Effects of in vivo administration of epidermal growth factor (EGF) on uterine contractility, prostaglandin production and timing of parturition in rats

M. L. Ribeiro, M. Farina, J. Aisemberg and A. Franchi

Laboratorio de Fisio-patología de la Preñez y el Parto, Centro de Estudios Farmacolóxicos y Botánicos (CEFYBO, CONICET), Serrano 669, 3rd Floor, C1414DEM, Bs. As. Argentina

Prostaglandins synthesized by cyclooxygenases elicit uterine contractions during labour. Nitric oxide synthases (NOS) produce nitric oxide (NO), which maintains uterine quiescence during pregnancy. Epidermal growth factor (EGF) interacts with prostaglandins and NO in many biological systems. The aim of this work was to study the effect of the in vivo administration of EGF on uterine contractility, prostaglandin production and timing of parturition in rats. EGF was injected into the uterine lumen of pregnant rats on day 20, 21 or 22 of gestation. Intra-uterine administration of 500 ng EGF on day 21 of gestation delayed parturition for 18 h compared with control rats. Administration of EGF was able to: (i) reduce cyclooxygenase expression in the uterus (determined by western blot analysis) and production of prostaglandins by the uterus (evaluated by conversion of [14C]arachidonate to labelled prostaglandins); (ii) decrease prostaglandin concentrations in amniotic fluid (radioimmunoassay); (iii) increase NO production (evaluated by conversion of [14C]arginine into [14C]citrulline); (iv) increase serum progesterone concentrations to more than control concentrations \(P < 0.05 \) (radioimmunoassay); and (v) reduce the amplitude of the uterine contractions. The overall effect was a delay in the onset of delivery. This in vivo effect raises the question of whether exogenous EGF plays a role in the initiation of parturition.

Introduction

Most studies of epidermal growth factor (EGF) have focused on the stimulation of cell proliferation. However, EGF appears to have other biological activities. Cohen (1962) showed that EGF accelerated incisor eruption and eyelid opening in immature mice. In addition, EGF plays a role in fetoplacental growth and development by increasing hormone secretion by placental and fetal membranes (Maruo et al., 1987). In rodents, physiological concentrations of EGF induce contractions of oestrogen-primed uterine smooth muscle in vitro (Gardner et al., 1987). These observations may be indicative of previously unrecognized roles for EGF in the control of differentiated functions. It is now becoming clear that EGF may have a role during pregnancy and labour. Tamada et al. (2000) found that intraluminal infusion of EGF into goat uterine horns gradually reduced the uterine activity at either oestrus or dioestrus. EGF has been found in several reproductive tissues including the uterus and placenta of women (Richards et al., 1983; Lin et al., 1988), rodents (Huet-Hudson et al., 1990), pigs (Vaughan et al., 1992) and sheep (Lacroix and Kann, 1993). EGF is also present in maternal and fetal blood, and in amniotic fluid (Ances, 1973; Barka et al., 1978), in which its concentration correlates with progression of pregnancy (Varner et al., 1996). Das et al. (1994) found in pregnant mice two classes of binding sites for EGF, which are regulated by oestradiol and progesterone.

Prostaglandins and nitric oxide (NO) are intimately involved in the mechanism of parturition (Mitchell et al., 1995; Farina et al., 2001). NO maintains uterine quiescence during pregnancy (Yallampalli et al., 1993), whereas prostaglandins are involved in eliciting contractions of uterine smooth muscle (Franchi et al., 1994). Prostaglandins are active lipid mediators involved in the mechanism of parturition. Prostaglandin biosynthesis is catalysed by cyclooxygenase. Cyclooxygenase exists in two isoforms: cyclooxygenase 1 and cyclooxygenase 2 (Kujubu et al., 1991; Simmons et al., 1993). NO is synthesized by nitric oxide synthase (NOS; Norman and Cameron, 1996). Three NOS isoforms involved in pregnancy have been characterized: endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) (Yallampalli et al., 1994; Farina et al., 2001). EGF regulates both prostaglandins and NO in reproductive tissues. EGF stimulates PGEl synthesis and cyclooxygenase 2 expression in human amnion cells in a time-dependent way (Mitchell, 1987; Casey et al., 1988). EGF also produces uterine contractions in tissues removed from immature and adult rats (Gardner et al., 1987), and...
this effect is dependent on prostaglandin production and entry of calcium into the cells (Gardner and Stancel, 1989). Ribeiro et al. (1999) reported an effect of EGF on NO synthesis: incubation of oestrogenized rat uterus with EGF augmented NO synthesis by stimulating iNOS activity. In addition, it is possible that NO and prostaglandins could interact in different tissues (Salvemini et al., 1996; Perkins and Kniss, 1999).

On the basis of the evidence presented above, the aim of the present study was to investigate the effect of exogenous administration of EGF on uterine contractility, prostaglandin production and timing of parturition in rats.

Materials and Methods

Materials

EGF (murine submaxillar glands, culture grade, PM= 6100) was from Calbiochem (Norabiochem Corporation, La Jolla, CA). [14C]arachidonic acid (56 μCi mmol−1), [14C]-l-arginine monohydrochloride (317 mCi mmol−1), [5,6,8,9,11,12,14,15(n)-3H]PGE2 (160 Ci mmol−1), [5,6,8,9,11,12,14,15(n)-3H]PGF2α (130 Ci mmol−1) and 17α-hydroxy[1,2,6,7-3H]progesterone (60 Ci mmol−1) were from Amersham Corporation (Arlington Heights, IL). Dowex AG500-X column (Na+-form) was from BioRad (Alfatron, SRL, Buenos Aires). Monoclonal nNOS, eNOS and iNOS first antibodies were from Transduction Co. (Lexington, KY), whereas monoclonal cyclooxygenase 1 and polyclonal cyclooxygenase 2 were from Santa Cruz Biotechnology Inc. (Copenhagen). PGE2 and PGF2α antisera and second antibodies were purchased from Sigma Chemical Co. (St Louis, MO). Progesterone antisera was provided by G. D. Niswender (Colorado State University, Fort Collins, CO). All other chemicals were of analytical grade.

Animals

The experimental procedures were approved by the Animal Care Committee of the Center of Experimental Pharmacology and Botany of the National Research Animal Care Committee of the Center of Experimental Pharmacology and Botany of the National Research Council (CEFYBO-CONICET) and carried out in accordance with the Declaration of Helsinki.

Wistar rats were housed in group cages (six in each cage) under controlled conditions of light (14 h light:10 h dark) and temperature (23–25°C). Food and water were available ad libitum. Time-mated pregnant rats of the Wistar strain (200–300 g body weight) were used. The morning on which spermatozoa were observed in the vaginal fluid was defined as day 1 of pregnancy. Spontaneous term labour usually occurs on day 22 of gestation.

Intra-uterine administration of EGF

The pregnant rats were given a single intra-uterine injection of EGF on day 20, 21 or 22 of gestation with a single dose of EGF to determine whether in vivo administration of EGF modulates the onset of parturition. The doses administered were 15, 30, 60, 120, 250 or 500 ng EFG (final volume: 250 μl). Control rats received an intra-uterine injection of saline solution (EGF vehicle: 250 μl) on day 20, 21 or 22 of gestation. Control and treated animals were anaesthetized by ether inhalation and the intra-uterine injections (gauge needle: 30G) were conducted under direct visualization of the uterine horns. The uterus of each rat was surgically exposed and the injection was given inside the uterine lumen. After injection, the rats were housed in separate cages and were monitored continuously for pups. Day and time of parturition were registered when the first pup was delivered. The values were expressed as the mean variation in the onset of parturition (in hours) compared with control rats (control rats gave birth on day 22 at approximately 20:00 h). The handling of the rats did not have any effect on the onset of parturition as rats injected with saline solution on day 20, 21 or 22 of gestation gave birth normally on day 22.

The effects of EGF administration on the mother and the pups were evaluated grossly by observing activity, feeding and general wellbeing. The rats were killed on day 22 of gestation between 10:00 h and 11:00 h. The amniotic fluid and uterine horns were extracted, cleaned of fat, placenta and fetuses, and stored at −70°C until used. The part of the uterine horn used in each experiment was selected randomly and was independent of the site of injection.

Metabolism of [14C]arachidonic acid

Uterine tissues from EGF-treated and control rats were placed in Petri dishes containing a modified Kreb’s-Ringer bicarbonate (KRB) solution (145 mmol Na+ l−1; 6 mmol K+ l−1; 2 mmol Ca2+ l−1; 1.3 mmol Mg2+ l−1; 126.1 mmol Cl− l−1; 25.3 mmol HCO3− l−1; 1.3 mmol SO42− l−1; 1.2 mmol PO43− l−1; 11 mmol glucose l−1). The tissues were then weighed. The metabolism of exogenous arachidonic acid was determined by incubating the tissues for 1 h in KRB medium containing 50 μCi [14C]arachidonic acid ml−1 in an atmosphere of 95% O2 and 5% CO2 at 37°C. At the end of the incubation period, the medium was acidified to pH 3 using 1 N HCl in 1 volume of ethyl acetate and extracted twice for prostaglandins. Pooled ethyl acetate extracts were dried. The residues were suspended in 100 μl methanol and applied to silica gel TLC plates. The plates were developed in a solvent system of benzene:dioxane:glacial acetic acid (60:30:3; v/v). The positions of the authentic prostaglandins were determined by liquid scintillation counting. The area of each radioactive peak corresponding to an authentic prostaglandin was calculated and expressed as a percentage of the total radioactivity of the plates. Only results in which metabolites were converted in more
than 1% of c.p.m. on TLC plate were considered. Enzyme activity is reported as % c.p.m. in total plate (100 mg wet weight)\(^{-1}\).

Total NOS assay

NOS activity was quantified using a modified method of Bredt and Snyder (1987), which measures the conversion of \(^{14}\text{C}\)L-arginine into \(^{14}\text{C}\)L-citrulline. NO of Bredt and Snyder (1987), which measures the conversion of \(^{14}\text{C}\)L-arginine into \(^{14}\text{C}\)L-citrulline. NO and L-citrulline are produced in equimolar amounts. EGFTreated and control uterine horns were weighed, homogenized (Ultra Turrax, T25 basic; IKA Labor- technik, Staufen) and incubated at 37\(^\circ\)C in a Hepes buffer (20 mmol Hepes l\(^{-1}\); 25 mmol L-valine l\(^{-1}\); 0.45 mmol CaCl\(_2\) l\(^{-1}\); 100 mmol dithiothreitol l\(^{-1}\) containing 0.6 \(\mu\)Ci \(^{14}\text{C}\)-arginine ml\(^{-1}\) and 0.5 mmol NADPH l\(^{-1}\). After 15 min of incubation, the samples were centrifuged for 10 min at 3000 \(g\). The samples were applied to a 1 ml DOWEX AG500-X column (Na\(^+\)-form) and \(^{14}\text{C}\)l-citrulline was eluted in 3 ml distilled water. The \(^{14}\text{C}\)l-citrulline radioactivity was measured by liquid scintillation counting. NOS activity was determined as the difference between \(^{14}\text{C}\)l-citrulline produced in the control samples and samples containing 1 mmol EGTA l\(^{-1}\) and 2 mmol L-arginine methyl ester (L-NAME) l\(^{-1}\). Enzyme activity is reported in pmol \(^{14}\text{C}\)l-citrulline (100 mg wet weight)\(^{-1}\).

Western blot analysis

Isolated uteri from control and intra-uterine-injected animals were homogenized in 20 mmol Tris buffer l\(^{-1}\) (pH 7.4) containing 1 mmol EDTA l\(^{-1}\), 2 \(\mu\)g aprotinin ml\(^{-1}\), 10 \(\mu\)g leupeptin ml\(^{-1}\), 10 \(\mu\)g dithiothreitol ml\(^{-1}\), 100 \(\mu\)g soybean trypsin inhibitor ml\(^{-1}\), 1 mg capric acid ml\(^{-1}\) and 1 mg benzamidine ml\(^{-1}\). The homogenates were sonicated (Ultrasonic Cell Disruptor; Microson, Heat systems Inc., Farmingdale, NY) for 30 s and centrifuged at 1500 \(g\) for 5 min to remove cellular debris. Protein concentration was determined by the Bradford assay (Bradford, 1976). Each point represents pooled material from four rats. The experiment was repeated three times. Homogenates were boiled for 5 min in sample buffer (0.3% (w/v) bromophenol blue, 0.5 mol Tris l\(^{-1}\), pH 6.8, 1% (w/v) SDS, 5% (v/v) \(\beta\)-mercaptoethanol, 10% (v/v) glycerol). An aliquot (60 \(\mu\)g) of total protein was loaded on to each lane. Positive control aliquots were also loaded. Membrane fractions of human endothelial cells, mouse macrophage lysate and rat pituitary lysate were used for eNOS, nNOS and cyclooxygenase 2, and nNOS, respectively. Samples were subjected to electrophoresis on a 7.5% (w/v) Tris (pH 8.8)-0.375 mol SDS l\(^{-1}\) polyacrylamide gel (0.03 A) and transferred to a nitrocellulose membrane (40 V, overnight at 4\(^\circ\)C). Membranes were first blocked for 1 h at room temperature in Tris–saline (50 mmol Tris–HCl l\(^{-1}\), pH 7.5, 500 mmol NaCl l\(^{-1}\)) containing 5% (w/v) milk powder, and then incubated overnight at 4\(^\circ\)C with primary antibodies (mouse antibodies were developed against eNOS, nNOS, iNOS and cyclooxygenase 1, and rabbit antibodies were developed against cyclooxygenase 2). All primary antibodies were used at final dilutions of 1:1000 in Tris–saline buffer. The blots were washed with Tris–saline buffer containing 0.2% (w/v) Tween 20. Membranes were incubated for 1 h at room temperature with the second antibody (goat anti-mouse IgG alkaline phosphatase and goat anti-rabbit IgG alkaline phosphatase) and washed as above. The developing solution was nitroblue tetrazolium with 5-bromo-4-chloro-3-indol phosphate. Molecular mass standards were run under the same conditions to identify the protein bands. Blots were scanned using a scanning densitometer and the intensity of bands (expressed as relative density) was determined using the Sigma Plot program.

Prostaglandin radioimmunoassays

PGE and PGF\(_{2\alpha}\) were measured in amniotic fluid samples (Campbell and Ojeda, 1987) obtained from EGF-treated and control rats. In brief, amniotic fluid was removed and frozen until used. Amniotic fluid was acidified to pH 3 with 1 N HCl and prostaglandins were extracted twice with 2 ml ethyl acetate. Prostaglandin concentrations were determined by radioimmunoassay. The PGF\(_{2\alpha}\) antiserum was highly specific and showed low crossreactivity (<0.1% for PGE\(_1\) and PGE\(_2\)). The PGE antiserum was highly specific for PGE\(_1\) and PGE\(_2\) and showed low crossreactivity (<0.1% for PGF\(_{2\alpha}\)). The sensitivity was 5–10 pg per tube and 2–5 \(\mu\)l aliquots of amniotic fluid were assayed routinely. Values are expressed as pg prostaglandins (mg wet weight)\(^{-1}\).

Progesterone radioimmunoassay

Progesterone was measured in serum samples (Abraham et al., 1971) extracted from EGF-treated and control rats. In brief, blood was allowed to clot and was centrifuged at 1100 \(g\) for 10 min. The serum was removed and frozen until used. Progesterone was extracted twice with 2 ml diethyl ether and progesterone concentrations were determined by radioimmunoassay. The progesterone antiserum was highly specific for progesterone and showed low crossreactivity (<2% for 20\(\alpha\)-dihydroprogesterone and deoxy corticosterone, and 1% for other steroids normally found in serum). The sensitivity was 5–10 pg per tube and 2–5 \(\mu\)l aliquots of serum were assayed routinely. Values are expressed as pg progesterone (ml\(^{-1}\) serum).

Contractility studies

Each uterine horn (belonging from control and EGF-treated rats) was divided by a transverse cut into two
segments of equal length. The segments were placed in Petri dishes containing KRB at room temperature and constantly gassed with 95% O₂-CO₂. Each segment was immediately opened with a cut along the mesosalpinx insertion. One end was attached to a glass holder and immersed in a tissue chamber filled with 20 ml KRB (pH 7.4, 37°C) and continuously gassed. The other end was attached to a strain gauge coupled to an amplifier connected directly to a direct writing oscillograph. After a resting tension of 1 g was applied to each strip by micrometric devices, isometric developed tension (IDT) and frequency of contractions (FC) were measured. IDT values (expressed in mg) were the result of the mean amplitude of all the contractions recorded over a 10 min period. FC values were obtained as the mean number of contractile cycles analysed during the same period. The experiment was repeated four times.

Statistical analyses

Statistical analysis was performed using the Instat Program (Graph Pad Software, San Diego, CA). Comparisons between values of groups were performed using one- and two-way ANOVA. Significance was determined using Tukey’s multiple comparison test for unequal replicates. All values presented in this study are mean ± SEM. Differences between means were considered significant at \(P = 0.05 \).

Results

Effect of intra-uterine administration of EGF on onset of parturition

Pregnant rats were given a single intra-uterine injection of EGF on day 20, 21 or 22 of pregnancy to determine whether EGF modulates the onset of labour. The doses of EGF used were 15, 30, 60, 120, 250 or 500 ng (\(n = 6 \) for each treatment). Control rats received an intra-uterine injection of saline solution (\(n = 6 \)). The rats treated with saline solution gave birth on day 22 at 20:00 h, with a variation of approximately 2 h. None of the doses of EGF used had any effect when administered on day 22 of pregnancy (Table 1). Rats treated with EGF (15, 30 or 60 ng) on day 20, 21 or 22 gave birth during the night of day 22, as did control rats. EGF (120 ng) administered on day 20 of pregnancy did not affect the onset of labour. In contrast, administration of EGF (250 or 500 ng) on day 20 of gestation delayed parturition by 12 ± 0.4 or 10 ± 0.3 h, respectively, compared with control rats (the 2 h difference between these values is not significant. The dose of EGF (120 ng) administered on day 21 of pregnancy was capable of delaying parturition by 9 ± 0.4 h compared with control rats. As on day 20 of gestation, administration of 250 ng EGF on day 21 of gestation delayed parturition by approximately 12 h, whereas administration of 500 ng EGF delayed labour by 19 ± 0.6 h compared with controls. A delay of 19 h in the onset of parturition is approximately 5% of the total duration of pregnancy. The difference in delay of onset between the three doses of EGF used was significantly different. These results indicate that rats that received an intra-uterine injection of EGF on day 21 of pregnancy gave birth during day 23 of gestation and that this effect appears to be dose dependent. When the dose of EGF administered was increased, the effect on the delay in onset of labour was more pronounced. The number of pups delivered was not affected by the EGF treatment. Pups from EGF-treated rats grew at the same rate as did control pups. The body weight of the pups after delivery was not significantly different between groups (control pups: 5.1 ± 0.1 g; pups from treated rats: 4.9 ± 0.2 g). Although the treatment with EGF affected the onset of parturition, the duration of labour was the same as for control rats. In addition, the mothers that received EGF fed their pups in the same way as did control rats.

Effect of intra-uterine EGF on uterine prostaglandins and NO synthesis

As intra-uterine administration of EGF (120, 250 or 500 ng) on day 21 of gestation appeared to have a dose-dependent effect, it was decided to investigate whether EGF was capable of regulating uterine prostaglandin and NO synthesis, which are the principal molecules
EGF and parturition in rats

Fig. 1. Effect of intra-uterine administration of epidermal growth factor (EGF; 0 (■), 120 (□), 250 (■) or 500 (□) ng) on day 21 of gestation on (a) prostaglandin and (b) nitric oxide synthesis in rat uterus at day 22 of gestation. Values are mean ± SEM (n = 6 rats per group). The differences between means were collectively analysed by a one-way ANOVA followed by a Tukey’s multiple comparison. *P < 0.001 versus control; †P < 0.001 versus 120 ng; ‡P < 0.01 versus 250 ng; ‡‡P < 0.05 versus 120 ng; ‡‡‡P < 0.05 versus 250 ng.

involved in uterine contractility. All animals were killed on day 22 of gestation between 10:00 h and 11:00 h. The three different doses of EGF administered on day 21 of pregnancy significantly decreased the production of both PGE₂ and PGF₂α as compared with control animals (Fig. 1a). The effect of EGF on prostaglandin synthesis was dose dependent, as the inhibitory effect was significantly more pronounced at higher doses of EGF. However, only the highest dose of EGF (500 ng) administered by intra-uterine injection on day 21 of gestation resulted in significant stimulation of NO production compared with control animals (P < 0.001; Fig. 1b). EGF at doses of 120 and 250 ng did not modify NO synthesis. Taking into account the findings that EGF (500 ng) had the strongest effect on the delay of parturition and that it was capable of modifying both prostaglandin and NO production, it was decided to continue the study using this dose.

Effect of intra-uterine EGF (500 ng) on uterine cyclooxygenase and NOS expression

As production of both prostaglandins and NO was affected by EGF on day 22 of pregnancy, it was decided to determine whether EGF (500 ng) had an effect on cyclooxygenase–NOS activity, or on its activity and expression. A positive band for cyclooxygenase 1 at an approximate molecular mass of 72 kDa was detected in control and EGF-treated rats (lane 1; Fig. 2a). Expression of cyclooxygenase 1 was not altered by intra-uterine administration of 500 ng EGF on day 21 of gestation (lane 2; Fig. 2a) compared with the control.

Cyclooxygenase 2 was identified as a single band at an approximate molecular mass of 70 kDa in control rats (lane 1; Fig. 2b). Intra-uterine administration of EGF (500 ng) on day 21 resulted in a significant decrease in cyclooxygenase 2 expression (P < 0.01; lane 2; Fig. 2b).
Fig. 3. Effect of intra-uterine administration of epidermal growth factor (EGF; 500 ng) on day 21 of gestation on (a) nNOS, (b) eNOS and (c) iNOS expression in rat uterus on day 22 of gestation. A representative experiment is shown. Data are from western blot analysis.

The nNOS isoform was barely detectable in the uterine horns obtained from EGF-treated and control pregnant rats (Fig. 3a). It appeared as a single band at approximately 155 kDa. There was no difference in the nNOS signal between the control tissue (lane 1; Fig. 3a) and uterine tissue removed from rats that had received an intra-uterine injection of EGF (500 ng) (lane 2; Fig. 3a).

Similar results were observed for eNOS, with the difference that this isoform was readily detected at 142 kDa in the uterine tissue (Fig. 3b). Intra-uterine injection of EGF (500 ng) (lane 1; Fig. 3b) did not modify eNOS expression compared with control uterine tissue (lane 2; Fig. 3b). A positive band for iNOS at an approximate molecular mass of 130 kDa was identified in the uteri of control rats (lane 1; Fig. 3c). Intra-uterine administration of EGF (500 ng) on day 21 of gestation did not affect the expression of iNOS (lane 2; Fig. 3c).

Thus, these results indicate that intra-uterine administration of EGF (500 ng) on day 21 of pregnancy is capable of modifying both prostaglandin synthesis and expression of cyclooxygenase 2. However, EGF (500 ng) affected only NOS activity, as it did not modify expression of any of the NOS isoforms.

Fig. 4. Effect of intra-uterine administration of epidermal growth factor (EGF; 500 ng) on day 21 of gestation on (a) prostaglandin E2 (PGE2) and (b) prostaglandin F2α (PGF2α) concentrations in amniotic fluid (AF) on day 22 of pregnancy. Prostaglandin concentrations were determined by radioimmunoassay. Values are mean ± SEM (n = 6 per group). The differences between means were collectively analysed by a one-way ANOVA followed by a Tukey’s multiple comparison. *P < 0.01 versus control.

Effect of intra-uterine EGF (500 ng) on prostaglandin concentration in amniotic fluid

As intra-uterine administration of EGF (500 ng) on day 21 of gestation reduced both cyclooxygenase activity and cyclooxygenase 2 expression in the uterus, it was decided to investigate whether the concentration of prostaglandins in amniotic fluid was altered in EGF-treated rats. Intra-uterine administration of EGF (500 ng) on day 21 of gestation significantly decreased the concentration of both PGE2 (Fig. 4a) and PGF2α (Fig. 4b) compared with control rats.
Serum progesterone concentrations

As EGF-treated rats gave birth approximately 18 h after control animals did, it was decided to investigate whether intra-uterine administration of EGF (500 ng) affected serum progesterone concentrations. Serum progesterone concentrations in rats that received an intra-uterine injection of EGF (500 ng) on day 21 of gestation were twice as high as those of control animals (P < 0.05; Fig. 5).

Contractility studies

The study was extended to determine whether administration of exogenous EGF affects myometrial activity. The results of one representative experiment are described below.

Intra-uterine EGF administration was found to modulate uterine contractility (Fig. 6a). Intra-uterine injection of EGF (500 ng) on day 21 of gestation significantly decreased the amplitude of myometrial contractions (IDT) (Fig. 6b): the IDT recorded in treated rats was 60% lower than the control IDT. However, intra-uterine application of EGF (500 ng) did not modify the frequency of myometrial contractions (Fig. 6c).

Discussion

The main aim of the present study was to investigate whether in vivo administration of EGF was able to modify uterine contractility, prostaglandin production and timing of parturition in rats. Intra-uterine injection of EGF on day 20 or 21 of pregnancy delayed spontaneous parturition until day 23 of pregnancy. Term delivery usually occurs during the night of day 22. In the present study, it was found that the mechanism underlying the effect of exogenous EGF on onset of parturition was dependent on prostaglandins, NO and progesterone. To the best of our knowledge, this is the first time that intra-uterine administration of EGF has been reported as an inhibitor of term delivery. It is also worth mentioning that the EGF injection did not alter the general wellbeing of the mother and the pups.

Eicosanoids, particularly prostaglandins, are thought to play a key role in the onset of parturition (Keirse, 1990). Many authors have shown that EGF regulates the expression of cyclooxygenase and the production of prostaglandins in different reproductive tissues. In the present study, it was decided to investigate whether EGF-delayed parturition was mediated by regulation of prostaglandin synthesis. Mitchell (1987) reported that EGF from human and murine sources increased PGE\(_2\) production by human amnion cells in culture. Faber et al. (1996) found that the immunostaining of EGF paralleled that of prostaglandins in myometrial tissues obtained from normal human labour. Others have reported that incubation of decidual, amnion and endometrial stromal cells with EGF induced concentration-related increases in PGE\(_2\) and PGF\(_{2\alpha}\) (Casey et al., 1988; Mitchell, 1991;
Bany and Kennedy, 1995). In the present study, intra-uterine administration of EGF (120, 250 or 500 ng) on day 21 of pregnancy inhibited PGE\(_2\) and PGF\(_{2\alpha}\) synthesis. Moreover, the dose-dependent effect on the delay of parturition was paralleled by the inhibition in PGE\(_2\) and PGF\(_{2\alpha}\) production, and the most pronounced effect was caused by administration of 500 ng EGF. Therefore, it is possible that day 21 is pivotal in triggering the signals necessary for the initiation of labour.

NO regulates smooth muscle cell contractility and spontaneous contraction during the oestrous cycle, as well as uterine distension during pregnancy (Franchi et al., 1994; Norman and Cameron, 1996). When the effect of EGF administered on day 21 of gestation was analysed, it was found that EGF (120 or 250 ng) did not alter NO synthesis compared with that of rats injected with saline solution. However, EGF (500 ng) was able to stimulate the production of NO compared with that of the control rats. There are not many reports describing an effect of EGF on NO synthesis. A study of Bird et al. (1991) and previous work from our laboratory (Ribeiro et al., 1999) have demonstrated that EGF administration augments NO production in vitro. In support of these results, the highest dose of EGF used in the present study (500 ng) also augmented NO production in the pregnant uterus. Thus, it is possible that the delay in parturition resulting from intra-uterine administration of EGF was mediated by prostaglandin inhibition and NO stimulation. As EGF (500 ng) had the strongest effect on the delay of parturition and it was the only dose able to modify both prostaglandins and NO, it was decided to continue the study using this dose.

In the next stage of the study we determined whether intra-uterine administration of EGF (500 ng) on day 21 of gestation could modify the uterine expression of the cyclooxygenase and NOS isoforms. At the end of gestation, cyclooxygenase 2 expression is augmented (Bukowski et al., 2001), whereas expression of iNOS decreases (Farina et al., 2001). Western blot analyses showed that intra-uterine EGF (500 ng) inhibited cyclooxygenase 2 expression. Although it was expected that intra-uterine EGF (500 ng) would alter at least iNOS protein, it was found that exogenous EGF did not affect the expression of any of the NOS enzymes. Thus, it appears that intra-uterine EGF (500 ng) administered on day 21 of pregnancy is able to modulate both cyclooxygenase activity and expression, whereas it regulates only NOS activity. Accumulation of fetoplacental-derived prostaglandins in the amniotic fluid during labour may be the means by which these substances reach the myometrium and induce myometrial contractility (Romero et al., 1994; Gibbs and Challis, 2002). EGF is present in human amniotic fluid (Barka et al., 1978), its concentration increases during labour and it stimulates prostaglandin biosynthesis in human amnion and decidua in vitro (Skinner and Challis, 1985; Mitchell, 1987). Previous observations (Faber et al., 1996), as well as our own, point to the importance of fetoplacental-derived eicosanoids and their possible regulation by growth factors in parturition. The results of the present study show that, as in the case of uterine tissue, the exogenous EGF (500 ng) administered on day 21 of pregnancy decreased the concentrations of both PGE\(_2\) and PGF\(_{2\alpha}\) in the amniotic fluid.

Csapo (1956) showed that plasma progesterone concentration is low at pre-term and normal term labour. The decrease in progesterone concentration triggers uterine changes geared to increase the effectiveness of contractile agonists and also increases the production of the agonists themselves. The present study demonstrates that intra-uterine EGF (500 ng) administered on day 21 of gestation maintains a high concentration of progesterone compared with the concentration in serum extracted from control rats.

The action of intra-uterine EGF (500 ng) on spontaneous uterine contractility in isolated strips was examined to link the effects of EGF on cyclooxygenase, NOS and progesterone to the physiological function of these mediators in the uterus. Intra-uterine EGF (500 ng) had an inhibitory action on the amplitude but not on the frequency of the uterine contractions. This result indicates that intra-uterine EGF is only able to modulate the force of the uterine contractions. One possibility is that this is an after effect of the decreased prostaglandin synthesis and augmented NO production in the uterine tissue. The other possibility is that intra-uterine EGF (500 ng) exerts its action directly on the contraction mechanism, as rat uterine tissue expresses EGF receptors (Lin et al., 1988). Gardner et al. (1987) reported that EGF in vitro produces uterine contractions in tissues removed from immature and adult ovariectomized oestrogen-treated rats. The difference from our results could be due to the different experimental models used. The results reported by Tamada et al. (2000) support our findings, as they found that intraluminal infusion of EGF into goat uterine horns gradually reduced the uterine activity at either oestrus or dioestru. One of the questions that must be answered is which cells within the uterine tissue are responsible for producing EGF. The study of Kusakabe et al. (1999) demonstrates that murine uterine natural killer cells are immunohistochemically positive for anti-EGF antibody, especially at days 6–9 and at day 15 of pregnancy. This result indicates that in murine pregnant uterus the large granular lymphocyte cells may be responsible for EGF secretion. More studies are being performed in our laboratory to determine which uterine cells are involved in the secretion of EGF during pregnancy in rats.

In conclusion, we present an animal model in which it is possible to study post-term delivery and the regulation of important mediators of pregnancy and parturition such as prostaglandins, NO and progesterone.
The authors would like to thank R. Morales and A. Inés Casella for their technical support. The authors would also like to thank V. Rettori for her constructive criticism of the manuscript. This work was supported by FONCYT (PICT 98/05–04426).

References

Bredt DS and Snyder SH (1987) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum Proceedings National Academy of Sciences USA 84 9300–9303

Kujuba DA, Fletcher BS, Varum BC, Lin RW and Hersham HR (1991) Tis 10, a phosphor ester tumor promoter inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue Journal of Biological Chemistry 266 12 866–12 878

abnormal pregnancies Journal of Society of Gynecological Investigation 3 17–19

Received 14 March 2003.
First decision 21 May 2003.
Revised manuscript received 26 June 2003.
Accepted 3 July 2003.