Effects of oocyte maturation regimen on the relative abundance of gene transcripts in bovine blastocysts derived in vitro or in vivo

H. M. Knijn¹, C. Wrenzycki², P. J. M. Hendriksen¹, P. L. A. M. Vos¹, D. Herrmann², G. C. van der Weijden¹, H. Niemann² and S. J. Dieleman¹

¹Department of Farm Animal Health, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 7, 3584 CL Utrecht, The Netherlands; and ²Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Neustadt, Germany

Bovine embryos produced in vitro differ substantially from embryos produced in vivo in the mRNA expression patterns of genes important for development. Several factors in the in vitro production systems have profound effects on embryonic mRNA expression patterns. The effects of the type of maturation on the expression pattern of genes important for development in blastocysts produced in vitro have not yet been investigated. The aim of the present study was to investigate the effects of various maturational protocols on the relative abundance of a panel of six marker genes, indicative of compaction and cavitation, metabolism, stress susceptibility and RNA processing, in bovine blastocysts produced in vitro. Four groups of blastocysts were analysed by a sensitive semi-quantitative RT–PCR assay. Blastocysts were produced in vitro from oocytes of different origin from: (1) 3–8 mm follicles; (2) preovulatory follicles before the LH surge; and (3) preovulatory follicles 24 h after the LH surge. The first two groups were matured in vitro, whereas the third group had undergone maturation in vivo. A fourth group comprised blastocysts developed entirely in vivo. Expression of glucose transporter 1 was significantly (P < 0.05) higher, and expression of desmocollin 2 and plakophilin tended to be higher (P < 0.1) for in vivo (group 4) compared with in vitro blastocysts (group 1), whereas no differences were found for heat shock protein 70.1, E-cadherin and poly(A) polymerase. Expression of the six transcripts did not differ among blastocysts produced in vitro from oocytes of groups 1, 2 and 3. Results indicate that alterations in the relative abundance of these transcripts in blastocysts produced in vitro cannot primarily be attributed to the origin of the oocyte, but are likely to have been induced by post-maturation or fertilization culture conditions.

Introduction

In cyclic cows, embryos develop after fertilization of oocytes that originate from an ovulatory follicle. These follicles have undergone the processes of selection, growth and dominance until oestrus, when the LH surge initiates the final maturation approximately 24 h before ovulation (Dieleman et al., 1983a; Fortune, 1994). In contrast, for production of viable embryos in vitro, oocytes are used that differ from oocytes originating from ovulatory follicles in vivo in that they are: (1) derived from immature, subordinate follicles of 2–8 mm in diameter, and (2) matured in vitro, outside the follicle. Oocytes from small follicles (< 2–3 mm) are less likely to develop in vitro into blastocysts than are oocytes from larger (> 3 mm) follicles (Pavlok et al., 1992; Blondin et al., 1997; Van de Leemput et al., 1999). A comparative analysis of the ultrastructure of oocytes derived from dominant, preovulatory follicles with that of oocytes from subordinate, small follicles revealed first signs of maturation (referred to as ‘capacitation’ or ‘prematuration’) in the dominant follicle before the LH surge (Assey et al., 1994; Hyttel et al., 1997). Bovine oocytes contain large but changing populations of mRNAs and proteins. The oocyte supplies mRNAs that sustain embryonic development up to the stage of maternal–embryonic transition, and a few mRNAs persist throughout development until the blastocyst stage (Memili and First, 1999). In particular, the oocyte contains transcription factors involved in the minor and major activation of the embryonic genome at the two- to four-cell stage and eight-cell stage, respectively (Viuff et al., 1996). So, within the mammalian oocyte, genes have to be properly imprinted; furthermore, oocyte-derived factors are important for changes in methylation and for recognition of imprinted genes that need to be methylated (Young and Fairburn, 2000). The mRNA contents of the oocyte are related to the developmental competence of the zygote after fertilization (Lequarre et al., 1997). Furthermore, the length of the poly-A tail of RNA in bovine oocytes was to some extent correlated...
with the quality of the resulting blastocyst (Brevini-Gandolfi et al., 1999). The amounts of mRNA encoding for Na–K-
ATPase, Cu–Zn superoxide dismutase (SOD), basic fibroblast growth factor (bFGF), cyclin A and B in bovine oocytes are affected by the maturation medium (Watson et al., 2000). The intrinsic quality of the oocyte is a key factor in determining blastocyst yields (Sirard and Blondin, 1996; Rizos et al., 2002). These findings indicate that prematuration and maturation of the oocyte affect patterns of gene expression at the blastocyst stage.

Various differences have been described between embryos derived in vitro and in vivo (Holm and Callesen, 1998; Niemann and Wrenzycki, 2000), including morphology (Van Soom and de Kruif, 1992; Van Soom et al., 1997a), number and allocation of cells (Van Soom et al., 1996; Viuff et al., 2001), frequency of apoptosis and mixoploidy (Viuff et al., 1999, 2001; Gjorret et al., 2001), tolerance to cryopreservation (Niemann, 1995; Enright et al., 2000), embryonic metabolism (Khurana and Niemann, 2000) and expression profile of specific mRNAs (Wrenzycki et al., 1996, 2001a; Eckert and Niemann, 1998; Lequarre et al., 2001). The relative abundance of several gene transcripts thought to be critically involved in preimplantation development is affected by the choice of basic culture medium and the type of protein supplement (Wrenzycki et al., 1999, 2001a). The effects of different maturation protocols on the relative abundance of genes important in development in blastocysts derived in vitro have not yet been investigated.

The aim of the present study was to determine the effects of prematuration–maturation (in vitro versus in vivo) of the oocyte on the relative abundance of a panel of six ‘marker’ genes important in development: glucose transporter 1, desmocollin 2, E-cadherin, plakophilin, heat shock protein 70.1 and poly(A) polymerase. These genes were selected because they are indicative of various mechanisms in preimplantation bovine development in vitro. Plakophilin and desmocollin 2 are of embryonic origin, whereas the other genes are of maternal and embryonic origin. All six transcripts are sensitive markers for compaction and cavitation, metabolism, RNA processing and stress susceptibility, and thereby indicate the quality of blastocysts (Wrenzycki et al., 1999, 2001a). The effects of different oocyte origins on blastocyst gene expression were investigated by collecting and analysing four groups of blastocysts from: (i) oocytes lacking the preovulatory development (in vitro group); (ii) oocytes prematurated in vivo and matured in vitro (pre-LH group); (iii) oocytes prematurated and matured in vivo (post-LH group); and (iv) blastocysts developed entirely in vivo (in vivo group). Oocytes derived from these different sources were subjected to in vitro fertilization and cultured to blastocysts in vitro under identical conditions.

Materials and Methods

Experimental design

Four groups of blastocysts that differed with regard to either the origin of the oocyte or conditions of embryo development were collected. In the first (in vitro) group, oocytes from ovaries obtained from an abattoir were matured, fertilized and cultured in vitro up to the blastocyst stage. In the second and third groups, two groups of cows were synchronized and treated with FSH to stimulate a large population of follicles to undergo the normal events of prematuration. The oocytes were collected either before the LH surge (pre-LH group) or 24 h after the induced LH surge (post-LH group). The oocytes from the pre-LH group were matured in vitro, and were then fertilized and cultured up to the blastocyst stage simultaneously with the oocytes from the post-LH group (Fig. 1). In the fourth (in vivo) group, blastocysts were collected from superovulated cows by flushing the uterus at day 7 after insemination. Oocytes and blastocysts were collected from Holstein Friesian cows. Oocytes were recovered from cows at a commercial abbaitoir for the in vitro group, whereas donor animals from the experimental herd of the Veterinary Faculty of Utrecht University were used for the other three groups.

Animals

For the pre-LH (n = 8) and post-LH (n = 9) groups, 17 clinically healthy, non-lactating Holstein Friesian cows were selected on the basis of progesterone concentrations in peripheral blood samples measured three times a week for at least 4 weeks before the experiment. The cows were fed 20 kg corn silage and 4 kg concentrate per day, and grass silage and water were supplied ad libitum. The cows were presynchronized using an ear implant for 9 days (3 mg norgestomet, Crestar; Intervet International BV, Boxmeer), together with 3 mg norgestomet and 5 mg oestradiol valerate i.m. (Intervet International BV). Two days before the implant was removed, prostaglandin (15 mg Prosolvin i.m.; Intervet International BV) was administered.

On day 8 of the synchronized cycle (oestrus = day 0), all follicles > 5 mm were removed by transvaginal ultrasound-guided aspiration to avoid the inhibitory effects of follicular dominance on the developmental capacity of oocytes from subordinate follicles (Bungartz and Niemann, 1994). On day 9 of the oestrous cycle, the cows received another ear implant (3 mg norgestomet, Crestar) for 5 days, but no further combined norgestomet and oestradiol valerate. From day 10 of the oestrous cycle onwards, the cows received o-FSH i.m. (Ovagen ICP, Auckland) twice a day in decreasing doses over 4 days (3.5 ml, 2.5 ml, 1.5 ml and 1.0 ml; in total 17 ml, equivalent to 299 iu NIH-FSH-S1). Prostaglandin (22.5 mg i.m.) was administered together with the fifth dose of FSH, and 55 h later the ear implants were removed (Fig. 1).

The day after the last FSH dose, transrectal ultrasound technology was used to collect oocytes from cows with more than eight follicles > 8 mm. For the pre-LH group, cows (n = 8) were ovarioctomized 2 h after removal of the implant. In the post-LH group, cows (n = 9) received GnRH (1.0 mg Fertagyl in 10 ml saline i.m.; Intervet International BV) at the time of removal of the implant and were

Downloaded from Bioscientifica.com at 04/26/2019 08:53:51PM via free access
ovariectomized 26 h after receiving GnRH. Ovariectomy was performed by laparotomy through a flank incision under local anaesthetic, using lidocaine cum adrenaline (Alfasan, Woerden). Ovaries were collected in 0.9% (w/v) NaCl at 37°C and were immediately transported to the laboratory. Heparinized blood samples were collected from the jugular vein every day during the experimental cycle and every hour after removal of the second implant for 6 h or until ovariectomy. After immediate centrifugation at 1800 g for 10 min at 4°C, plasma was stored at –25°C.

The seven cows in the in vivo group were treated with 3000 iu eCG (Intergonan; Intervet, Tönisvorst) between day 9 and day 13 of the oestrous cycle, and with prostaglandin (Estrumate; Schering-Plough, Munich) 48 h later. At oestrus, the donors were inseminated twice at an interval of 12 h with semen of a bull with proven fertility. At day 7 after insemination, blastocysts were recovered by non-surgical flushing of the uterine horns with 300 ml PBS (Sigma, St Louis, MO) supplemented with 1% newborn calf serum (NBCS, No. 295957; Boehringer, Mannheim) using established procedures.

Only blastocysts of morphological grades I and II (Robertson and Nelson, 1998) were included in this study. The blastocysts were stored in a minimum volume of PBS with 0.1% (w/v) polyvinyl alcohol (PVA; Sigma) and stored at –80°C.

Radioimmunoassays for progesterone and LH

Concentrations of progesterone in plasma were estimated by a solid-phase 125I-radioimmunoassay (Coat-A-Count TKPG; Diagnostic Products Corporation, Los Angeles, CA) according to the instructions of the manufacturer as validated by Dieleman and Bevers (1987). The sensitivity was 0.15 nmol l⁻¹, and the intra- and interassay coefficients of variation were 8 and < 11%, respectively.

Concentrations of LH in plasma were estimated by a validated homologous radioimmunoassay (Dieleman et al., 1983b). The sensitivity was 0.4 mg NIH-LH-B4 l⁻¹. The intra- and interassay coefficients of variation were < 9%.

Collection of oocytes and in vitro maturation

In vitro group. Bovine ovaries were collected in a thermos flask at a local abattoir from Holstein Friesian cows of unknown reproductive status and were then transported to the laboratory. Cumulus–oocyte complexes (COCs) were aspirated from 3–8 mm follicles, but only those with a multi-layered compact cumulus investment were used for the experiments. An average of ten usable COCs was collected per ovary. Selected COCs were rinsed once with Hepes-buffered M199 supplemented with 10% fetal calf serum (FCS; Gibco BRL, Paisley) and once with maturation medium. Groups of 35 oocytes were randomly allocated to wells of four-well culture plates (Nunc A/S, Roskilde) containing 500 μl maturation medium (M199; Gibco BRL) supplemented with 10% FCS (Gibco BRL), 0.01 iu porcine FSH ml⁻¹ (Sigma), and 0.01 iu equine LH ml⁻¹ (Sigma) per well and then cultured for 22 h (39°C, 5% CO₂ in humidified air).

Pre-LH group. Immediately after ovariectomy, COCs were aspirated from putative preovulatory follicles > 8 mm and were included in the experiment on the basis of a minimum of three layers of compact cumulus investment.
COCs of one cow were then processed in one well for in vitro maturation similar to the COCs of the in vitro group.

Post-LH group. Immediately after ovariectomy at 24 h after the LH surge, COCs matured in vivo were aspirated from preovulatory follicles > 8 mm and were selected for the experiment based on an expanded cumulus–cell mass. COCs with a compact cumulus investment and degenerated oocytes were discarded. Selected COCs from each cow were kept together in maturation medium in a single well until fertilization.

The interval between ovariectomy and transfer of COCs to maturation (pre-LH group) or fertilization (post-LH group) medium was 30–40 min. The duration of maturation was 24 h for the pre-LH group (in vitro) and 24 h in vivo (ovariectomy 24 h after the LH surge). Ovulation of fully matured oocytes occurs 24 h after the LH surge (Dieleman et al., 1983a). Maturation was assessed by determining expansion of the cumulus cells. Cytological studies have revealed that in our system > 80% of the oocytes reach the metaphase II stage.

In vitro fertilization and embryo culture (IVF and IVC)

Procedures for in vitro fertilization (IVF) were performed as described by Izadyar et al. (1996). In brief, matured oocytes of the in vitro, pre-LH and post-LH groups were fertilized in wells of four-well culture plates. All oocytes were fertilized at the same time with the same batch of semen from one bull with proven fertility. Before fertilization, oocytes in each well were rinsed twice with 2 ml semen from one bull with proven fertility. Before fertilization, oocytes in each well were rinsed twice with 2 ml synthetic oviductal fluid (SOF) medium under oil (Squibbs Oil, Princeton, NJ) (Van Wagtendonk-de-Leeuw et al., 1983a). Maturation was assessed by determining expansion of the cumulus cells. Cytological studies have revealed that in our system > 80% of the oocytes reach the metaphase II stage.

Day 1 of culture was defined as beginning immediately after completion of IVF. Embryos were washed four times in PBS with 0.1% (w/v) PVA (PBS-ET; Bio Whittaker Europe, Verviers) and transferred to 0.5 ml cups in a minimum volume (≤ 5 μl) of PBS with 0.1% (w/v) PVA and frozen at −80°C. Analysis of cultured embryos was confined to those of morphological grades I and II (Robertson and Nelson, 1998).

Selection of the embryos for RT–PCR

For each gene, embryos from as many different cows as possible were analysed. Furthermore, similar numbers of embryos collected on days 7 and 8 were assigned to each mRNA analysis. Depending on the type of gene, four to five transcripts were analysed per embryo and at least five embryos per gene were determined. The relative abundance of mRNAs from the six different genes important in the development of a preimplantation embryo was determined in single bovine blastocysts by semi-quantitative RT–PCR.

Isolation of RNA

Poly(A)+ RNA from a single embryo was isolated using a Dynabeads mRNA DIRECT kit (Dynal A.S., Oslo). RNA was isolated following the manufacturer’s instructions with minor alterations (Wrenzyczki et al., 1999). In brief, frozen embryos were thawed by adding 30 μl lysis buffer (100 mmol Tris–HCl l–1, pH 7.5; 500 mmol LiCl l–1; 10 mmol EDTA l–1, pH 8; 1% (w/v) LiDS (SDS); 5 mmol dithiothreitol l–1). As an internal standard, 1.0 pg rabbit globin RNA (Life Technologies BV, Eggengstein) was added to each embryo. The samples were mixed for 10 s, centrifuged for 15 s at 12 000 g, and left for 10 min at room temperature. Dynabeads (5 μl; Dynal) were added and mixed for 5 min at room temperature. The samples were put in the magnetic separator to remove the lysis buffer and leave the Dynabeads. The Dynabeads were washed four times, once with 40 μl washing buffer A (10 mmol Tris–HCl l–1, pH 7.5; 0.15 mol LiCl l–1; 1.0 mmol EDTA l–1; 0.1% (w/v) LiDS) and three times with 40 μl washing buffer B (10 mmol Tris–HCl l–1, pH 7.5; 0.15 mol LiCl l–1; 1.0 mmol EDTA l–1). After removal of washing buffer B, 11 μl sterile H2O was added and incubated at 65°C for 2 min to elute mRNA from the Dynabeads. The cups were put into the magnetic separator again; the supernatant was removed and immediately used for reverse transcription.

Reverse transcription

Poly(A)+ RNA isolated from a single embryo was reverse transcribed into cDNA in a total volume of 20 μl. The reaction mixture consisted of 1 × RT buffer (50 mmol KCl l–1; 10 mmol Tris–HCl l–1, pH 8.3; Perkin Elmer Biosystems, Vaterstatten), 5 mmol MgCl2 l–1, 1 mmol of each dNTP l–1 (Amersham, Brunswick), 2.5 μmol random hexamers l–1 (Perkin Elmer), 20 iu RNase inhibitor (Perkin Elmer) and
50 iu MuLV reverse transcriptase (Perkin Elmer). The samples were centrifuged for 15 s at 12 000 g and were overlaid with mineral oil to prevent evaporation. One sample was prepared with 1.0 pg rabbit globin RNA and 10 μl H2O. As negative controls, tubes without an RNA sample and tubes with an RNA sample, but without reverse transcriptase, were analysed. The reverse transcription reaction was carried out in a thermocycler (Biometra Triothermoblock; Biometra, Göttingen) for 10 min at 25°C, 60 min at 42°C, and 5 min at 99°C, and was kept on ice once the reaction was completed.

PCR

Immediately after reverse transcription the samples were subjected to PCR amplification. PCR was performed with a volume of the reverse transcriptase reaction corresponding to 0.1 (desmocollin 2 and Glut-1), 0.2 (heat shock protein, E-cadherin and poly(A) polymerase) and 0.4 (plakophilin) embryo equivalents in a final volume of 50 μl, containing 1 x PCR buffer (20 mmol Tris–HCl l–1; 50 mmol KCl l–1, pH 8.4; Life Technologies), 1.5 mmol MgCl2 l–1, 200 μmol of each dNTP l–1 and 1 μmol of each sequence-specific primer l–1 (0.5 μmol l–1 for globin primers). A ‘hot start’ PCR was performed to obtain specific amplification. During the ‘hot start’ 1 iu Taq DNA polymerase (Life Technologies) was added at 72°C. The sequences and positions of the primers start’ 1 iu Taq DNA polymerase (Life Technologies) was added at 72°C. The sequences and positions of the primers used, the annealing temperature, the fragment sizes of the expected products and the sequence references are shown (Table 1). The products of each primer pair were sequenced to confirm the identity of the RT–PCR fragments.

Running a linear cycle series established the optimal cycle number at which the transcript was amplified exponentially for the PCR reaction. The PCR programme started at 97°C for 2 min, decreased to 72°C for 2 min (hot start) and was followed by a number of cycles, which depended on the gene (Table 1), of 15 s at 95°C for denaturation, 15 s at the annealing temperature of the specific gene (Table 1) and 15 s at 72°C for primer extension. After finishing these cycles a final extension of 5 min at 72°C was performed, followed by cooling to 4°C. A PTC-200 thermocycler (MJ Research, Watertown, MA) was used.

Detection and semi-quantification of RT–PCR products

RT–PCR product (25 μl) with 5 μl of 10 × loading buffer (0.25% (w/v) xylene cyanol and 25 mmol EDTA l–1 in 50% (w/v) glycerin) was loaded on to a 2% (w/v) agarose gel in TBE buffer (90 mmol Tris l–1; 90 mmol borate l–1; 2 mmol EDTA l–1, pH 8.3) containing 0.2 μg ethidium bromide ml–1 and subjected to electrophoresis. The concentration of ethidium bromide in the running buffer and the gel was the same. After electrophoresis at 100 V for 5 min and at 80 V for 40 min, the fragments were visualised on a 312 nm UV transilluminator. A CCD camera (Quantix; Photometrics, Munich) and IP Lab spectrum (IP Lab Gel; Signal Analytics Corporation, Vienna, VA) were used to digitize the image of the gel. Densitometric scanning using a computer-assisted image analysis system (IP Lab Gel; Signal) was used to quantify the signal intensity of each band. The relative abundance of the mRNA of the different genes was estimated by dividing the intensity of the band of the gene of interest by the intensity of the globin band from the same sample.

The recovery rate of the RNA was estimated for all of the embryos. It was calculated as the ratio between the intensity of the globin bands with and without RNA extraction. On average, 42% of the poly(A)+ RNA of the blastocyst was extracted, which is similar to percentages obtained by Wrenzycki et al. (1999).

Statistical analysis

Rates of blastocyst formation were analysed with logistic regression and P ≤ 0.05 was considered significant. For the relative abundance of the gene transcripts, an analysis of variance was performed using the nlme library of S-PLUS 2000 with random cow effects (Pinheiro and Bates, 2000). Data are presented as mean ± SEM.

Results

Response to superovulation treatment (pre-LH and post-LH groups)

No LH surge was observed in peripheral blood of cows in the pre-LH group (Fig. 2). The cows that were treated with GnRH (post-LH group) showed a clear LH surge at 2 h after the administration of GnRH; in cows from which embryos were collected for RT–PCR, maximum LH concentration was 24.5 ± 2.5 μg l–1 (n = 7; Fig. 2).

Signs that an LH surge had occurred before the implant was removed were observed in four cows: cumulus cells were moderately expanded in two cows from the pre-LH group and two cows of the post-LH group had already ovulated. Oocytes from these animals were excluded from the experiment.

The superovulation response in the pre-LH and the
post-LH groups was 30.3 ± 10.5 (mean ± SD, n = 6) and 23.1 ± 10.0 (mean ± SD, n = 7) follicles > 8 mm on average per cow, respectively.

Oocyte recovery and in vitro culture

In the pre-LH group, 166 COCs were collected from 182 follicles of preovulatory size from six cows (recovery rate 91.2%). COCs that did not have an intact multi-layered compact cumulus investment or that already showed cumulus expansion were excluded (n = 26) from analysis. In the post-LH group, 136 oocytes were collected from 162 follicles of preovulatory size from seven cows (recovery rate 84.0%). Denuded oocytes and COCs not showing cumulus expansion (n = 20) were excluded. In the in vitro group, 333 oocytes were collected and used for IVM, IVF and IVC.

Cleavage rates on day 4 of culture were similar in the three IVC groups (average 75%; Table 2). On day 7 after

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer sequence and positions</th>
<th>Number of cycles</th>
<th>Annealing temperature (°C)</th>
<th>Fragment size (bp)</th>
<th>Sequence references (EMBL accession number)</th>
</tr>
</thead>
</table>

Table 1. Primers used for PCR
insemination, most (60–80%) of the blastocysts had already formed. Rates of blastocyst formation at day 7 were significantly (P < 0.05) different in the pre-LH, post-LH and in vitro groups. The overall rate of blastocyst formation was significantly (P < 0.05) higher in the pre-LH group (50%; Table 2) than in the post-LH (31.0%) and in vitro groups (26.4%). Most of the blastocysts in the three IVC groups were already expanded: 64.3, 52.7 and 54.5% for pre-LH, post-LH and in vitro group embryos, respectively.

Relative abundance of genes in single blastocysts derived from different oocyte origins

For RT–PCR products (Fig. 3), the bands represent gene transcripts derived from 0.1–0.4 parts of a bovine blastocyst. As negative controls, RNA or reverse transcriptase was omitted during the reverse transcription reaction. No amplified products were found at any time in the negative controls during these experiments.

![Fig. 3](image-url) **Fig. 3.** Expression of six genes important to development as detected by RT–PCR in a 0.1 to 0.4 proportion of a single bovine blastocyst; digitalized image after electrophoresis on an agarose gel containing ethidium bromide. PCR products are indicated at the top for heat shock protein 70.1 (HSP), poly(A) polymerase (polyA), glucose transporter 1 (Glut-1), desmocollin 2 (Dc-2), E-cadherin (E-cad) and plakophilin (plako), and for the RNA extraction control globin (– Ext: without extraction; + Ext: with extraction). Expected fragment sizes are indicated at the bottom; bpl: 100 bp ladder as marker for fragment size.

![Fig. 4](image-url) **Fig. 4.** Relative abundance of transcripts of six genes important to development as detected by semi-quantitative RT–PCR in single bovine blastocysts originating from oocytes subjected to different modes of maturation. Embryos were derived from: (i) immature oocytes from 3–8 mm follicles after IVM, IVF and IVC (in vitro group;), (ii) prematures from preovulatory sized, FSH-stimulated follicles after IVM, IVF and IVC (pre-LH group;); (iii) prematured oocytes from preovulatory sized, FSH-stimulated follicles after in vivo maturation, IVF and IVC (post-LH group;); and (iv) similar oocytes to those in (iii) but also with fertilization and development entirely in vivo (in vivo group;). Bars represent the mean ± SEM relative abundance of a number of blastocysts as indicated in the bars; each value was the mean of at least five different cows. Asterisks indicate difference from all groups: *P < 0.1; **P < 0.05.

Table 2. Rates of blastocyst formation after in vitro culture (IVC) and IVF of in vivo- or in vitro-matured oocytes obtained from preovulatory follicles from FSH-stimulated cows compared with the rates of in vitro-matured oocytes from 3–8 mm follicles

<table>
<thead>
<tr>
<th>Number of oocytes after IVF, day 1*</th>
<th>Number of cleaved embryos on day 5 (%)</th>
<th>Number of blastocysts</th>
<th>Day 7 † (%)</th>
<th>Day 8 (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-LH (after in vitro maturation)</td>
<td>140</td>
<td>123 (87.9)</td>
<td>51 (36.4)a</td>
<td>19 (13.6)a</td>
<td>70 (50.0)a</td>
</tr>
<tr>
<td>Post-LH (after in vivo maturation)</td>
<td>116</td>
<td>85 (73.3)</td>
<td>29 (25.0)b</td>
<td>7 (6.0)a</td>
<td>36 (31.0)b</td>
</tr>
<tr>
<td>3–8 mm follicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After IVM</td>
<td>333</td>
<td>233 (70.0)</td>
<td>55 (16.5)c</td>
<td>33 (9.9)a</td>
<td>88 (26.4)b</td>
</tr>
</tbody>
</table>

*Oocytes were collected from preovulatory follicles before (pre-LH) or 24 h after (post-LH) an induced LH surge. Day 1 is start of IVC. Percentages of cleavage and blastocyst formation are calculated relative to the number of (non)-fertilized oocytes at day 1 of IVC. †At day 7 of IVC, blastocysts were collected and stored for RT–PCR, and morulae and early blastocysts were cultured for an additional day and collected as blastocysts at day 8. a–c Values with different superscripts within a column are significantly different (P < 0.05).
The relative abundance of Glut-1 was significantly ($P < 0.05$) higher in the in vivo group compared with the pre-LH, post-LH and in vitro groups (Fig. 4). The relative abundance of desmocollin 2 and plakophilin tended to be higher in the fourth group (in vivo) compared with the other three groups, although this difference was not significant. No significant differences were detected in any of the gene transcripts between the three in vitro groups (in vitro, pre-LH and post-LH groups; Fig. 4).

Discussion

In the present study the effects of different maturation regimens of bovine oocytes on the relative abundance of transcripts from six genes important in development in blastocysts were investigated. In vitro conditions have profound effects on the patterns of expression of a range of gene transcripts in bovine and murine embryos (Ho et al., 1994, 1995; Niemann and Wrenzycki, 2000). The present data show for the first time that prematuration–maturation does not necessarily affect the relative abundance of the genes and indicate that in vitro maturation may not be the critical factor contributing to variation in mRNA content between in vitro- and in vivo-derived embryos. The differences between in vivo- and in vitro-derived blastocysts were probably not due to variation in the rates of development. In parallel experiments, blastocysts derived in vivo and in vitro as well as those derived from pre-LH and post-LH groups had similar numbers of cells.

The semi-quantitative RT–PCR assay used in the present study provides sensitive and highly reproducible results from both pooled and single bovine embryos. It has constantly been updated and increased in sensitivity (Wrenzycki et al., 1999, 2001a,b, 2002). The validity of the assay has been demonstrated previously and revealed efficient amplification of both the globin standard and the RNA of choice (Wrenzycki et al., 2000). Its accuracy compares favourably with current real-time RT–PCR techniques (Stenman et al., 1999). Similar to endpoint RT–PCR, real-time RT–PCR uses standards against which the amounts of mRNA of the genes of choice are compared (Freeman et al., 1999; Bustin, 2000; Steuerwald et al., 2000). The densitometric analysis of ethidium bromide-stained agarose gels described in the present study is a well-established and sensitive enough approach to detect even subtle differences in amounts of mRNA in different biological materials (Grover et al., 2001; Ringhoffer et al., 2001). The degree of variation with this approach is rather small (Grover et al., 2001), but can be further decreased by an optimized real-time RT–PCR protocol (Bustin, 2000). We have calculated the number of replicates necessary to obtain statistically significant differences to accommodate any inherent variability. This approach has recently proven valid for single bovine cloned and IVP embryos (Wrenzycki et al., 2001b, 2002). The differences in patterns of expression described previously were related to the increased incidence of the large offspring syndrome in offspring derived from IVP or cloned bovine embryos (Niemann and Wrenzycki, 2000; Niemann et al., 2002). Even subtle changes in patterns of expression of specific genes were shown to have marked biological effects such as predisposition to tumourigenesis (Yan et al., 2002) and may be causally involved in large offspring syndrome.

The mRNAs measured in blastocysts in the present study were probably transcribed during embryonic development and did not represent mRNAs that remained from the maternal mRNA pool. Plakophilin, desmocollin 2 and E-cadherin are predominantly expressed from the morula stage onwards (Wrenzycki et al., 1999, 2001a). The mRNAs of glucose transporter 1 and poly(A) polymerase were found throughout early development up to the blastocyst stage, which is indicative of both maternal and embryonic origin, with a burst after maternal–embryonic transition of genomic activity (Wrenzycki et al., 1999). The different amounts of mRNA observed in blastocysts derived from oocytes matured in vitro or in vivo in the present study are supported by findings from histological and biochemical studies. Embryos developed in vitro frequently form the blastocoel earlier than in vivo, without proper compaction, and have fewer cells than do in vivo-grown embryos (Van Soom et al., 1997b). Desmocollin 2 and plakophilin molecules are involved in intercellular communication structures and compaction (Collins et al., 1995). The lower expression of desmocollin 2 and plakophilin observed in blastocysts of the in vitro group might explain the impaired compaction in embryos produced in vitro. Differences in metabolism between bovine embryos produced in vitro and those developed in vivo have been detected, especially with regard to lactate production and glucose metabolism (Khurana and Niemann, 2000). The decreased amount of glucose transporter 1 in in vitro embryos found in the present study probably reflects differences in energy metabolism between blastocysts developed in vitro and in vivo.

A novel aspect of the present study was related to expression of the panel of genes in blastocysts derived from prematured oocytes (pre-LH group) and oocytes matured in vivo (post-LH group). The results of the present study indicate that blastocysts developed from pre-LH and post-LH oocytes are not different with respect to patterns of gene expression from those derived from oocytes that lacked a period of prematuration and in vivo maturation. Nevertheless, the mode of oocyte prematuration and maturation may affect the developmental competence after cleavage into morulae and blastocysts (Hyttel et al., 1997).

The rate of blastocyst development in the pre-LH group was higher than in the in vitro group, which is in accordance with earlier observations and confirms the stimulatory effects of prematuration on oocyte developmental competence. The rate of blastocyst development in the post-LH group differed from recent findings in which exceptionally high rates of blastocyst development were found (Van de Leemput et al., 1999; Hendriksen et al., 2000). When two cows with low rates of blastocyst development were excluded from analysis, the rate of
blastoct development of the post-LH group increased to approximately 45% and the relative abundance of the genes did not change significantly. The high proportion of well-expanded blastocysts indicates the inherent high capacity of the blastocysts for development.

The results of the present study indicate that in vitro maturation -- as the first step in IVP of embryos -- has improved significantly (Bavister, 1995; Keskinkepe and Brackett, 1996). Blastocysts derived from oocytes that were matured differently, but cultured identically, did not show significant differences with respect to the panel of gene transcripts investigated in the present study. The differences may therefore be related to the in vitro conditions imposed on fertilized oocytes. This contention is supported by previous findings for sheep and cattle, in which zygotes were subjected to different culture conditions and developed abnormal phenotypes (Young et al., 1998; Sinclair et al., 2000). Nevertheless, it could be useful to analyse gene expression in oocytes immediately after completing different maturation protocols. However, this would require a different panel of gene transcripts to be informative, including genes involved in cell cycle regulation, meiotic competence and cumulus expansion. Little is known about transcriptional activity in bovine oocytes. Duration of oocyte maturation and quality of COCs affected transcription of cyclooxygenase-2 and various prostaglandin E receptors in in vitro culture (Calder et al., 2001). Furthermore, it would be interesting to determine rates of transcription in the embryos in which development was arrested at an early stage and thus did not reach the blastocyst stage.

In conclusion, the difference in the relative abundance of the six gene transcripts found between blastocysts produced in vitro and in vivo can probably be attributed to embryo culture conditions after maturation and fertilization. Prematuration and maturation are thought to be critically involved in the ability of the oocyte to support early development (Sirard and Blondin, 1996; Hyttel et al., 1997; Rizos et al., 2002). Whether blastocysts derived from oocytes matured in vivo or in vitro differ with regard to quality has yet to be determined. It should be noted that this study was limited to a panel of six gene transcripts and it is possible that other gene transcripts would behave differently. cDNA array technology enables simultaneous determination of a potentially unlimited number of gene transcripts and it has already been applied to the diagnosis of various forms of human cancer, human autoimmune diseases and the characterization of murine embryonic stem cells (Alizadeh et al., 2000; Kelly and Rizzino, 2000; Rogge et al., 2000). A prototype of a suitable cDNA array for single bovine embryos has recently become available (Brambrink et al., 2002) and its broader application will also improve determination of patterns of gene expression in embryos derived from IVP or cloning.

The authors thank D. M. Blankenstein, E. C. Zeinstra and S. Wilkening for technical assistance, and animal handlers and surgery assistants for management of the animals. The authors also gratefully acknowledge J. van de Broek and J. C. M. Vernooy for advice on statistical analysis.

References

Blondin P, Coenen K, Guihault LA and Sirard MA (1997) In vitro production of bovine embryos: developmental competence is acquired before maturation Theriogenology 47 1061–1075

Dieleman SJ and Bevers MM (1987) Effects of monocular antibody against PMSG administered shortly after the preovulatory LH surge on time and number of ovulations in PMSG/PG-treated cows Journal of Reproduction and Fertility 81 533–542

Izadyar F, Zeinstra E, Coelenbrander B, Vanderstichele HM and Bevers MM (1996) In vitro maturation of bovine oocytes in the presence of bovine activin A does not affect the number of embryos Animal Reproduction Science 45 37–45
Memili E and First NL (1999) Control of gene expression at the onset of bovine embryonic development Biology of Reproduction 61 1198–1207
Van Soom A, Boerjan M, Ysebaert MT and de Kruif A (1996) Cell assembly to the inner cell mass and the trophectoderm in bovine embryos cultured in two different media Molecular Reproduction and Development 45 171–182
Van Soom A, Ysebaert MT and de Kruif A (1997b) Relationship between timing of development, morula morphology, and cell accumulation to inner cell mass and trophectoderm in in vitro-produced bovine embryos Molecular Reproduction and Development 47 47–56
Van Wagendonk-de Leeuw AM, Mullaart E, de Roos AP, Merton JS, den Daas JHG, Kemp B and de Ruigh L (2000) Effects of different reproduction techniques: AI, MOET or IVF, on health and welfare of bovine offspring Theriogenology 53 575–597
Viuff D, Rickords L, Offenberg H et al. (1999) A high proportion of bovine blastocysts produced in vitro are mixoploid Biology of Reproduction 60 1273–1278

Viuff D, Hendriksen PJM, Vos PLAM, Dieleman SJ, Bibby BM, Greve T, Hyttel P and Thomsen PB (2001) Chromosomal abnormalities and development kinetics in in vivo developed cattle embryos at days 2 to 5 after ovulation Biology of Reproduction 65 204–208

Young LE and Fairburn HR (2000) Improving the safety of embryo technologies: possible role of genomic imprinting Theriogenology 53 627–648

Received 18 February 2002.
First decision 27 March 2002.
Revised manuscript received 19 April 2002.
Accepted 21 May 2002.