Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro

P. Cetica, L. Pintos, G. Dalvit and M. Beconi*

Area of Biochemistry, School of Veterinary Sciences, University of Buenos Aires, Chorroarin 280, (C1427CWO) Buenos Aires, Argentina

Little is known about the metabolic profile of cumulus–oocyte complexes (COCs) during maturation. The aim of this study was to determine the differential participation of enzymatic activity in cumulus cells and the oocyte during in vitro maturation of bovine oocytes, by measuring the activity of key enzymes involved in the regulation of glycolysis (phosphofructokinase), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase) and lipolysis (lipase). COCs were matured in medium 199 plus 10% (v/v) steer serum for 22–24 h at 39°C in 5% CO₂:95% humidified air. Phosphofructokinase, glucose-6-phosphate dehydrogenase and lipase activities were measured in immature and in vitro matured COCs, denuded oocytes and cumulus cells, respectively. Phosphofructokinase and glucose-6-phosphate dehydrogenase activities (enzymatic units) remained constant during in vitro maturation of COCs, but there was a significant decrease in lipase activity (units) (P < 0.05), as activity in cumulus cells decreased significantly (P < 0.05). For the three enzymes studied, enzyme activity (units) remained unchanged in the oocyte during in vitro maturation. Specific activity increased in the oocyte (P < 0.05) and decreased in cumulus cells as a result of maturation (P < 0.05). In cumulus cells, phosphofructokinase was the most abundant of the three enzymes followed by glucose-6-phosphate dehydrogenase and then lipase (P < 0.05), whereas in the denuded oocyte this order was reversed (P < 0.05). Thus, the metabolism of cumulus cells is adapted to control the flow of metabolites toward the oocyte, which maintains its enzymatic activity even when dissociated from cumulus cells during maturation. The high activity of phosphofructokinase in cumulus cells indicates that glucose is metabolized mainly via the glycolytic pathway in these cells. The greater relative activity of glucose-6-phosphate dehydrogenase recorded in the oocyte indicates that glucose uptake could be directed mainly toward the pentose phosphate pathway. The marked lipolytic activity concentrated in the oocyte indicates an active participation in lipid catabolism during maturation.

© 2002 Society for Reproduction and Fertility
1470-1626/2002

*Correspondence: Area de Química Biológica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarin 280, C1427CWO Buenos Aires, Argentina
Email: beconi@fvet.uba.ar
substrates for bovine oocytes during maturation. Unlike human, equine and rodent oocytes, bovine oocytes contain a large number of lipid droplets, which are associated with the endoplasmic reticulum and mitochondria, so that their redistribution during maturation may be related to possible metabolic changes (Kruip et al., 1983).

Metabolic studies in vitro show that substrate uptake by the oocyte fails to reflect physiological concentrations prevailing during in vivo maturation, which may lead to erroneous interpretations (Barnett and Bavister, 1996); however, there are no data indicating that the abundance of enzymes in the oocyte is modified by substrate concentrations in culture media. Thus, the activity of key enzymes responsible for regulating the rate of a metabolic pathway may be a useful approach to determine the participation of a given metabolic route in the cells studied. Phosphofructokinase is the main enzyme regulating glycolysis, and performs a key function in controlling the pathway rate (Schirmer and Evans, 1990). The pentose phosphate pathway is an alternative pathway for glucose oxidation and is regulated by glucose-6-phosphate dehydrogenase (G6PDH), the activity of which is dependent on NADPH : NADP ratio (Wood, 1986; Clarenburg, 1992a).

There are few studies on key enzymes involved in glucose oxidation pathways during maturation of mammalian oocytes and their findings differ among species. In mouse oocytes, there is no variation in lactate dehydrogenase and G6PDH activities as a result of maturation (Mangia and Epstein, 1975). In rats, an increase in hexokinase, phosphofructokinase and malate dehydrogenase activities were recorded, with a decrease in G6PDH and 6-phosphofructose-1-phosphate pathway (G6PDH) and lipolysis (lipase).

Materials and Methods

Materials

All chemicals used were purchased from Sigma Chemical Company (St Louis, MO), except for medium 199 (Earle’s salts, L-glutamine, 2.2 mg sodium bicarbonate l⁻¹), which was purchased from GibCO BRL (Grand Island, NY).

Recovery and classification of COCs

Bovine ovaries were obtained from an abattoir within 30 min of slaughter and kept warm (30°C) during the 2 h journey to the laboratory. Ovaries were washed in physiological saline containing 100 000 iu penicillin l⁻¹ and 100 mg streptomycin l⁻¹. COCs were recovered by aspiration of antral follicles (2–5 mm in diameter) and classified according to the morphology of cumulus cells under a stereomicroscope. Only oocytes that were completely surrounded by compact and thick cumulus were used.

In vitro maturation of oocytes

COCs were cultured in medium 199 supplemented with 10% (v/v) steer serum and 50 mg gentamicine sulphate l⁻¹ under paraffin oil at 39°C for 22–24 h in a atmosphere of 5% CO₂ with humidified air. Meiotic maturation was evaluated using 10% of the samples. Oocytes were placed in a hypotonic medium of 10 g sodium citrate l⁻¹ and 100 000 iu penicillin l⁻¹ at 37°C for 15 min, fixed on a slide with acetic acid–alcohol (Tarkowski, 1966), stained with 5% (v/v) Giemsa for 15 min and observed under a light microscope at ×100 and ×400 magnifications. Oocytes were considered mature when metaphase II chromosome configuration was present.

Denuded oocytes

Immature or matured oocytes were denuded by vortex agitation in sterile physiological saline for 1 min and then collected with a pipette to separate the oocytes from cumulus cells. Denuded oocytes were washed twice in the same medium to eliminate residual cumulus cells.

Preparation of enzymatic extract

Immature or in vitro matured COCs and denuded oocytes were suspended in distilled water, frozen–thawed twice, centrifuged at 1000 g for 20 min at 4°C and enzyme activities determined in the supernatants. Residual cumulus cells suspended in physiological saline were processed in the same way.

Extracts were prepared so that the final amount of each enzyme ensured linear behaviour during activity measurement, thus enabling absorbance per min variation to be calculated.
Determination of phosphofructokinase activity

Phosphofructokinase activity was determined in extracts of immature or in vitro matured COCs (n = 60) and from denuded oocytes (n = 250). Activity was measured in a spectrophotometer at 340 nm for 2 min at 37°C in 95 mmol Tris–HCl buffer 1–1, pH 8.2, 100 mmol MgCl2 1–1, 2 mmol NADH 1–1, 100 mmol NH4Cl 1–1, 20 mmol fructose-6-phosphate 1–1, 1 mmol ATP 1–1 and 1 mmol AMP 1–1 in the presence of (1) 70 mg aldolase 1–1, (2) 3 mg phosphotriose isomerase 1–1 or (3) 30 mg glycerol-3-phosphate dehydrogenase 1–1 (Kotlarz and Buc, 1982). An enzymatic unit of phosphofructokinase is defined as the quantity of enzyme that catalyses the formation of 1 μmol fructose-1,6-biphosphate min1 = the oxidation of 2 μmol NADH min1.

\[
\text{PFK Fructose-6-phosphate + ATP} \rightarrow \text{fructose-1,6-biphosphate + ADP}
\]

(1) Fructose-1,6-biphosphate ↔ glyceraldehyde-3-phosphate + dihydroxyacetone phosphate

(2) Glyceraldehyde-3-phosphate ↔ dihydroxyacetone phosphate

(3) 2 Dihydroxyacetone phosphate + 2NADH ↔ 2 glycerol-3-phosphate + 2NAD

Determination of G6PDH activity

G6PDH activity was determined in extracts of immature or in vitro matured COCs (n = 35) and from denuded oocytes (n = 100). Activity was measured in a spectrophotometer at 340 nm for 10 min at 30°C in 40 mmol glycine buffer 1–1, pH 7.5, 12.5 mmol MgCl2 1–1, 1.5 mmol NADP 1–1, 12.0 mmol maleimide 1–1 and 1.05 mmol glucose-6-phosphate 1–1 (Kornberg and Horecker, 1955; Lohr and Waller, 1974). An enzymatic unit of G6PDH is defined as the quantity of enzyme that catalyses the reduction of 1 μmol NADP min1.

\[
\text{G6PDH Glucose-6-phosphate + NADP} \rightarrow \text{6-phosphogluconolactone + NADPH}
\]

Determination of lipase activity

Lipase activity was determined in extracts of immature or in vitro matured COCs (n = 40) and from denuded oocytes (n = 100). Activity was measured in a spectrophotometer at 550 nm for 2 min at 37°C in 26 mmol Tris–HCl buffer 1–1, pH 8.0, 0.825 mmol 1,2-diacylglyceride 1–1, 1.5 mmol sodium N-ethyl-N-(2-hydroxy-3-sulphopropyl)-m-toluidine 1–1, 0.5 mmol ATP 1–1, 4.0 mmol cholic acid 1–1, 9.0 mmol deoxycholate 1–1, 1.5 mmol 4-aminoantipirine 1–1 and 0.5 mg sodium azide ml–1, in the presence of 30 000 U colipase 1–1, (1) 650 U monoacylglyceride lipase 1–1, (2) 1000 U glycerol kinase 1–1; (3) 30 000 U glycerol-3-phosphate oxidase 1–1 and (4) 1000 U peroxidase 1–1, using 240 U lipase solution 1–1 as standard (Imamura et al., 1989).

An enzymatic unit for lipase is defined as the quantity of enzyme that catalyses the production of 1 μmol fatty acid min1.

\[
\text{Lipase 1,2-Diacylglyceride} \rightarrow 2\text{-monoacylglyceride + fatty acid}
\]

(1) 2-Monoacylglyceride → glycerol + fatty acid

(2) Glycerol + ATP → glycerol-3-phosphate + ADP

(3) Glycerol-3-phosphate + O2 → dihydroxyacetone phosphate + H2O2

(4) H2O2 + 4-aminoantipyrine + sodium N-ethyl-N-(2-hydroxy-3-sulphopropyl)-m-toluidine → quinone diimine dye + 4H2O

Determination of total proteins

Total protein concentrations were determined in enzymatic extract supernatants using the method described by Lowry et al. (1951).

Experimental design and statistical analysis

Enzymatic activity was expressed as enzymatic units and specific activity. Enzymatic units were expressed in units per COC, denuded oocyte or cumulus. Determination of total proteins in enzymatic extracts enabled a comparison of the enzymatic activity between denuded oocytes and cumulus cells expressed in U per μg protein (specific activity). Data were expressed as means ± SEM. Intra-assay and interassay variability were estimated according to Rodbard (1974) and expressed as coefficients of variation.

The enzymatic activity of each enzyme in COCs matured in vitro was determined by comparing immature and matured COCs using the Student’s t test. Activities in denuded oocytes and cumulus cells arising from immature and matured COCs were compared in a 2 × 2 factorial design to evaluate the enzymatic activity contribution by either type of COC cell.

Statistical analyses of meiotic maturation rates were made by chi-squared analysis.

A P value < 0.05 was considered significant.

Results

In samples used to evaluate meiotic maturation, the percentage of in vitro maturation was 80–85%.

Phosphofructokinase activity expressed in enzymatic units remained constant in COCs during in vitro maturation (immature: (1.21 ± 0.17) × 104, matured: (1.20 ± 0.13) × 104, in contrast to the decrease observed in specific activity (immature: (1.54 ± 0.21) × 104, matured: (0.44 ± 0.05) × 104; P < 0.05) (n = 10 for each value). Enzymatic units remained constant in the oocyte and in the cumulus during in vitro maturation; the cumulus reached on average 102 times more enzymatic units than the oocyte (P < 0.05). Specific activity increased in the oocyte (P < 0.05) and diminished in cumulus cells during in vitro maturation.
(Fig. 1). (a) Phosphofructokinase (PFK) activity in □ denuded oocytes and □ cumulus cells from immature and in vitro matured cumulus-oocyte complexes (COCs). Activity is measured (a) in units per denuded oocyte or cumulus and (b) as specific activity (units g⁻¹ protein). Values are means ± SEs of ten replicates. Within each part of the figure: □ bars with different superscripts are significantly different (P < 0.05); □ bars with different superscripts are significantly different; *significantly different from PFK activity of corresponding denuded oocyte (P < 0.05).

(Fig. 2). (a) Glucose-6-phosphate dehydrogenase (G6PDH) activity in □ denuded oocytes and □ cumulus cells from immature and in vitro matured cumulus-oocyte complexes (COCs). Activity is measured (a) in units per denuded oocyte or cumulus and (b) as specific activity (units g⁻¹ protein). Values are means ± SEs of 10–11 replicates. Within each part of the figure: □ bars with different superscripts are significantly different (P < 0.05); □ bars with different superscripts are significantly different; *significantly different from G6PDH activity of corresponding denuded oocyte (P < 0.05).

(P < 0.05); however, activity was always higher in cumulus cells (P < 0.05; Fig. 1).

G6PDH activity expressed in units did not change in COCs during in vitro maturation (immature: (6.34 ± 0.74) × 10⁻⁵, matured: (6.64 ± 0.61) × 10⁻⁵, in contrast to the decrease observed in specific activity (immature: (7.78 ± 0.88) × 10⁻⁵, matured: (2.68 ± 0.24) × 10⁻⁵, P < 0.05) (n = 14 for each value). Enzymatic units remained constant in the oocyte and cumulus during in vitro maturation; the cumulus reached on average 14 times more enzymatic units than the oocyte (P < 0.05). Specific activity increased in the oocyte (P < 0.05) and diminished in cumulus cells (P < 0.05; Fig. 2).

Lipase units (immature: (3.13 ± 0.24) × 10⁻⁵, matured: (2.00 ± 0.13) × 10⁻⁵) and its specific activity (immature: (4.06 ± 0.30) × 10⁻⁵, matured: (0.88 ± 0.06) × 10⁻⁵) decreased significantly in COCs during in vitro maturation (P < 0.05) (n = 10 for each value). Enzymatic units diminished significantly in the cumulus during in vitro maturation (P < 0.05), but remained constant in the oocyte. Immature cumulus enzymatic units were twofold higher than in the oocyte (P < 0.05) and those of matured cumulus decreased to similar values. Specific activity increased in the oocyte (P < 0.05) and decreased in cumulus cells (P < 0.05); however, activity was always higher in the oocyte during maturation (P < 0.05; Fig. 3).

Repeatability of data for enzymatic units and specific activity were similar in COCs, denuded oocytes and cumulus cells for each enzyme: phosphofructokinase; intra-assay coefficient of variation = 25–40% and interassay coefficient of variation = 0–30%; G6PDH: intra-assay coefficient of
variation = 24–40% and interassay coefficient of variation = 0–23%; lipase: intra-assay coefficient of variation = 10–40% and interassay coefficient of variation = 0–25%.

For each enzyme studied, the average value was calculated between immature and matured cumulus enzymatic units and between matured cumulus and denuded oocyte enzymatic units. Average values for the three enzymes studied were then compared to establish the relationship between enzymatic activities in each type of cell. In cumulus cells, phosphofructokinase was the most abundant enzyme followed by G6PDH and then lipase (P < 0.05), whereas in the denuded oocyte this order was reversed (P < 0.05; Fig. 4). The comparison was not expressed for specific activities because the relationship is equivalent to the relationship expressed as enzymatic units.

Discussion

The activities of phosphofructokinase and G6PDH expressed as units per COC did not change during maturation, as activity of both denuded oocytes and cumulus cells did not vary during maturation. The amount of protein present in bovine cumulus cells increases gradually during the 24 h of *in vitro* maturation, possibly because of the increase in the number of cumulus cells (Wu et al., 1996; Cetica et al., 2001). However, a slight but significant decrease in total protein concentration in extracts of denuded bovine oocytes was reported by Cetica et al. (2001), and a decrease in the rate of protein synthesis by Wu et al. (1996) and Gandolfi (1998). These findings explain the decrease in cumulus cells and the increase in denuded oocyte specific

Fig. 3. (a) Lipase activity in (■) denuded oocytes and (□) cumulus cells from immature and *in vitro* matured cumulus–oocyte complexes (COCs). Activity is measured (a) in units per denuded oocyte or cumulus and (b) as specific activity (units µg⁻¹ protein). Values are means ± SEMs of 10 replicates. Within each part of the figure: ab bars with different superscripts are significantly different (P < 0.05); abc bars with different superscripts are significantly different; *significantly different from lipase activity of corresponding denuded oocyte (P < 0.05).

Fig. 4. Comparison between phosphofructokinase (PFK), glucose-6-phosphate dehydrogenase (G6PDH) and lipase units in (a) cumulus and (b) denuded oocytes. Values are the average enzymatic units of immature and matured cumulus and denuded oocytes. Values are means ± SEMs of 20–22 replicates. abc Bars with different superscripts are significantly different (P < 0.05). def Bars with different superscripts are significantly different (P < 0.05).
activity recorded for both enzymes during maturation. Therefore, it may be inferred that the enzymatic activity of cumulus cells would decrease gradually when cumulus expansion occurs during maturation. The enzymes studied would not be involved in the detected loss of oocyte proteins, indicating that the gamete maintains its enzymatic activity even when dissociated from cumulus cells during maturation.

The low phosphofructokinase activity observed in the denuded oocyte indicates a minor participation of the glycolytic pathway in the bovine gamete, which is in agreement with the reduced amount of phosphofructokinase transcript detected in human oocytes (El Mouatassim et al., 1999b). Although enzyme activity was low in the oocyte, it was still detectable, which indicates that the difficulty in using glucose could depend not only on low enzyme concentration but also on regulatory allosteric mechanisms, or on the reported decrease in glucose transporter GLUT-1 (Lequarré et al., 1997). On average, bovine cumulus cells displayed 102 times more phosphofructokinase units than did the oocyte and specific activity remained very high in comparison with that of the denuded oocyte during maturation, indicating that this regulatory glycolytic pathway enzyme plays a key role in the metabolism of these cells. These results support the contention that cumulus cells could catabolize glucose by the glycolytic pathway, supplying pyruvate or lactate to the oocyte as oxidative substrates (Cetica et al., 1999b).

Rieger and Loskutoff (1994) suggested that the activities of the glycolytic and pentose phosphate pathway are low in the bovine oocyte during maturation because of limited glucose uptake by the gamete. However, the results of the present study indicate that G6PDH activities (units) in the cumulus are on average 14 times greater than in the denuded oocyte, a much smaller difference than for phosphofructokinase. Besides, G6PDH activity in the denuded oocyte was on average almost fourfold higher than the activity observed for phosphofructokinase, which possibly denotes a greater relative involvement of the pentose phosphate pathway than of the key glycolylysis enzyme in the gamete. In support of this finding, rat oocytes also have higher G6PDH activity than phosphofructokinase activity (Tsutsumi et al., 1992). These findings are in agreement with reports that glucose uptake by bovine oocytes during in vitro maturation are mainly metabolized by the pentose phosphate pathway (Javed and Wright, 1991; Krisher and Bavister, 1998). A decrease in maturation was observed in mouse COCs when using inhibitors of NADP-dependent enzymes acting by the pentose phosphate pathway, implying that glucose metabolism by this pathway is essential for meiotic induction (Downs et al., 1998; Downs and Uetcht, 1999). G6PDH in cumulus cells could provide NADPH for the synthesis of structural lipids in these cells with high replication activity or to transfer NADPH to the oocyte for its own reductive pathways. In the oocyte, NADPH released by cumulus cells and NADPH produced by the high G6PDH activity would be necessary for the synthesis of lipids and the regeneration of reduced glutathione. Indeed, glutathione synthesis occurs during bovine oocyte maturation and may play a leading role in sperm nuclear decondensation during fertilization (Sutovsky and Schatten, 1997).

Differences in phosphofructokinase and G6PDH activities during in vitro maturation of rodent (Tsutsumi et al., 1992) versus bovine oocytes may be observed, indicating that the gamete displays a differential metabolism among species and components of maturation media should be adapted to the species under study. In a comparative analysis, differences have also been observed between metabolic enzyme activities in mouse and human oocytes (Chi et al., 1988).

Among the enzymes studied, there was a decrease in enzymatic activity expressed as units per COC only for lipase as a result of in vitro maturation and, therefore, an even more marked decrease was observed when expressed as specific activity. The decrease in activity of lipase in cumulus cells seems to be responsible for the decrease in lipase activity observed in COCs, indicating that the lipolytic function of cumulus cells decreases rapidly when cumulus cells are separated from the oocyte. During the growth stage and at the start of bovine oocyte maturation, cumulus cells may supply fatty acids to the oocyte as a result of lipase activity, as described in follicular cells of non-mammalian species (Benson et al., 1975; Van Antwerpen et al., 1998). Kim et al. (2001) suggested that serum lipids and fatty acids may be incorporated into the oocyte cytoplasm during in vitro maturation. Specific activity of lipase in both immature oocytes and oocytes that were matured in vitro was higher than in cumulus cells, in contrast to observations on key enzymes of glucose catabolism, indicating a greater involvement of the enzyme in the gamete. The availability of lipid reserves and of lipase activity would enable the oocyte to use lipids as oxidative substrates after it is separated from cumulus cells during maturation. These data appear to be linked to the decrease in triglyceride content recorded during in vitro maturation of bovine oocytes (Ferguson and Leese, 1999; Kim et al., 2001). In humans and cows, palmitic acid is the most abundant fatty acid in the oocyte and its main function is to provide energy (Matorras et al., 1998; Kim et al., 2001).

In conclusion, the findings from the present study indicate that the metabolism of cumulus cells is adapted to control the flow of metabolites toward the oocyte. On dissociation from cumulus cells, the oocyte appears to maintain the necessary enzymatic activities for its metabolic requirements during maturation. The high activity of phosphofructokinase in cumulus cells could indicate a major participation of the glycolytic pathway to supply substrates to the oocyte. The greater relative activity of G6PDH in the oocyte indicates that glucose could be directed mainly toward the pentose phosphate pathway for NADPH production. In turn, the marked lipolytic activity of the oocyte indicates active lipid catabolism during maturation.

This work was supported by a grant from the University of Buenos Aires. The authors thank Japanese International Cooperation Agency (JICA) for technology transfer and equipment, Deltacar, La Foresta and El Rioplatense abattoirs for ovaries, Astra Laboratories
for ultra-pure water, S. Paganiits Llanes for his technical assistance and L. Marangunich for her statistical suggestions.

References

Krischer R and Bavister B (1998) Responses of oocytes and embryos to the culture environment Theriogenology 49 103–114

Mangia F and Epstein C (1975) Biochemical studies of growing mouse oocytes: preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities Developmental Biology 45 211–220

Schriner T and Evans P (1990) Structural basis of the allosteric behaviour of phosphofructokinase Nature 343 140–145

Sutovsky P and Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization Biology of Reproduction 56 1503–1512

Tarkowski A (1966) An air-drying method for chromosome preparations from mouse eggs Cytogenetics 5 194–400

Received 5 April 2002. First decision 22 May 2002. Revised manuscript received 22 July 2002. Accepted 9 August 2002.