The \(\text{Fec}^B \) (Booroola) gene acts at the ovary: in vivo evidence

B. K. Campbell\(^1\), D. T. Baird\(^2\), C. J. H. Souza\(^2\) and R. Webb\(^3\)

\(^1\)School of Human Development, University of Nottingham, Floor D East Block, Queen’s Medical Centre, Nottingham NG7 2UH, UK; \(^2\)Department of Obstetrics and Gynaecology, University of Edinburgh, 38 Chalmers Street, Edinburgh EH3 9EW, UK; and \(^3\)School of Biomedical Science, Sutton Bonnington Campus, University of Nottingham, Leicestershire LE12 5RD, UK

The aim of this study was to differentiate between pituitary and ovarian actions of the \(\text{Fec}^B \) gene by measuring the ovarian response to a standardized treatment with gonadotrophins designed to mimic the changes in FSH and LH that occur in the follicular phase of the ovarian cycle in ewes, with (\(\text{Fec}^B/^- \), \(n = 6 \)) and without (\(\text{Fec}^{+/+} \), \(n = 9 \)) the gene, that were rendered hypogonadotrophic by pretreatment with a potent antagonist of GnRH. Ewes with ovarian autotransplants were used to facilitate the assessment of follicular function by the collection of ovarian venous blood and ultrasonography. The gonadotrophin regimen resulted in concentrations of FSH and LH that were similar between genotypes. Follicular development and ovulation occurred in all animals, and patterns of secretion of oestradiol, androstenedione and inhibin A were normal. Despite these endocrine similarities, the antral follicle population stimulated by FSH infusion retained the characteristic genotypic difference with the ovaries of \(\text{Fec}^{+/+} \) animals containing a range of follicle sizes with decreasing proportions of small (< 3.5 mm in diameter) and medium (3.5–4.5 mm in diameter) follicles as well as large follicles (> 4.5 mm in diameter), whereas the ovaries of \(\text{Fec}^{B/-} \) ewes contained no follicles of > 4.5 mm in diameter. This genotypic difference was retained after ovulation with gene carriers having more preovulatory follicles/corpora lutea (3.8 ± 0.3) of a smaller diameter (5.3 ± 0.3 mm) than did non-gene carriers (1.7 ± 0.3; 11.4 ± 0.9 mm; \(P < 0.005 \)). As ewes carrying the \(\text{Fec}^B \) gene mutation were able to ovulate more follicles than non-gene carriers, despite identical concentrations and patterns of FSH and LH stimulation, the results of this study support the hypothesis that the \(\text{Fec}^B \) gene acts at the ovary to enhance ovarian sensitivity to gonadotrophic stimulation.

Introduction

The \(\text{Fec}^B \) gene is a single mutation that results in a marked increase in ovulation rate and prolificacy in sheep (Bindon, 1984). This mutation, initially termed Booroola after the name of the farm in South Eastern Australia where sheep carrying the gene were first isolated, has recently been identified as a mutation in the signalling domain of the bone morphogenic protein 1b receptor (Mulsant et al., 2001; Souza et al., 2001; Wilson et al., 2001). However, despite this advance the mechanisms whereby this mutation alters ovarian function in sheep are still unclear.

Early work on Booroola sheep (Bindon, 1984) was hampered by the fact that the only phenotype expressed was ovulation rate and number of offspring in the female, but it soon became clear that the gene responsible segregates as a single gene, or a closely linked series of genes, and that the heterozygote has an ovulation rate intermediate (designated \(F^+ \) with ovulation rate 3–4) between the homozygote (designated \(FF \) with ovulation rate > 4) and wild type (designated \(++ \) with ovulation rate 1–2). Early studies on the ovarian physiology of \(\text{Fec}^B \) gene carriers in Merino sheep indicated that they have smaller preovulatory follicles with fewer granulosa cells and correspondingly smaller corpora lutea than do control Merino sheep (Scaramuzzi et al., 1981; Baird et al., 1982). These initial observations were confirmed and extended by an elegant and comprehensive series of experiments using Romney Marsh ewes carrying the gene by McNatty and colleagues who showed that small antral follicles matured precociously in gene carriers, becoming oestrogenic and developing LH receptors on the membrana granulosa at diameters of 2.5–3.5 mm compared with 4–6 mm in non-gene carriers (Henderson et al., 1985; McNatty et al., 1985, 1986a–c). More recently, the present authors showed that the expression of mRNA for both cytochrome P450 aromatase and the \(\beta \)-subunit of inhibin/activin can be detected in much smaller follicles in \(\text{Fec}^B \) gene carriers compared with controls (Campbell et al., 1997).

Examination of the kinetics of folliculogenesis in \(\text{Fec}^B \) gene carriers during the preovulatory period has been attempted using follicular dissection (McNatty et al., 1985, 1986b), ink labelling (Driancourt et al., 1985) and, more recently, ultrasound imaging in ewes...
with ovarian autotransplants (Souza et al., 1997a). These studies collectively indicate that the differences in the ovulation rate of the FecB gene carriers are not due to differences in the total number of antral follicles, but to an extended recruitment period together with a low incidence of atresia, resulting in the ovulation of a large number of small ovulatory follicles. The smaller size of these ovulatory follicles explains the observation that ovarian secretion of oestradiol (Baird et al., 1982; McNatty et al., 1986b; Souza et al., 1997a), androgen (Souza et al., 1997a) and inhibin A (Souza et al., 1997a) during the preovulatory period and luteal progesterone concentrations (Bindon 1984; McNatty et al., 1985) do not differ among animals with two, one or no copies of the FecB gene. In fact, McNatty et al. (1985) calculated that the total population of granulosa cells in oestrogenic follicles is identical in the different genotypes.

Although precocious development of preovulatory follicles appears to explain the increase in prolificacy in FecB gene carriers, the mechanism behind this early maturation is unclear. As FSH is the primary hormone controlling follicular growth and development, it has been suggested that the FecB mutation may act by either increasing the release of FSH from the pituitary or increasing the sensitivity of follicular cells to FSH within the ovary. Studies designed to test these hypotheses have provided evidence to support both proposals. Initially it was reported that the concentrations of FSH were similar in both carriers and non-carriers of the FecB gene (Bindon et al., 1985) but the development of improved FSH assays saw the publication of a number of papers supporting the hypothesis that high jugular venous FSH concentrations are associated with the FecB gene (Bindon, 1984; McNatty et al., 1987). However, the fact that a number of authors have reported no consistent association between FecB and FSH (B. K. Campbell, unpublished; Boulton et al., 1995; Souza et al., 1997a) casts some doubt on the causality of this relationship. Equally equivocal results have been obtained from studies that have examined this question using hypophysectomized (Fry et al., 1988) or hypothyroidic–pituitary disconnected (HPD) and GnRH-agonist suppressed ewes (Hudson et al., 1999) stimulated with exogenous gonadotrophins. Fry et al. (1988) showed a continued difference in ovulation rate in FecB gene carriers stimulated with equine chorionic gonadotrophin (eCG), but the study of Hudson et al. (1999) concluded that the FecB gene acts at both the pituitary and ovary to stimulate ovulation rate.

Testing the hypothesis that ovarian follicular cells are more sensitive to gonadotrophic stimuli in FecB gene carriers has been complicated by the precocious maturation of ovulatory follicles in gene carriers, as it is difficult to find a satisfactory comparative basis between genotypes. The existing evidence shows that smaller (2.0–4.5 mm in diameter) follicles from FecB gene carriers are more sensitive (in terms of cAMP production) to LH and FSH and have higher aromatase activity than follicles of similar size from control ewes. In contrast, theca and granulosa cell LH binding characteristics and thecal LH-stimulated androstenedione production have not been found to differ according to genotype (McNatty et al., 1985, 1986b,c). Finally, physiological serum-free culture systems that allow gonadotrophin-dependent induction of cellular differentiation in vitro were used to show that granulosa cells from non-differentiated small follicles of <1 mm in diameter from FecB gene carriers are more sensitive in terms of FSH-induced oestradiol production than are follicles of similar size or medium size (1–3 mm in diameter) from non-carriers of the FecB gene (Webb et al., 1995). Thus, the available evidence indicates that the FecB mutation may be acting at both an ovary and pituitary gland.

Campbell et al. (1999) reported the development of a model system to examine gonadotrophic requirements for ovulatory follicle development using ewes with an ovarian autotransplant treated with a potent GnRH-agonist to suppress endogenous gonadotrophins. With this model it has been possible to show that stimulatory regimens of exogenous gonadotrophins designed to mimic the gonadotrophic changes that occur during the luteal–follicular phase transition can result in normal patterns of follicular selection. Specifically, by gradually lowering FSH and, at the same time, increasing LH pulse frequency before the application of an ovulatory stimulus, it is possible to reduce the ovulatory quotient to the normal number (Campbell et al., 1999). In the present study this model was used to examine further the question of the site of action of the FecB gene by suppressing endogenous gonadotrophins in carriers and non-carriers of the gene and stimulating ovulatory follicle development with an identical physiological gonadotrophic regimen designed to mimic the normal luteal–follicular phase transition.

Materials and Methods

Experimental animals

The animals used were Scottish Blackface Merino cross ewes (n = 17) obtained from an experimental flock that had been derived in such a way that the animals differed at the Booroola locus (being either Fec+Fec+ or FecBFecB), but were as similar as possible for the rest of the genome to provide experimental material with little risk of biased comparisons (Haley, 1990). On the basis of pedigree, confirmed by the ovulation rate (OR) of individual animals, the ewes were divided into non-gene carriers (OR 1.7 ± 0.2; designated Fec+/*, n = 9) and gene carriers (OR 5.6 ± 1.1; n = 6 of which four homozygote FecB/FecB and two heterozygote FecB/Fec＋; by pedigree but all classified as FecB/FecB on the basis of OR; designated FecB/－). Collection of ovarian venous blood and monitoring of ovarian follicular development by transdermal ultrasonography was
facilitated by autotransplanting the left ovary and its vascular pedicle to a site in the neck (Goding et al., 1967) and removing the right ovary. The ewes were 3–5 years of age at the time of surgery and 4–6 years of age at the time of this experiment. A detailed comparison of the endocrinology and patterns of ovarian follicular development in these animals during a normal reproductive cycle has been reported by Souza et al. (1997a).

The experiment was conducted during the mid-breeding season and before the start of intensive blood sampling, the animals were penned indoors under natural lighting and fed a maintenance diet consisting of concentrates and hay ad libitum. The anoestrous condition of the animals during the GnRH antagonist suppression period was verified by including a ram fitted with a marking harness in the flock.

On the day before the start of frequent blood sampling all animals had a Silastic cannula (1.6 mm inside diameter × 3.2 mm outside diameter; Dow Corning, Midland, MI) inserted into the jugular vein cranial to the ovarian jugular venous Anastomosis for sampling ovarian venous blood. Two smaller Silastic cannulae (0.8 mm inside diameter × 1.7 mm outside diameter; Dow Corning) were inserted into the contralateral jugular vein for infusion of FSH and LH as described by Campbell et al. (1999). After cannulation, the animals were placed in metabolism crates in ventilated rooms under natural lighting and treated prophylactically with antibiotics (3 ml i.m. per 3 days; Clamoxil, SmithKline Beecham, Surrey) and heparin (5000 i.u. i.v. per 12 h; Leo Laboratories, Aylesbury). The animals had been habituated to the housing conditions and frequent handling before the start of the experiment.

Hormone preparations

The FSH used was NIADDK-oFSH-17, which has a biological potency of 20 U mg⁻¹ with one unit having an activity of 1 mg NIH-FSH-S1 and LH contamination of 0.04 times NIH-LH-S1 per mg. The LH used was NIADDK-oLH-26, which has a biological potency of 2.3 U mg⁻¹ with one unit having an activity of 1 mg NIH-LH-S1 and FSH contamination of <0.5% by weight. The hCG used for induction of ovulation was obtained from Intervet (Chorulon, Cambridge). All gonadotrophin preparations were dissolved in 0.9% (w/v) sterile saline with 1% (v/v) normal sheep plasma. FSH was infused continuously i.v. via one of the small jugular cannulae using Harvard infusion pumps. LH was administered i.v. via the jugular cannula on the ovarian side in a pulsatile manner using Harvard infusion pumps connected to a timer (2 min infusion at a rate of 1 ml min⁻¹). The GnRH antagonist (GnRHa; [AcDNal¹, DCpa², DTTP³, DArg⁴, Dalα¹⁰] GnRH; donated by the Salk Institute and Centre for Population Research, NICHD) was dissolved in 0.9% (w/v) sterile saline to a concentration of 1 mg ml⁻¹ and administered s.c. (Campbell et al., 1990b, 1999). Progestagen impregnated sponges (medroxyprogesterone acetate; Dunlop, Dumfries) were inserted intravaginally and changed every 10–12 days.

Experimental treatment

A hypogonadotrophic hypogonadal state was induced in all animals by combined 3-week treatment with GnRHa (50 µg kg⁻¹ s.c.) at intervals of 4–6 days and progestagen as described by Campbell et al. (1998). GnRHa treatment was continued throughout the experimental period. The experimental design used a gonadotrophin regimen developed by Campbell et al. (1999), which was designed to mimic the luteal–follicular phase transition (Fig. 1). All animals received FSH as a constant infusion at a rate of 8 µg h⁻¹ for 3 days to stimulate antral follicle development before sponge withdrawal. At the time of sponge withdrawal, the rate of FSH infusion was progressively decreased so that the animals received 6, 4 and 2 µg h⁻¹ for 0–8, 8–16 and 16–24 h after sponge withdrawal, respectively. LH was administered initially as i.v. injections of 2.5 µg at 4 h intervals for the first 3 days of FSH infusion. For the first 12 h after sponge withdrawal the frequency of LH injections was increased to 2 h without changing amplitude but thereafter all animals were treated with more frequent (hourly) injections of 1.25 µg oLH. LH injections were administered by syringe-driven pumps connected to a timer calibrated to deliver the desired dose of LH over 2 min in a volume of 2 ml. Sixty hours after sponge withdrawal, the normal duration of the follicular phase in these animals (Souza et al., 1997a), all ewes received an ovulatory dose of 525 µg oLH combined with 100 i.u hCG administered as an infusion over 6 h.

Collection of blood samples

Jugular venous blood samples were collected by venepuncture every 3–4 days during the 3-week period of downregulation. Over the intensive experimental period, ovarian (5 ml) and jugular (3 ml) venous blood samples were collected at 4 h intervals from the start of gonadotrophin infusion until 10 h after the end of administration of the ovulatory stimulus (76 h after sponge withdrawal; Fig. 1). Thereafter, jugular venous blood samples were collected by venepuncture every 2 days for 12 days for determination of progesterone concentrations to confirm ovulation. In addition, there were three periods when more frequent blood samples were collected at 15 min intervals near LH administration designed to stimulate ovarian steroid secretion: (i) from 30 min before until 2 h after an LH injection given 68 h after the start of gonadotrophin treatment; (ii) for 3 h from 24 to 27 h after sponge withdrawal; and (iii) for 3 h from 48 to 51 h after sponge withdrawal. All
collections of ovarian venous blood every 4 h and every hour during the intensive sampling periods were timed to allow calculation of ovarian hormone secretion rates. The samples of ovarian venous blood taken every 4 h were collected 20–30 min after LH was administered as this is the time taken for maximal steroidogenic responses to LH stimulation (Campbell et al., 1990c). After correcting for the haematocrit (Collett et al., 1973) and jugular contribution (inhibin only), the rate of ovarian secretion of oestradiol, androstenedione and inhibin A was calculated. The blood was centrifuged at 4°C for 30 min at 1800 g and the plasma stored at –20°C before radioimmunoassay.

Ovarian scanning procedure

The diameter of the antral cavity and position of all follicles of >2 mm in diameter in the medial–lateral, dorsal–ventral and cranial–caudal planes were determined every 12 h, as described by Souza et al. (1997a,b) and Campbell et al. (1998) using a combined real-time Aloka 500 ultrasound scanner with a linear 7.5 MHz transducer probe (Dynamic Imaging, Livingston). Animals were scanned at day 6 after the artificial LH surge for the presence of corpora lutea to estimate ovulation rate (Souza et al., 1997b).

Hormone assays

Plasma concentrations of LH, FSH, oestradiol, androstenedione (Campbell et al., 1990a,b) and progesterone (Souza et al., 1997b) were determined using previously described radioimmunoassays. The sensitivity of the assays for LH, FSH, androstenedione, oestradiol and progesterone were 0.2 μg l⁻¹ (NIDDK, oLH, S23), 0.3 μg l⁻¹ (USDA, oFSH, SIAFP-RP2), 175 pmol l⁻¹, 50 pmol l⁻¹ and 380 pmol l⁻¹, respectively. The concentration of inhibin A in ovarian venous plasma was measured by two-site ELISA modified for use in sheep plasma (Souza et al., 1998) with a sensitivity of 30 ng l⁻¹. The intra- and interassay coefficients of variation for all the immunoassays were <12% in the 20–80% effective dose range.

Statistical analysis

Statistical analysis of hormonal profile data was performed by repeated sample analysis of variance and log-transformed data were partitioned on the basis of treatment and time (ANOVA). The characteristics of pulsatile LH secretion were determined using the Munro pulse analysis program (Zaristow Software, West Morham, Haddington, East Lothian). The steroidogenic pulsatile response to an LH pulse was determined by grouping the pulse data from individual profiles around the time of each LH pulse and calculating basal secretion and pulse amplitude. In addition the overall mean secretion of LH and the steroids over the periods of intensive sampling were calculated. Comparisons between treatments on these determinants of pulsatile hormone secretion were made by repeated samples
of approximately 0.5 ng ml⁻¹ and late (SW + 48–51 h) stages of the artificial 'follicular' phase in ewes with ovarian autotransplants that were either wild type (Fec⁺/Fec⁺) or carried the FecB mutation (Fec⁺/FecB).

<table>
<thead>
<tr>
<th>Time window bleed Hormone/genotype</th>
<th>FSH + 3 days</th>
<th>SW + 24–27 h</th>
<th>SW + 48–51 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fec⁺/⁺</td>
<td>FecB⁻/⁻</td>
<td>Fec⁺/⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH (ng ml⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>1.07 ± 0.21</td>
<td>0.94 ± 0.07</td>
<td>1.65 ± 0.29</td>
</tr>
<tr>
<td>Amplitude</td>
<td>2.40 ± 0.33</td>
<td>2.21 ± 0.20</td>
<td>1.99 ± 0.17</td>
</tr>
<tr>
<td>Overall mean</td>
<td>1.40 ± 0.20</td>
<td>1.21 ± 0.13</td>
<td>1.65 ± 0.18</td>
</tr>
<tr>
<td>Log oestradiol (pg min⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>2.79 ± 0.15</td>
<td>2.40 ± 0.17</td>
<td>3.30 ± 0.13</td>
</tr>
<tr>
<td>Amplitude</td>
<td>3.43 ± 0.13</td>
<td>3.15 ± 0.15</td>
<td>3.58 ± 0.13</td>
</tr>
<tr>
<td>Overall mean</td>
<td>3.23 ± 0.12</td>
<td>2.87 ± 0.14</td>
<td>3.50 ± 0.11</td>
</tr>
<tr>
<td>Log androstenedione (pg min⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>2.79 ± 0.11</td>
<td>2.80 ± 0.13</td>
<td>3.30 ± 0.18</td>
</tr>
<tr>
<td>Amplitude</td>
<td>3.59 ± 0.15</td>
<td>3.35 ± 0.18</td>
<td>3.70 ± 0.14</td>
</tr>
<tr>
<td>Overall mean</td>
<td>3.30 ± 0.12</td>
<td>3.05 ± 0.15</td>
<td>3.58 ± 0.12</td>
</tr>
</tbody>
</table>

ANOVA. The effect of treatment on follicle number (ANOVA) and ovulation rate (t test) was determined following √(x + 0.5) transformation.

Results

GnRH antagonist suppression

Before antagonist treatment, FSH concentrations did not differ between genotypes (Fec⁺⁺/⁺ 2.7 ± 0.6 versus FecB⁻/⁻ 1.7 ± 0.1 ng ml⁻¹; not significant). GnRH antagonist treatment resulted in a marked depression (P < 0.01) in jugular venous FSH concentrations in both groups within 7 days of treatment and after 3 weeks of treatment FSH concentrations were similar (Fec⁺⁺/⁺ 1.1 ± 0.1 versus FecB⁻/⁻ 1.1 ± 0.1 ng ml⁻¹; not significant). Similarly, LH concentrations after antagonist treatment were suppressed and no difference was evident between genotypes (Fec⁺⁺/⁺ 0.6 ± 0.1 versus FecB⁻/⁻ 0.6 ± 0.1 ng ml⁻¹; not significant). Ultrasonography after 21 days of antagonist treatment revealed small ovaries containing 9.2 ± 1.4 and 9.8 ± 1.5 small antral follicles per ovary in Fec⁺⁺/⁺ and FecB⁻/⁻ ewes, respectively.

The first 3 days of FSH infusion

Infusion of FSH resulted in a small but highly significant (P < 0.001) increase in peripheral FSH concentrations of approximately 0.5 ng ml⁻¹ in both experimental groups over the initial 8 h of treatment to concentrations similar to those observed in these animals before GnRH antagonist treatment (Fig. 2a). Thereafter, FSH concentrations remained stable until the time of sponge withdrawal and no difference between genotypes was evident. As expected, infusion of FSH stimulated antral follicle growth in both groups (P < 0.001; Fig. 3) and this stimulation was reflected by an increase in ovarian inhibin A (P < 0.05) and LH-stimulated androstenedione (P < 0.001) and oestradiol (P < 0.001) secretion over this period (Fig. 2b–d). The comparison between genotypes over the initial period of FSH infusion showed no significant differences or genotype × time interactions, although inhibin A concentrations in ovarian venous blood tended to be lower in gene carriers over this period.

The injection of 2.5 μg LH every 4 h during the first 3 days of treatment resulted in normal basal LH concentrations with no difference between genotypes (Fec⁺⁺/⁺ 1.6 ± 0.1 versus FecB⁻/⁻ 1.4 ± 0.1 ng ml⁻¹; not significant). Frequent sampling before sponge withdrawal revealed that the injection resulted in an LH pulse with an amplitude of 2.4 ± 1.0 and 2.2 ± 0.5 ng ml⁻¹ (not significant) superimposed on a baseline of 1.1 ± 0.6 and 0.9 ± 0.2 ng ml⁻¹ (not significant) in Fec⁺⁺/⁺ and FecB⁻/⁻, respectively. The amplitude and mean secretion of the oestradiol and androstenedione secretory pulses stimulated by this injection were not significantly different between genotypes before sponge withdrawal although mean oestradiol secretion tended (P = 0.07) to be lower in FecB⁻/⁻ ewes (Table 1).

After 3 days of FSH infusion, the follicular population in different genotypes differed markedly (P < 0.01, Fig. 3). The ovaries of Fec⁺⁺/⁺ animals contained a range of antral follicles that closely resembled the follicular population observed in normal ewes during the luteal phase (Souza et al., 1997), with decreasing proportions of small (≤ 3.5 mm in diameter; 3.2 ± 0.7), medium (3.5–4.5 mm in diameter, 2.6 ± 0.6) and large follicles (≥ 4.5 mm in diameter; 0.4 ± 0.2). In contrast, the ovaries of FecB⁻/⁻ ewes contained mainly small follicles...
Fig. 2. (a) Jugular venous FSH and ovarian secretion of (b) oestradiol, (c) androstenedione and (d) inhibin A in wild-type ewes (●) and ewes bearing the FecB mutation (○) after FSH infusion and across the artificial follicular phase. The solid horizontal bar indicates the period and amount of FSH infusion, whereas the vertical bar indicates the period of the artificial ‘LH surge’. The dashed line indicates the time of sponge withdrawal. Values are means ± SEM.
Fig. 3. Follicle populations in ewes bearing the (a) FecB mutation or (b) wild-type ewes after FSH infusion and across the artificial follicular phase. The arrow indicates the time of sponge withdrawal (SW). Values are means ± SEM. □: follicles of 1.0–2.5 mm in diameter; △: follicles of 2.5–3.5 mm in diameter; ◻: follicles of 3.5–4.5 mm in diameter; ■: follicles of > 4.5 mm in diameter.
(4.4 ± 0.8) with a small (0.5 ± 0.3 per ewe) number of follicles of medium size and no large follicles (Fig. 3).

‘Follicular phase’ (sponge withdrawal to preovulatory LH surge)

The step-down in the rate of FSH infusion during the initial 24 h after sponge withdrawal resulted in a marked decline (P < 0.001) in peripheral FSH concentrations to pre-infusion concentrations that remained stable thereafter until the administration of an ovulatory stimulus (60 h after sponge withdrawal). There were no differences between genotypes in the timing or magnitude of this decline. In response to the concomitant increase in LH pulse frequency, oestradiol secretion increased in Fec+/+ but not in FecB−/− ewes after sponge withdrawal resulting in significantly higher oestradiol (P = 0.02) secretion in non-gene carriers during the initial 44 h of the follicular phase (Fig. 2b). A similar trend was evident for androstenedione secretion but the difference between genotypes was not significant. Between 44 and 52 h after sponge withdrawal (116–124 h after the start of FSH infusion) oestradiol and androstenedione secretion in non-gene carriers declined (P < 0.05) to the same amount observed in gene carriers and steroid secretion in the two genotypes remained very similar until the start of the LH surge. Ovarian inhibin A secretion did not differ between genotypes over this period (Fig. 2d).

Frequent blood sampling during the early ‘follicular’ phase at about the time of LH injections confirmed the results of the samples taken at 4 h intervals. Administration of 1.25 μg LH at this stage resulted in LH pulses with amplitudes of 1.5–2.0 ng ml−1 superimposed on a baseline of 1.3–1.7 ng ml−1 in both genotypes (not significant; Table 1). The basal and mean secretion of both oestradiol and androstenedione estimated from periods of intensive blood sampling increased significantly (P < 0.01) across the luteal to follicular phase transition, whereas pulse amplitude did not change (Table 1). There were no significant genotypic differences or genotype by time interactions for these characteristics of pulsatile steroid secretion throughout the artificial follicular phase (Table 1).

Throughout the follicular phase, the endocrine changes associated with modulation of gonadotrophic stimulatory patterns in Fec+/+ ewes resulted in a decline (P < 0.05) in the number of small and medium antral follicles detected during the first 24 h of the ‘follicular phase’ (Fig. 3). Thereafter, the total number of follicles remained unchanged in non-gene carriers, but large antral follicles represented an increasing proportion so that at the time of the LH surge, the ovaries of non-gene carriers contained 4.3 ± 0.6 follicles with a diameter of > 2.5 mm, with a mean diameter of 3.0 ± 0.1 mm.

The infusion of LH (525 μg) and hCG (100 iu) between 60 and 66 h after sponge withdrawal resulted in a marked increase in circulating LH (data not shown) and FSH (Fig. 2a). The magnitude of this ‘LH surge’ was 111 ± 20 and 99 ± 8 ng ml−1 (P > 0.05) in Fec+/+ and FecB−/−, respectively. The increase in FSH over this infusion period can be attributed to the FSH contamination in the LH preparation. The ‘LH surge’ resulted in a marked decline in ovarian oestradiol, androstenedione and inhibin A secretion (P < 0.01) similar to that observed during a normal follicular phase. There were no differences between genotypes in the magnitude and timing of this decline.

Early luteal phase

In the period after the preovulatory LH surge, ovarian oestradiol, androstenedione and inhibin A secretion remained low (Fig. 2b,c,d), whereas enlargement of ovulatory follicles was observed by serial ultrasonography. A feature of the ovarian autotransplant is that its position under the skin precludes rupture of ovulatory follicles and these will typically appear on ultrasonography during the early luteal phase as large fluid-filled bodies, the central cavity of which gradually becomes filled with echogenic tissue as the follicular cells luteinize, finally forming a characteristic corpus luteum that consists of a small central cavity surrounded by luteal tissue that is easily distinguishable from the surrounding stromal tissue. This feature of the model allowed for easy and accurate identification of ovulatory follicles/corpus luteum during the early follicular phase and the comparison between genotypes revealed that after this gonadotrophic regimen FecB−/− (3.8 ± 0.3) ewes had higher (P < 0.05) ovulations rates than Fec+/+ (1.7 ± 0.3) ewes. Furthermore, the ovulatory structures were smaller (5.3 ± 0.3 in FecB−/− versus 11.4 ± 0.9 in Fec+/+; P < 0.05; Fig. 4) in gene carriers, than in non-carriers as observed in these animals after normal ovulation (Souza et al., 1997a).

The formation of corpora lutea, as visualized by ultrasonography, was accompanied by a normal increase in peripheral progesterone concentrations in all ewes from each group and no differences were evident between genotypes on day 12 of the luteal phase (8.3 ± 2.6 nmol l−1 in Fec+/+ versus 5.2 ± 1.5 nmol l−1 in FecB−/−; P > 0.05). Again, this lack of difference between genotypes in progesterone concentrations despite differences in ovulation rate has been observed previously in these animals during a normal ovarian cycle (Souza et al., 1997).

Fig. 4. Ultrasound scans through dorso–ventral plane of autotransplanted ovary captured 96 h after artificial LH surge, showing post-ovulatory enlargement of follicle during formation of corpora lutea. (a) Single large corpus luteum (CL) (8 mm × 14 mm) forming in a wild-type ewe. (b) Three small corpora lutea forming in a ewe carrying the FecB mutation at their maximal diameter (4–5 mm) with a partial section through a fourth at the cranial pole of the ovary (pCL). In all follicles, thickening of the wall can be observed as luteinization proceeds. Scale bar represents 10 mm.

Discussion

The results of the present study show that despite suppressing endogenous gonadotrophins and stimulating ovulatory follicle development with exactly the same pattern and level of exogenous gonadotrophic stimulation, the FecB gene carriers continued to display the characteristic increase in the number of ovulatory follicles that mature and ovulate at smaller diameters when compared with non-gene carriers. Therefore, these results provide compelling evidence that the FecB mutation acts at the ovary by increasing the sensitivity of follicular cells to gonadotrophic stimulation. Conversely, these results do not support the hypothesis that the FecB gene acts simply through increasing gonadotrophic stimulation.

The hypothesis that the FecB gene acts to increase follicular sensitivity is also supported by other lines of evidence. First, it has been possible to demonstrate using physiological culture systems designed to allow gonadotrophin-dependent induction of cellular differentiation by gonadotrophins in vitro that both granulosa and theca cells from FecB gene carriers are more sensitive to gonadotrophins in terms of the dose required to induce oestradiol and androstenedione production, respectively (Webb et al., 1995). Furthermore, these differences remain even when corrected for the effect of precocious differentiation on cells from different size classes of ovarian follicles. Second, Souza et al. (2002) have shown that the BMP1b receptor is widely expressed within the granulosa and theca cells of ovarian follicles at all stages of folliculogenesis in sheep and that bone morphogenetic proteins can augment gonadotrophin-induced differentiation of cultured granulosa cells in sheep.

The results of the present study are supported by other studies that have attempted to answer the same question using a similar approach. Fry et al. (1988) used a small number of hypophysectomized (Hypox) ewes stimulated with large doses of eCG and showed a continued difference in ovulation rate in FecB carriers compared with non-carrier ewes. Hudson et al. (1999) used
hypothalamic–pituitary disconnected (HPD) and GnRH-agonist suppressed ewes stimulated with a mixture of gonadotrophins consisting of eCG, FSH and hCG. Although confounded by the high proportion of animals that failed to ovulate, it was concluded from this study that the FecB gene acts at both the pituitary and ovary to stimulate ovulation rate. However, a major limitation of both the Hypox and HPD models is that these animals appear to become relatively refractory to gonadotrophic stimulation and relatively large doses of gonadotrophin are needed to induce the majority of ewes to ovulate. A major strength of the GnRH-antagonist model is the acute nature of the suppression so that the level and pattern of gonadotrophic stimulation applied and the ovulatory response obtained remain within the physiological range.

Despite the physiological nature of the stimulatory regimen applied in the present study, there were differences between the patterns of follicle development and hormone secretion induced in the present study and those observed during a normal follicular cycle. The secretion of oestradiol increased rapidly in both groups within 12 h of the start of treatment with FSH and LH. This secretion is greater than would normally occur during the luteal phase and probably overestimates the daily secretion of oestradiol as samples were collected 20–30 min after the injection of LH every 4 h. The secretion of oestradiol and androstenedione is exquisitely sensitive to LH with each pulse of LH followed by a rapid increase in the secretion of steroid (Baird and Scaramuzzi, 1976). In the normal luteal phase, large follicles are stimulated to secrete oestradiol relatively infrequently due to the reduced number of LH pulses. Furthermore, in the present study oestradiol secretion was observed to be transiently higher in non-gene carriers during the early follicular phase, a difference that is not observed during the normal follicular phase (Souza et al., 1997a). The most likely reason for this observation would appear to be attributable to the difference in the magnitude of the response to the initial 3 days of FSH stimulation between genotypes. Despite FSH concentrations remaining in the physiological range over this period, the non-gene carriers showed a marked response to FSH that resulted in a relatively large number (3.0 ± 0.8) of growing follicles of > 3.5 mm in diameter that would be expected to be oestrogenic (Carson et al., 1979). This overstimulation is the most likely explanation for the high oestradiol secretion observed in non-gene carriers during the early ‘follicular’ phase, and the unusual depression in oestradiol secretion observed 40–44 h after sponge withdrawal in all probability reflects the point at which the ovulatory quotient is reduced to its normal level (that is, selection) under the influence of a gonadotrophic environment that consists of depressed FSH and high frequency low amplitude LH pulses. If this interpretation is correct, then the point of selection in this model system is later than during a normal follicular phase (12–24 h; Souza et al., 1997c), reflecting the exquisite sensitivity of the hypothalamic–pituitary–ovarian feedback loops that normally regulate this process (Baird, 1983; Baird and Campbell, 1998).

In contrast to the wild-type ewes, the FecB gene carriers had a normal number of follicles of ovulatory size consisting of 4.3 ± 1.1 follicles between 2.5 and 3.5 mm in diameter at the time of sponge withdrawal and a normal pattern of oestradiol secretion during the subsequent ‘follicular’ phase. This difference between the gene carriers reflects the fact that ovulatory follicles develop precociously in FecB gene carriers and indicates that the threshold concentration of FSH needed to support ovulatory follicle development is markedly lower in these animals. That is, providing extra FSH has little effect on the follicular response as the threshold concentration has already been surpassed. This concept would explain the observation that doses of FSH that induce superovulation in non-gene carriers have either no additional or negative effects in animals carrying the FecB mutation (B. K. Campbell, unpublished). Although the identity of the FecB mutation is now known, the mechanisms that allow a single point mutation to result in such a fundamental change in the mechanism of follicle selection remain to be elucidated and answering this question represents a major research objective in the near future.

In conclusion, the results of this study strongly indicate that the FecB mutation exerts its effects by markedly increasing ovulation rate by mechanisms that alter the response of the ovary to gonadotrophic stimulation rather than altering the level of the gonadotrophic stimulation applied to the ovary.

The authors gratefully acknowledge the technical assistance of L. Harkness, J. Docherty, M. Thomson, M. Ritchie and the farm staff of the Roslin Institute. The authors also thank the NIAMDD for the ovine gonadotrophins and B. Cooke for the androstenedione assay reagents. This work was supported by EEC Grant AIR3 CT 92-0232 and MRC program grant GB929853.

References

Baird DT and Campbell BK (1998) Follicle selection in sheep with breed differences in ovulation rate Molecular and Cellular Endocrinology 145 89–95

Baird DT and Scaramuzzi RJ (1976) The source of ovarian oestradiol and androstenedione in the sheep during the luteal phase Acta Endocrinologica B 402–409

Baird DT, Ralph MM, Seamark RF, Amato F and Bindon BM (1982) Pre-ovulatory follicular activity and estrogen secretion of high (Booroola) and low fecundity Merino ewes Proceedings of the Australian Society of Reproductive Biology 14 83

Campbell BK, Mann GE, McNatty AS and Baird DT (1990a) The pattern of ovarian inhibin estradiol and androstenedione secretion during the estrous cycle in the ewe Endocrinology 127 227–235

Campbell BK, McNally AS, Picton HM and Baird DT (1990b) The effect of a potent GnRH antagonist on ovarian secretion of oestradiol inhibin and androstenedione and the concentration of LH and FSH during the follicular phase of the sheep oestrous cycle Journal of Endocrinology 126 377–384

Campbell BK, Mann GE, McNatty AS and Baird DT (1990c) Pulsatile secretion of inhibin oestradiol and androstenedione by the ovary of the sheep during the oestrous cycle Journal of Endocrinology T26 385–393

Collett RA, Land RB and Baird DT (1973) The pattern of progesterone secretion by the autotransplanted ovary of the ewe in response to ovine lutetinizing hormone Journal of Endocrinology 56 403–411

Goding JR, McCracken JA and Baird DT (1967) The study of ovarian function in the ewe by means of a vascular autotransplantation technique Journal of Endocrinology 39 37–52

McNatty KP, Kieboom LE, McDiamid J, Heath DA and Lun S (1986a) Adenosine cyclic 3′,5′-monophosphate and steroid production by small ovarian follicles from Booroola ewes with and without a fecB gene Journal of Reproduction and Fertility 76 471–480

McNatty KP, O’keeve LE, Henderson KM, Heath DA and Lun S (1986c) 125I-labelled hCG binding characteristics in theca interna and other tissues from Romney ewes and from Booroola × Romney ewes with and without a major gene influencing their ovulation rate Journal of Reproduction and Fertility 77 477–488

McNatty KP, Hudson N, Henderson KM, Gibb M, Morrison L, Ball K and Smith P (1987) Differences in gonadotrophin concentrations and pituitary responsiveness to GnRH between Booroola ewes which were homozygous (FF), heterozygous (F+) and non-carriers (++) of a major gene influencing their ovulation rate Journal of Reproduction and Fertility 80 577–588

Mulsant P, Lecerf F, Fabre S et al. (2001) Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes Proceedings National Academy of Sciences USA 98 5104–5109

Souza CJH, Campbell BK, Baird DT and Webb R (1997a) Secretion of inhibin A and follicular dynamics throughout the oestrous cycle in sheep with and without the Booroola gene (FecB) Endocrinology 138 5333–5340

Souza CJH, Campbell BK and Baird DT (1997b) Follicular development and concentrations of ovarian steroids and inhibin A in jugular venous plasma during the luteal phase of the oestrous cycle Journal of Endocrinology 156 563–572

Souza CJH, Campbell BK and Baird DT (1997c) Follicular dynamics and ovarian steroid secretion in sheep during the follicular and early luteal phases of the estrous cycle Biology of Reproduction 56 483–488

Souza CJH, Campbell BK and Baird DT (1998) Incipient ovarian failure associated with raised levels of follicle stimulating hormone and reduced inhibin A in older sheep Human Reproduction 13 1016–1022

Souza CJ, MacDougall C, Campbell BK, McNelly AS and Baird DT (2001) The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic protein type 1 B (BMPR1B) gene Journal of Endocrinology 169 R1–6

Souza CJ, Campbell BK, McNelly AS and Baird DT (2002) Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry Reproduction 123 363–369

Wilson T, Wu XY, Juengel JL et al. (2001) Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells Biology of Reproduction 64 1225–1235

Received 7 October 2002.
First decision 20 November 2002.
Revised manuscript received 3 April 2003.
Accepted 9 April 2003.