: neutral detergent fibre; PUFA: polyunsaturated fatty acid.
saline (0.9% (w/v) NaCl) per uterine horn to locate the presence of any embryos. Milk samples (20 ml a.m. and p.m. samples combined) were collected at the end of the trial, frozen and stored for subsequent PUFA analysis.

Plasma hormone and metabolite measurements

Progesterone. Progesterone was measured in plasma samples after diethyl ether extraction (Wathes et al., 1986). The antiserum was a gift from M. J. Sauer, Veterinary Laboratories Agency (Addelston). The detection limit was 0.16 ng ml–1 and the inter- and intra-assay coefficients of variation were 10.3 and 6.6%, respectively.

Oestradiol. Oestradiol measurements were made as described by Lane and Wathes (1998). The detection limit was 0.2 pg ml–1 and the inter- and intra-assay coefficients of variation were 11.1 and 6.3%, respectively.
LH. LH measurements were made using a method based on that described by Wathes et al. (1986). The detection limit was 0.2 ng ml⁻¹ and the intra-assay coefficient of variation was 15.6%. All samples were measured in the same assay.

IGF-I. IGF-I in plasma was analysed after ethanol-acetone-acetic acid extraction according to the method of Enright et al. (1989) using rhIGF-I (Bachem (UK) Ltd, Saffron Walden) as standard, iodinated rhIGF-I (iodogen method) as tracer and antibody raised against rhIGF-I (Biogenesis Ltd, Poole). The detection limit was 8.6 ng ml⁻¹ and the intra- and intra-assay coefficients of variation were 13.5 and 7.6%, respectively.

NEFAs. NEFAs were measured using the Wako NEFA C test kit (Wako Chemicals GmbH, Neuss). The inter- and intra-assay coefficients of variation were 5.2 and 2.3%, respectively.

Cholesterol. Total cholesterol in plasma was determined by an enzymatic colorimetric method using a Sigma Diagnostic cholesterol kit (catalogue number 352-50; Sigma, Poole). The inter- and intra-assay coefficients of variation were 3.5 and 2.6%, respectively.

Insulin. Plasma insulin was measured by ELISA (DRG Diagnostics, Immunodiagnostics Systems Ltd, Tyne and Wear). The detection limit was 0.22 ng ml⁻¹ and the inter- and intra-assay coefficients of variation were 10.5 and 9.2%, respectively.

PGFM. PGFM was measured in 100 μl samples of whole plasma. Standards of PGFM were from Sigma. These standards were spiked with 100 μl PGFM-free charcoal-stripped cow plasma. The antiserum was a gift from H. Kindahl (Uppsala) and was used at a 1:8000 dilution. The tracer was [³H]PGFM (7.07 TBq mmol⁻¹; Amersham International plc, Amersham) used at 10000 c.p.m. 100 μl⁻¹. After overnight incubation at 4°C, separation was achieved by the addition of 200 μl dextran–charcoal suspension and centrifugation at 1600 g for 10 min at 4°C. The supernatant was mixed with scintillant (4 ml Ultima gold; Packard Bioscience B.V., Groningen) and counted for 2 min in a scintillation counter (2500TR liquid scintillation analyser; Packard). The detection limit was 0.01 ng ml⁻¹. The inter- and intra-assay coefficients of variation were 14.3 and 7.6%, respectively.

Milk fatty acid analysis

The fatty acid composition of the milk samples collected at the end of the trial was determined by ADAS Laboratories (Wolverhampton). In brief, the fat fraction was extracted using diethyl ether. The isolated fat was then trans-esterified using methanolic sodium methoxide to form fatty acid methyl esters (FAME). The FAME profile was determined by capillary gas liquid chromatography. The composition was identified using a certified reference milkfat, a standard solution and equivalent chain lengths. The components were quantified using a standard solution. The mass fraction of an individual fatty acid (as free acid) was expressed as g per 100 g of the total fatty acids (as free acids).

Statistical analysis

Results are quoted as the mean ± SEM unless otherwise stated. Hormonal data were analysed by a general linear model ANOVA program using a repeated measures design (SPSS version 9, Chicago, IL) unless otherwise stated. This design tested for dietary treatment effects and time, and the time × treatment interaction. If significance was established, multiple comparisons were subsequently performed using Fisher’s LSD test. The oestradiol data during different parts of the oestrous cycle were analysed by univariate ANOVA with the data transformed to area under the curve (AUC) of oestradiol concentration against time (days) using the trapezoid method. The duration of the oestrous cycle, the number and diameter of follicles, and the peak oestradiol and peak IGF-I concentrations were analysed by univariate ANOVA. The PGFM data were log-transformed to achieve homogeneity of variance. The basal PGFM production, the concentrations after oxytocin administration and the percentage increase in PGFM over basal production were analysed by split plot ANOVA, with time as the within subjects factor and diet as the between subjects factor. The effect of diet on the peak PGFM value and the AUC were compared using a non-parametric Friedman test. Milk fatty acid data were analysed by multivariate ANOVA. If significance was observed, subsequent comparisons between groups were by LSD. A P value of < 0.05 was taken to indicate statistical significance.

Results

Plasma progesterone

Data were centred on the observed oestrous periods designated E1, E2, E3 and E4 (see Fig. 1), and were analysed including the results from each cow for each of the four cycles (Fig. 2). There was a highly significant effect of diet in both the early luteal (days 4–8, P < 0.004) and the mid-luteal phase (days 9–15, P < 0.02). Although treatment effects appeared to increase with time (Fig. 1), there was no diet × oestrous cycle interaction. Multiple comparisons showed that progesterone values in the early luteal phase were similar between the LNA (n=3) and LA (n=6) diets, but both were significantly lower than in the control cows (LNA (n=3), P < 0.001; LA (n=6), P < 0.003, Fig. 2). In the mid-luteal phase, progesterone was still significantly lower in cows fed a diet supplemented with LNA (n=3) in comparison with control cows (P < 0.006), but there was no difference in progesterone between control cows and cows fed a diet supplemented with LA (n=6) (P = 0.40).
Fig. 2. The effect of dietary polyunsaturated fatty acids (PUFAs) on plasma progesterone concentrations. Values are mean ± SEM values for each cow from four combined oestrous cycles (E1–E4). Significant differences between the control (■) and PUFAs fed (LNA (n-3) (□); LA (n-6) (▲)) cows are indicated with an asterisk: early luteal phase (days 3–8) control compared with linolenic acid (LNA, n-3), $P < 0.001$, and control compared with linoleic acid (LA, n-6), $P < 0.003$; mid-luteal phase (days 9–15) control compared with LNA (n-3), $P < 0.006$.

Fig. 3. The effect of dietary polyunsaturated fatty acids (PUFAs) on plasma oestradiol concentrations. (a) Oestradiol concentrations were measured each day in cows maintained on three different diets: (i) control (■), (ii) high linolenic acid (LNA) (n-3) (●) or (iii) high linoleic acid (LA) (n-6) (▲) PUFAs throughout oestrous cycles 1 and 2 (E1 and E2; $n = 7$ per group). Values are the estimated means: the pooled SEs (pg ml$^{-1}$) were: control: 0.04; LNA (n-3): 0.05; LA (n-6): 0.05. The area under the curve for the oestradiol concentrations was significantly higher ($P < 0.04$) in the LNA (n-3) than the control group during each of the oestrous periods (day −3 to day 2 for E2 and E3, indicated by arrows), but not at other stages of the oestrous cycle. (b) The mean ± SEM maximum oestradiol value recorded during E2 and E3. Values were significantly greater in the LNA (n-3) (□) cows ($b > a, d > c, P < 0.001$) than the controls (■), with intermediate values in the LA (n-6) (▲) group.
Plasma oestradiol

Daily oestradiol samples were obtained throughout cycles 1 and 2 until the start of cycle 3 (Fig. 3a) and twice each day from day –3 to day 3 near E2. Data were centred on E2 and E3. Comparisons between treatments were initially made for the whole data set, which showed no difference as a result of diet. Data were then analysed as the AUC for the oestradiol values during the preovulatory surge (from day –3 to day 2 for E2 and E3) and during the first follicular wave (from day –19 to day –11 in cycle 1 and day 4 to day 9 in cycle 2). The AUC oestradiol concentrations were significantly different between dietary groups during the preovulatory surge (P < 0.001), with multiple comparisons showing that LNA (n-3) was greater than the control, but there were no significant differences between the groups during the first follicular wave. Finally, the peak oestradiol concentrations recorded during E2 and E3 were compared (Fig. 3b). Concentrations were higher in cows fed a diet supplemented with LNA (n-3) than in the control cows (P < 0.001), with intermediate values in cows fed a diet supplemented with LA (n-6).

Plasma IGF-I concentrations were measured twice each day in cows maintained on three different diets: (i) control, (ii) high linolenic acid (LNA) (n-3) or (iii) high linoleic acid (LA) (n-6) PUFA near E2 and were centred on the peak of the LH surge. Values are the estimated marginal means. The pooled stds (ng ml−1) were: control: 11.5; LNA (n-3): 10.5; and LA (n-6): 10.6. There was no significant effect of time for any group, but values were significantly higher in the LA (n-6) group than in the control (P < 0.02) and LNA (n-3) groups (P < 0.003).

Metabolic hormones and metabolites

IGF-I concentrations were measured twice a day near oestrus (E2) and were centred on the time of the LH surge. There was no significant change over time from 24 h before until 24 h after the start of the LH surge. Overall, values of IGF-I were significantly higher in cows fed a diet supplemented with LA (n-6) in comparison with control cows (P < 0.02) and cows fed a diet supplemented with LNA (n-3) (P < 0.003) (Fig. 4). Insulin concentrations were measured each week and were not affected by diet (Fig. 5a). NEFA concentrations decreased between week 2 and week
5 of the trial (approximately week 7 of lactation) in all cows and then remained constant. There was no significant difference in this pattern attributable to diet (Fig. 5b). Cholesterol values remained unchanged during the experimental period in the control cows and in cows fed a diet supplemented with LNA (n-3), and there was no difference between these two diets. In cows fed a diet supplemented with LA (n-6), cholesterol concentrations were increased by week 3 of the trial (week effect, \(P < 0.01 \)) and then remained higher throughout the trial (overall effect diet control compared with LA (n-6), \(P < 0.03 \), Fig. 5c).

Number and diameter of follicles

There was a significant effect of diet (\(P < 0.004 \)) on the number of medium-sized follicles (5–10 mm range) present per cow in the first and second follicular waves after the synchronized oestrus (E1). The number of follicles was increased at both time points in cows on the LA (n-6) supplemented diet and on day 15 in cows on the LNA (n-3) supplemented diet in comparison with control cows (Table 2). The maximum diameter of the first dominant follicle measured during cycle 1 and of the preovulatory follicle at E2 was also compared between dietary treatments. The size of the first dominant follicle was significantly greater in cows fed a diet supplemented with LA (n-6) compared with that of the control cows, and intermediate values were noted in cows fed a diet supplemented with LNA (n-3). A similar, although not significant, trend towards an increased diameter was observed in the preovulatory follicles in both the cows fed a diet supplemented with LNA (n-3) or LA (n-6) (Table 3).

Interval from LH surge to ovulation

The time of the LH surge was considered as the highest LH value measured from the 4 h samples (data not shown). The time of ovulation was estimated as mid-way between the time at which a large dominant follicle was present, and the following scan in which the follicle had disappeared, indicating that ovulation had occurred. The intervals (h) from the LH surge to ovulation for the three treatment groups were as follows: control: mean 22.6 ± 0.60, range 21–24; LNA (n-3): mean 23.8 ± 0.91, range 22–28; LA (n-6): mean 28.6 ± 4.57, range 18–44. In addition, one control cow and one cow fed a diet supplemented with LA (n-6) did not ovulate during the follicular phase, but developed follicular cysts. These data indicate that the interval from the LH surge to ovulation was more variable in the LA (n-6) fed cows, as the variances were not homogeneous between this and the other two groups (\(P < 0.05 \)).

Oestrous cycle duration and fertility

The duration of oestrous cycles 1 and 2 was measured for each cow as the interval between consecutive oestrous periods (E1–E2–E3). Data were obtained from seven cows per group for two oestrous cycles each. The duration (days) of the oestrous cycles were as follows: control: 21.5 ± 0.45; LNA (n-3): 21.7 ± 0.53; and LA (n-6): 20.6 ± 0.30. One cow fed a control diet had a prolonged luteal phase (34 days) and was omitted from the calculation. One cow fed the LA (n-6) diet developed a follicular cyst at the end of cycle 1, so data from cycle 2 were omitted for this animal. The trend towards a slightly shorter cycle for cows fed the LA (n-6) supplemented diet was not significant (\(P = 0.25 \)).

Pregnancy data were obtained from 18 of the 22 cows. Two animals in each of the control and LA supplemented groups were omitted for the following reasons: two cows were not observed to be in oestrus and so were not inseminated; one cow was inseminated at the wrong time (on the basis of her milk progesterone profile) and one cow was found to have a blocked oviduct post mortem. Excluding these animals, the overall combined pregnancy rate for the three groups was 44%, as determined by the presence of an embryo 12–18 days after AI. The numbers of cows pregnant in individual dietary groups were as follows: control, two of six cows, LNA (n-3), four of seven cows, LA (n-6), two of five cows.

Effect of oxytocin administration on PGFM response

Cows (five to six per diet) received 50 iu oxytocin i.v. on days 15, 16 and 17 of cycle 2. Data were analysed on the basis of the basal, peak and total PGFM concentrations (measured as AUC following oxytocin, Fig. 6) and as the percentage increase in PGFM above baseline after oxytocin administration (Fig. 7). On day 15, there was only a small increase in the PGFM concentration after oxytocin administration, and diet had no effect on the basal, peak, total or percentage increase in PGFM concentrations. The overall response to oxytocin was greater on day 16, but again there

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>LNA (n-3)</th>
<th>LA (n-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Number of follicles (5–10 mm in diameter) on day 5</td>
<td>1.6 ± 0.2a</td>
<td>1.4 ± 0.3a</td>
<td>2.3 ± 0.3b</td>
</tr>
<tr>
<td>Number of follicles (5–10 mm in diameter) on day 15</td>
<td>1.8 ± 0.3a</td>
<td>3.4 ± 0.2b</td>
<td>3.5 ± 0.3b</td>
</tr>
<tr>
<td>Maximum diameter of first dominant follicle (mm)</td>
<td>13.3 ± 1.7a</td>
<td>15.6 ± 0.7ab</td>
<td>16.9 ± 0.7b</td>
</tr>
<tr>
<td>Maximum diameter of preovulatory follicle (mm)</td>
<td>17.0 ± 0.3</td>
<td>18.3 ± 0.2</td>
<td>17.9 ± 0.4</td>
</tr>
</tbody>
</table>

Within rows b > a (\(P < 0.05 \)).
LA: linoleic acid; LNA: linolenic acid.
was no significant effect of diet, although the AUC was lowest in the LA (n-6) supplemented group. On day 17, one cow in the LNA (n-3) supplemented group had a high basal PGFM concentration before oxytocin administration, indicating that it might be experiencing an endogenous pulse of PGFM and, therefore, this animal was omitted from the analysis on this day. Although the control and LNA (n-3) supplemented groups showed a similar magnitude of response on day 16 and day 17, the amount of PGFM released on day 17 was significantly increased in the LA (n-6) cows (P < 0.05, Fig. 6). Values were therefore higher in LA (n-6) cows compared with the control and LNA (n-3) groups, particularly at 45–75 min after oxytocin administration (P < 0.05, Fig. 7c).

Milk fatty acid composition

Both experimental diets altered the milk PUFA profile (Table 4). Feeding either LNA (n-3) or LA (n-6) reduced the proportion of short chain fatty acids (C4 to C14) and C16:0 saturated fatty acids in milk. LNA concentrations (C18:3) were increased to a similar extent by both PUFA diets. The LA (n-6) diet also caused a large increase in linoleic acid (C18:2), whereas the proportion of arachidonic acid (C20:4 n-6) was decreased by LNA (n-3). The proportions of C18:0, C18:1 and conjugated linoleic acid (C18:2) increased in both PUFA supplemented groups. None of the diets altered the amount of longer chain n-3 PUFAs (C22:5 and C22:6).

Discussion

The present study has confirmed previous findings that dietary PUFA intake can alter many aspects of reproductive...
function and has extended these findings by comparing the effects of feeding protected plant-derived PUFAs from two different families. Plasma progesterone concentrations were reduced, particularly in the early luteal phase, in cows fed a diet supplemented with either LNA (n-3) or LA (n-6) PUFAs. These results are consistent with the study of Hinckley et al. (1996), in which the addition of longer chain PUFAs to dispersed bovine luteal cells decreased progesterone secretion. The mechanism of this process is unknown, although four possibilities should be considered. Firstly, the PUFAs may alter luteal prostaglandin synthesis directly. For example, PGF$_{2\alpha}$ in the late luteal phase is luteolytic, whereas PGE$_2$ and 6-keto-PGF$_{1\alpha}$ are luteotrophic in the early luteal phase (Milvae et al., 1996). A high concentration of LA in the corpus luteum in the early luteal phase could therefore decrease production of luteotrophic prostaglandins. Secondly, there is also growing evidence for a role of arachidonic acid in steroidogenesis. Arachidonic acid can regulate luteal expression of StAR protein and thus may influence LH-stimulated progesterone production, as transfer of cholesterol to the inner mitochondrial membrane is a rate-limiting step (Wang et al., 1999). Thirdly, increased plasma cholesterol concentrations could stimulate progesterone production, although plasma cholesterol is not thought to be rate-limiting to ovarian steroidogenesis (Carroll et al., 1992). Finally, ovulation may be delayed in the PUFA fed cows, leading to delayed luteal development.

None of these explanations are entirely supported by the data from the present study, as the effects of both PUFA diets on progesterone output were fairly similar, but concentrations of the various possible mediators measured in milk or plasma differed between the two PUFA diets. The LA (n-6) supplemented diet increased milk LA and plasma cholesterol, whereas the LNA (n-3) supplemented diet decreased milk arachidonic acid. It is possible either that these measures do not give a true reflection of local concentrations within the ovary or that different inhibitory mechanisms were operative in the two PUFA groups. Whatever the mechanism, lower concentrations of progesterone in the early luteal phase could potentially cause a reduction in fertility, as Mann et al. (1999) reported that cows with lower concentrations of progesterone at this time had significantly smaller embryos on day 16 after insemination. These results using plant-derived protected PUFAs are in contrast with the results of the majority of studies in cattle using saturated fat supplementation in which plasma progesterone is generally increased, often accompanied by raised cholesterol concentrations (for a review, see Staples et al., 1998).

Plasma oestradiol concentrations were increased above control amounts by LNA (n-3) treatment, with intermediate values in the LA (n-6) group. Lammoglia et al. (1997) also found increased oestradiol concentrations throughout the first, but not the second, oestrous cycle after additional fat supplementation using rice bran (which is high in LA) in Brahman cows. The mechanism behind the altered oestradiol synthesis is again unclear. Lower progesterone coupled with the higher oestradiol might indicate alterations in the expression of the steroidogenic enzymes. Insulin and IGF-I can both increase follicular steroidogenesis (Webb et al., 1992; Spicer and Echternak, 1995; Wathes et al., 1995). However, in the present study, both cholesterol and IGF-I were increased in cows fed a diet supplemented with LA (n-6), but not with LNA (n-3), whereas oestradiol values were highest in the latter group and overall, there was no correlation between peak oestradiol and plasma IGF-I. Furthermore, insulin was not altered by the diet. Data from the present study also showed that there was no increase in circulating IGF-I in the 48 h period about the time of

<table>
<thead>
<tr>
<th>Fatty acid composition of milk from cows fed the control diet or diets supplemented with linolenic acid (LNA) (n-3) or linoleic acid (LA) (n-6) polyunsaturated fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acid (g (100 g$^{-1}$ fat) (number of cows))</td>
</tr>
<tr>
<td>C4:0–C14:0 (SCFA)</td>
</tr>
<tr>
<td>C16:0</td>
</tr>
<tr>
<td>C16:1</td>
</tr>
<tr>
<td>C18:0</td>
</tr>
<tr>
<td>Trans 18:1</td>
</tr>
<tr>
<td>Cis 18:1</td>
</tr>
<tr>
<td>C18:2</td>
</tr>
<tr>
<td>C18:3</td>
</tr>
<tr>
<td>C18:2 cong</td>
</tr>
<tr>
<td>C20:1</td>
</tr>
<tr>
<td>C20:4 n-6</td>
</tr>
<tr>
<td>C22:5 n-3</td>
</tr>
<tr>
<td>C22:6 n-3</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

SCFA: short chain fatty acids.

*Within rows, values with different superscripts were significantly different (a > b, P < 0.05).
OESTRUS. This finding is consistent with previous work in cattle (Gong et al., 1993), but differs from the situation in ewes in which circulating concentrations of IGF-I increase at this time, and reach a peak 12 h after the start of the LH surge (Spicer and Zavy, 1992; Wathes et al., 1994). The IGF-I concentrations measured in the present study are consistent with other studies in first lactation cows, in which IGF-I concentrations post partum are significantly higher than in older cows (Wathes et al., 2001).

The number and diameter of follicles were also increased in the PUFA fed cows. The effect on follicle size was more pronounced for the first wave dominant follicle than for the preovulatory follicle, possibly because there was little variation in the size at which follicles ovulated, as they were all between 16 mm and 19 mm in diameter. This finding is consistent with other reports in which various types of fat supplementation consistently increased both the number and size of ovarian follicles (for example, see Hightshoe et al., 1991; Oldick et al., 1997; Thomas et al., 1997; De Fries et al., 1998). This effect is independent of the increased energy as it is still present in isocaloric diets (Lucy et al., 1991). This conclusion is supported by the unchanged NEFA concentrations found with the different diets in the present study. It has been suggested that the enhanced follicular growth shown in previous work with saturated fats is caused by increased insulin concentrations. However, the relationships between insulin concentrations and follicular development are inconsistent, because in some of the above studies insulin concentrations were increased (Lammoglia et al., 1997; Thomas et al., 1997), whereas in other studies (Beam and Butler, 1997; present study), there was no change. IGF-I is another known stimulator of follicular development (Spicer and Echternamp, 1995). As IGF-I values were increased only on the LA (n-6) diet, which showed the greatest change in follicle size and number, this is a more likely mediator. An alternative interpretation of the data from the present study is that it could relate to alterations in follicular prostaglandin synthesis as discussed above for the corpus luteum. It is also unclear from any of these investigations whether the increase in follicle size was attributable to more follicular cells, an increased volume of follicular fluid, or both. Although insulin and IGF-I are both known to stimulate granulosa cell proliferation (Webb et al., 1992), the factors causing fluid secretion into the antrum have not, to our knowledge, been studied. The relevance of follicular size to fertility is also unknown as the size of the preovulatory follicle, which could relate to subsequent corpus luteum size, was not altered.

The cows on the LA (n-6) diet had a more variable interval from the LH surge to ovulation. The mechanism causing this is unknown, but may again be related to alterations in ovarian prostaglandin metabolism. PUFA could also influence the timing of ovulation via alterations in prostaglandin-mediated changes in LH-RH release (Ojeda et al., 1979; Kim and Ramirez, 1986). Variations in the interval to ovulation could be detrimental to fertility as it would be more difficult to time insemination accurately in relation to ovulation, and AI either too early or too late reduces conception rates (Hunter and Greve, 1997).

Possible effects of the diets on uterine prostaglandin synthesis and subsequent metabolism were examined after oxytocin administration. The LNA (n-3) diet did not alter the PGFM response on days 15, 16 or 17 in comparison with the control diets, whereas the LA (n-6) diet was associated with a higher PGFM in response to oxytocin only on day 17. Several other studies have reported inhibitory effects of n-3 PUFA on prostaglandin synthesis. These effects include in vitro experiments on human decidual cells (Arntzen et al., 1998) and dietary experiments which subsequently tested prostaglandin production by pig alveolar macrophages (Fristche and Cassity, 1996), mice peritoneal cells (Broughton et al., 1991) or a bovine endometrial response to an oxytocin challenge (Coelho et al., 1997). These experiments used the longer chain n-3 PUFA, docosahexaenoic acid and eicosapentaenoic acid, and it is possible that these are more potent inhibitors of prostaglandin synthesis than ω-linolenic acid (Elattar and Lin, 1989). Alternatively, the ratio of n-6:n-3 PUFA may have varied between the different experiments.

The effects of n-6 PUFA on prostaglandin synthesis also remain equivocal. In various in vitro test systems, the addition of LA, di-homo-γ-linolenic acid (DGLA; 20:3, n-6) or arachidonic acid have been reported to either stimulate (Lewis et al., 1981; Arntzen et al., 1998) or inhibit (Kaduce et al., 1982; Elattar and Lin, 1989) prostaglandin synthesis. In a previous in vivo study, cows were infused with yellow grease into the abomasum. This is a type of fat used in animal feeds in the USA and contains 20% LA (Oldick et al., 1997). This treatment caused a reduction in uterine PGFM release. A similar decrease in endometrial prostaglandin production was found in a study in which women were fed a diet supplemented with gamma linolenic acid (Graham et al., 1994). The results of the present study indicating that LA was stimulatory on day 17 of the oestrous cycle do not support the suggestion of Thatcher et al. (1995) that LA acts as a competitive inhibitor of prostaglandin synthesis in bovine endometrium. Instead, elongation of LA to arachidonic acid may increase precursor availability for prostaglandin synthesis in this group. However, a further complication is that we have previously reported inhibition of prostaglandin synthesis in endometrial explants obtained on day 15 from cows fed SoyPreme (Cheng et al., 2001), consistent with the slightly lower response in vivo on day 15 shown in the present study. It is possible that these variations in response between days are due to differences in either the local concentrations of LA and arachidonic acid or in their rate of turnover as luteolysis is initiated.

In conclusion, the three diets used in these experiments, which differed primarily in their n-3 and n-6 PUFA content and in the n-6:n-3 PUFA ratio, produced a variety of alterations in reproductive function. These included reduced progesterone concentrations in the early luteal phase on both PUFA diets and in the mid-luteal phase on the LNA (n-3) diet, increased follicular number on both diets,
increased preovulatory oestradiol in the LNA (n-3) fed cows, and increased IGF-I and cholesterol and an increase in follicle size in LA (n-6) fed cows. The LA (n-6) diet also altered the pattern of PGFM release preceding luteolysis as the endometrial PGFM response to an oxytocin challenge was increased. Further experimental work is required to elucidate the mechanisms by which these alterations in circulating hormone concentrations are mediated and to determine whether these changes also influence fertility.

The authors would like to thank N. Poyser, M. Sauer and H. Kindahl for their kind gifts of antisera, R. Mansbridge for assistance with the LH assay, G. E. Mann for assistance with the LH assay, H. Kindahl for their kind gifts of antiserum, R. Mansbridge for the

References

Irving RF (1982) How is the level of free arachidonic acid controlled in mammalian cells? Biochemical Journal 204 3–16

Kaduce TL, Spector AA and Bar RS (1982) Linoleic acid metabolism and prostaglandin production by cultured bovine pulmonary artery endothelial cells Artherosclerosis 2 380–389

Lewis MG, Kaduce TL and Spector AA (1981) Effect of essential polyunsaturated fatty acid modifications on prostaglandin production by MDCK canine kidney cells Prostaglandins 22 747–759

Downloaded from Bioscientifica.com at 06/06/2019 12:55:47AM via free access
Mansbridge RJ and Blake JS (1997) Nutritional factors affecting the fatty acid composition of bovine milk British Journal of Nutrition 78 Supplement 1 S37–S47
Needleman P, Raz A, Minkes MS, Ferrendelli JA and Sprecher H (1979) Triene prostaglandins; prostacyclin and thromboxane biosynthesis and unique biological properties Proceedings National Academy of Sciences USA 76 944–948
Reichman ME, Judd JT, Taylor PR, Nair PP, Jones Y and Campbell WS (1991) Effect of dietary fat on length of the follicular phase of the menstrual cycle in a controlled diet setting Journal of Clinical Endocrinology and Metabolism 74 1171–1175
Sargent JR (1997) Fish oils and human diet British Journal of Nutrition 78 Supplement 1 S5–S13
Stocco DM and Clarke BJ (1996) Regulation of acute production of steroids in steroidogenic cells Endocrine Reviews 17 221–244

Received 5 October 2001.
First decision 15 November 2001.
Revised manuscript received 27 March 2002.
Accepted 28 March 2002.