Inhibition of in vitro maturation of equine oocytes by interleukin 1β via specific IL-1 receptors

A. Martoriati, M. Caillaud, G. Goudet and N. Gérard*

Équipe Reproduction Équine, Unité de Physiologie de la Reproduction et des Comportements, INRA 37380 Nouzilly, France

Interleukin 1β (IL-1β) inhibits the LH-induced resumption of meiosis of equine oocytes in vitro. The present study was performed to clarify this inhibitory effect of IL-1β by testing increasing concentrations of IL-1β, and by measuring the effect of addition of IL-1 receptor antagonist (IL-1RA) to the culture medium. The effect of IL-1β on epidermal growth factor (EGF)-induced resumption of meiosis was also studied. Cumulus-oocyte complexes (COCs) were collected from subordinate follicles on ovaries obtained from an abattoir. In five distinct experiments, COCs were cultured for 30 h and nuclear maturation of oocytes was evaluated by DNA staining. In Expt 1, seven different media were tested: medium 1 (TCM199 + BSA); medium 2 (medium 1 + 50 ng IL-1β ml⁻¹); medium 3 (medium 1 + eLH); and media 4, 5, 6 and 7 (medium 3 containing 0.1, 1.0, 10.0 and 50.0 ng IL-1β ml⁻¹, respectively). In Expt 1, four different media were tested: medium 1 (TCM199 + BSA + eLH); medium 2 (medium 2 + medium 1); medium 3 (medium 2 + 50 ng IL-1β ml⁻¹); and media 4 and 5 (medium 2 + IL-1RA at 50 and 100 ng ml⁻¹, respectively). In Expt 2, three different media were tested: medium 1 (TCM199 + BSA + eLH); medium 2 (medium 2 + 50 ng IL-1β ml⁻¹); and medium 3 (medium 2 + 50 ng IL-1β ml⁻¹). In Expt 3, three different media were tested: medium 1 (TCM199 + BSA + eLH); medium 2 (medium 2 + IL-1RA at 50 and 100 ng ml⁻¹, respectively). In Expt 3, four different media were tested: medium 1 (TCM199 + BSA + eLH); medium 2 (medium 2 + medium 1); medium 3 (medium 2 + 50 ng IL-1β ml⁻¹); and medium 3 (medium 2 + 50 ng IL-1RA ml⁻¹). In Expt 1, LH alone induced an increase in the rate of in vitro maturation (IVM) of equine oocytes (P < 0.05), whereas IL-1β alone did not have any effect compared with medium 1. IL-1β (50 ng ml⁻¹) significantly inhibited the eLH-induced IVM of oocytes (P < 0.05) compared with medium 3. A decrease in rate of maturation was observed from a concentration of 10 ng IL-1β ml⁻¹ onwards. In Expt 2, the presence of IL-1RA in the culture medium inhibited the effect of IL-1β and restored the rate of oocyte maturation (P < 0.05) observed in the presence of LH alone. In Expts 3 and 4 it was demonstrated that IL-1RA alone had no positive effect on the eLH-induced rate of maturation. In Expt 5, IL-1β inhibited the EGF-induced resumption of meiosis (P < 0.05). The addition of IL-1RA inhibited this effect and restored the rate of oocyte maturation (P < 0.05) observed with EGF alone. In conclusion, the present data confirm the inhibitory effect of IL-1β on IVM of equine oocytes induced by eLH and demonstrate its inhibitory effect on EGF-induced oocyte maturation. The rate of maturation decreased in a dose-dependent way and the lowest rate of maturation was observed at 50 ng IL-1β ml⁻¹ (P < 0.05). The use of IL-1RA inhibited these effects, demonstrating that the action of IL-1β is receptor-mediated. Moreover, the results clearly show that, in equine species, IL-1β is involved in the physiology of COCs by regulating resumption of meiosis.

Introduction

Ovulation is assimilated to a cyclic inflammatory-like process (Espey, 1980) in which interleukin 1 (IL-1), an established mediator of inflammation, may play an intermediate role (Hurwitz et al., 1991). IL-1 is organized as a gene system including two bioactive ligands, IL-1α and IL-1β; Dinarello, 1994), two types of receptor (IL-1R1 and IL-1R2; Colotta et al., 1991; Sims and Dower, 1994) and a natural receptor antagonist (IL-1RA) that regulates the biological activity of IL-1 ligand (Arend, 1991). Several lines of evidence support the intermediate role of IL-1 at the ovarian follicle level. First, the supply of IL-1β to an ex vivo-perfused ovary promotes ovulation in rat and rabbit models and synergizes with LH (Brännström et al., 1993a; Takehara et al., 1994). In parallel, the supply of IL-1RA attenuates LH-supported ovulation ex vivo (Peterson et al., 1993) and in vivo (Simon et al., 1994a). Second, the expression of some components of the intraovarian IL-1 system (for example, IL-1α, IL-1β, IL-1RA, IL-1R1 and IL-1R2) was detected in ovarian follicles of rats (Hurwitz et al., 1991; Kol et al., 1999a,b,c), mice (Simon et al., 1994b), humans (Hurwitz et al., 1992; Simon et al., 1994b), humans (Hurwitz et al., 1992; Simon et al., 1994b), humans (Hurwitz et al., 1992; Simon et al., 1994b), humans (Hurwitz et al., 1992; Simon et al., 1994b), humans (Hurwitz et al., 1992; Simon et al., 1994b), humans (Hurwitz et al., 1992; Simon et al., 1994b), humans (Hurwitz et al., 1992;
Chen et al., 2000) and mares (Martoriatiet al., 2002; Martoriatit and Gerard, 2003). Finally, IL-1β regulates several ovulation-associated events in vitro, such as the activation of nitric oxide synthase (Ben-Shlomo et al., 1994a,b) and the synthesis of proteases (Hurwitz et al., 1993), plasminogen activator (Bonelloet al., 1995; Karakji and Tsang, 1995), hyaluronic acid (Kokia et al., 1993) and prostaglandins (Kokia et al., 1992; Brännström et al., 1993b) in the preovulatory follicle. Moreover, IL-1 ligands (IL-1α and IL-1β) stimulate gonadotrophin-supported steroidogenesis in rat, hamster and human granulosa cells (Gottschall et al., 1987; Nakamura et al., 1990; Best and Hill, 1995).

We recently tested the potential role of IL-1β on in vitro maturation (IVM) of equine oocytes to determine the involvement of IL-1β in ovarian cell function (Martoriatiet al., 2002). IL-1β was found to display an inhibitory effect on the nuclear maturation of oocytes induced by equine LH (Martoriatiet al., 2002). The aim of the present study was to clarify the action of IL-1β on nuclear maturation of equine oocytes in vitro. Thus, the inhibitory effect of increasing doses of IL-1β on LH-induced resumption of meiosis in vitro was studied; the effect of IL-1β on the EGF-induced rate of maturation of equine oocytes was also measured. Furthermore, the in vitro effect of IL-1RA alone or in the presence of IL-1β was investigated.

Materials and Methods

Recovery and culture of cumulus–oocyte complexes (COCs)

Equine COCs were collected from ovaries at an abattoir (Goudet et al., 2000). Subordinate follicles were punctured and aspirated with an 18.5 gauge needle under 30 mm Hg of vacuum pressure. The follicular fluids recovered during collection were maintained at 32°C. After puncture, the follicular fluids were examined under a stereomicroscope for the presence of COCs. The morphology of the cumulus of recovered COCs was examined and they were classified as compact, expanded or denuded. Compact COCs were washed four times in PBS with gentamycin (50 μg ml⁻¹; Sigma, Saint Quentin Fallavier) and once in maturation medium (see below). The COCs were cultured individually in a humidified atmosphere (95% air and 5% CO₂) at 38.5°C for 30 h in 20 μl maturation medium covered with mineral oil (Sigma).

Examination of nuclear stage of oocytes

After culture, the COCs were rinsed twice in PBS at 37°C and their cumulus cells were stripped off with a small glass pipette. Totally denuded oocytes were rinsed once in PBS and DNA was stained with 1 μg bis-benzimide solution ml⁻¹ (Hoechst 33342; Sigma).

The oocytes were observed in a droplet on a slide under both a light and a fluorescence microscope to determine the nuclear stage. Oocytes with a polar body, an intact membrane (light microscopy) and two distinct spots of chromosomes stained by Hoechst (fluorescence microscopy) were considered to be in metaphase II (Goudet et al., 1997).

Experiment 1: effect of dose of IL-1β on rate of nuclear IVM

Seven different maturation media were used. Medium 1 contained tissue culture medium 199 (TCM-199; Sigma) supplemented with 0.5% (w/v) BSA (Sigma). Media 2 and 3 contained medium 1 supplemented with either recombinant human interleukin-1β (rhIL-1β; Eurobio, Les Ulis; 50 ng ml⁻¹; medium 2) or equine LH (eLH; NIH, Bethesda, MD; 5 μg ml⁻¹; medium 3). Media 4, 5, 6 and 7 were composed of medium 3 supplemented with 0.1, 1.0, 10.0 and 50.0 ng rhIL-1β ml⁻¹, respectively.

Experiment 2: effect of IL-1RA on nuclear IVM of oocytes exposed to IL-1β

Four maturation media were used. Medium 1 contained TCM-199 supplemented with 0.5% (w/v) BSA and 5 μg eLH ml⁻¹. Medium 2 was composed of medium 1 supplemented with 50 ng rhIL-1β ml⁻¹. Media 3 and 4 contained medium 2 supplemented with 50 and 100 ng recombinant human IL-1RA ml⁻¹ (rhIL-1RA; R and D systems, Abington), respectively.

Experiment 3: effect of IL-1RA on rate of nuclear IVM

Three maturation media were used. Medium 1 was TCM-199 supplemented with 0.5% (w/v) BSA and 5 μg eLH ml⁻¹. Medium 2 was composed of medium 1 supplemented with rhIL-1RA (50 ng ml⁻¹). Medium 3 was medium 2 supplemented with 50 ng rhIL-1β ml⁻¹.

Experiment 4: effect of dose of IL-1RA on rate of nuclear IVM

Four maturation media were used. Medium 1 was TCM-199 supplemented with 0.5% (w/v) BSA and 5 μg eLH ml⁻¹. Media 2, 3 and 4 were composed of medium 1 supplemented with 50, 100 and 150 ng rhIL-1RA ml⁻¹, respectively.

Experiment 5: effect of IL-1β on nuclear IVM of oocytes induced by EGF

Three different maturation media were used. Medium 1 contained TCM-199 supplemented with 0.5% (w/v) BSA and 50 mg mouse epidermal growth factor ml⁻¹ (EGF; Sigma). Media 2 and 3 contained medium 1 supplemented with either 50 ng rhIL-1β ml⁻¹ (medium 2)
or 50 ng rhIL-1β ml⁻¹ and 50 ng rhIL-1RA ml⁻¹ (medium 3).

Statistical analysis

In each experiment, the Pearson's chi-squared test was performed to compare rates of oocyte maturation using StatXact 5 software (CYTEL, Cambridge, MA; www.cytel.com).

Results

Experiment 1: effect of dose of IL-1β on rate of nuclear IVM

A total of 295 COCs from 102 ovaries was used in this experiment. Increasing doses of IL-1β were tested on equine oocytes. The rate of oocyte maturation was not significantly different between medium 1, which contained BSA only (control medium), and medium 2, which was supplemented with 50 ng IL-1β ml⁻¹ (Fig. 1). The rate of oocyte maturation was significantly higher in medium 3, which contained eLH, than in media 1 and 2 (P < 0.05). Addition of IL-1β to the culture medium containing eLH resulted in a dose-dependent decrease in rate of oocyte maturation from a concentration of 10 ng ml⁻¹ onwards. A dose of 50 ng IL-1β ml⁻¹ totally inhibited the positive effect of LH on oocyte maturation. Indeed, similar rates of maturation were observed in medium 1 and medium 7.

Experiment 2: effect of IL-1RA on nuclear IVM of oocytes exposed to IL-1β

A total of 186 COCs from 58 ovaries was used in this experiment. As observed in Expt 1, the rate of oocyte maturation was significantly higher in medium 1, which contained eLH, than in medium 2, which contained eLH and 50 ng IL-1β ml⁻¹ (P < 0.05; Fig. 2). Addition of IL-1RA at 50 ng ml⁻¹ (medium 3) or 100 ng ml⁻¹ (medium 4) significantly increased the rate of oocyte maturation compared with medium 2 (P < 0.05), and restored the rate of maturation to that observed in medium 1.

Experiment 3: effect of IL-1RA on rate of nuclear IVM

A total of 118 COCs from 46 ovaries was used in this experiment. Despite a slight increase in medium 2 (eLH + IL-1RA), the rates of maturation were similar in the three media tested (Fig. 3). This finding demonstrates that IL-1RA, in the absence of IL-1β, has no effect on LH-induced oocyte maturation.

![Fig. 1. Effect of interleukin 1β (IL-1β) on nuclear in vitro maturation of equine oocytes induced by eLH. Medium 1 contained TCM-199 supplemented with 0.5% (w/v) BSA. Media 2 and 3 contained medium 1 supplemented with either recombinant human IL-1β (rhIL-1β; 50 ng ml⁻¹; medium 2) or equine LH (eLH; 5 µg ml⁻¹; medium 3). Media 4, 5, 6 and 7 were composed of medium 3 supplemented with 0.1, 1.0, 10.0 and 50.0 ng rhIL-1β ml⁻¹, respectively. The histogram represents the percentage of oocytes in metaphase II. The number of oocytes analysed in each medium is indicated in brackets at the bottom of each bar. abDifferent letters indicate significant differences according to the Pearson’s chi-squared test (P < 0.05).](image1)

![Fig. 2. Effect of interleukin 1 receptor antagonist (IL-1RA) on nuclear in vitro maturation of equine oocytes in the presence of eLH and IL-1β. Medium 1 contained TCM-199 supplemented with 0.5% (w/v) BSA and 5 µg eLH ml⁻¹. Medium 2 was composed of medium 1 supplemented with 50 ng recombinant human IL-1β ml⁻¹. Medium 3 and 4 contained medium 2 supplemented with 50 and 100 ng recombinant human IL-1RA ml⁻¹ (rhIL-1RA), respectively. The histogram represents the percentage of oocytes in metaphase II. The number of oocytes analysed in each medium is indicated in brackets at the bottom of each bar. abDifferent letters indicate significant differences according to the Pearson’s chi-squared test (P < 0.05).](image2)
512 A. Martoriati et al.

![Graph](image1)

Fig. 3. Effect of interleukin 1 receptor antagonist (IL-1RA) on nuclear in vitro maturation of equine oocytes induced by eLH (5 µg ml⁻¹). Medium 1 was TCM-199 supplemented with 0.5% (w/v) BSA and 5 µg eLH ml⁻¹. Medium 2 was composed of medium 1 supplemented with recombinant human IL-1RA (rhIL-1RA, 50 ng ml⁻¹). Medium 3 was medium 2 supplemented with 50 ng rhIL-1β ml⁻¹. The histogram represents the percentage of oocytes in metaphase II. The number of oocytes analysed in each medium is indicated in brackets at the bottom of each bar. No significant difference between groups was observed (Pearson’s chi-squared test).

Experiment 4: effect of dose of IL-1RA on rate of nuclear IVM

A total of 181 COCs from 40 ovaries was used in this experiment. The rate of oocyte maturation was not different between medium 1, which contained eLH alone (control medium), and media 2 and 3, which were supplemented with IL-1RA at 50 and 100 ng ml⁻¹, respectively (Fig. 4). The rate of oocyte maturation was significantly decreased in medium 4, which contained the highest concentration of IL-1RA (150 ng ml⁻¹; *P* < 0.05). This finding confirms that IL-1RA has no positive effect on LH-induced oocyte maturation.

Experiment 5: effect of IL-1β on nuclear IVM of oocytes induced by EGF

A total of 95 COCs from 28 ovaries was used in this experiment. Addition of IL-1β (50 ng ml⁻¹) to COCs in the presence of EGF resulted in a significant decrease in the rate of oocyte maturation (*P* < 0.01; Fig. 5). IL-1RA at a concentration of 50 ng ml⁻¹ inhibited this negative effect and restored the rate of maturation to that observed in medium 1, which contained EGF only.

Discussion

Martoriati et al. (2002) demonstrated that IL-1β inhibits the eLH-induced resumption of meiosis of equine oocytes in vitro. The aim of the present study was to clarify this inhibitory effect.

Expt 1 was designed to determine the lowest dose of IL-1β that is required to inhibit eLH-induced oocyte maturation. The results demonstrate that completion of meiosis is influenced by IL-1β in a dose-dependent way. The inhibitory effect was observed from 10 ng ml⁻¹
onwards and was significant at 50 ng ml\(^{-1}\). It is possible that IL-1\(\beta\) may act directly on LH or on its receptor. This hypothesis was tested by investigating the effect of IL-1\(\beta\) in the presence of EGF, another factor involved in IVM of oocytes (Goudet et al., 2000). In Expt 5 it was observed that IL-1\(\beta\) inhibited the resumption of meiosis induced by EGF as observed with LH. This finding indicates that IL-1\(\beta\) may be involved in the regulation of meiosis downstream of the LH and EGF receptors rather than on the LH signal transduction, as was suggested in our previous work (Martoriati et al., 2002). Although the mechanism by which IL-1\(\beta\) regulates oocyte maturation is unclear, it can be hypothesized that IL-1\(\beta\) could act at a common pathway between LH and EGF, and inhibit resumption of meiosis. Indeed, IL-1\(\beta\) could exert an effect on meiosis by regulating the synthesis or the activity of some key proteins such as p34cdc2, cycline B or MAP kinase.

IL-1\(\beta\) concentration in follicular fluid has been measured at between 53 pg ml\(^{-1}\) and 255 pg ml\(^{-1}\) in humans (Machelon et al., 1995), and the production of IL-1\(\beta\) by granulosa cells in culture has been estimated at 350 pg ml\(^{-1}\) (24 h\(^{-1}\)). No data are available on the intrafollicular concentration of IL-1\(\beta\) in horses, but the results of the present study show that IL-1\(\beta\) influences IVM of equine oocytes from 10 ng ml\(^{-1}\) onwards. This dose is higher than the intrafollicular physiological concentration measured so far in humans (Machelon et al., 1995) but corresponds to the dose used to study the effect of IL-1\(\beta\) on human steroidogenesis in vitro (Best and Hill, 1995) and on biosynthesis of rat ovarian prostaglandins (Ando et al., 1998). Moreover, it is possible that the effective dose used in vitro in the present study could be explained by some species-specific features. Indeed, it has already been shown in the equine species that in vivo maturation conditions are somewhat different from those in other mammals: there is no LH surge, but a slow increase lasting several days, with a maximum value observed at 1 day after ovulation (Whitmore et al., 1973; Irvine and Alexander, 1994).

The aim of the second part of the present study was to determine how IL-1\(\beta\) acts on oocyte maturation. IL-1RA is a competitive inhibitor of the actions of both IL-1\(\alpha\) and IL-1\(\beta\). It regulates IL-1 ligand biological activity by binding to IL-1 receptors without inducing any cellular effect (Hannum et al., 1990; Arend, 1991; Dripps et al., 1991). In several studies, IL-1RA has been used to demonstrate that the effect of IL-1\(\beta\) is mediated via IL-1-specific receptors. For example, the presence of IL-1RA in culture media limits IL-1\(\beta\) fixation on its receptor and thus limits the effect of IL-1\(\beta\) on prostaglandin production by human (Hurwitz et al., 1995) and rat (Ando et al., 1998) granulosa cells. In Expt 2, IL-1RA was used in the culture media and it was observed that IL-1RA reversed the inhibitory effect of IL-1\(\beta\) on the oocyte maturation induced by LH. However, in Expt 5 it was shown that IL-1RA neutralized the IL-1\(\beta\) inhibitory effect and restored the EGF positive action on oocyte maturation. Moreover, equine oocytes expressed IL-1R2 and cumulus cells expressed the two types of IL-1 receptor (IL-1R1 and IL-1R2; Martoriati et al., 2002). Taken together, these results demonstrate that the inhibitory effect of IL-1\(\beta\) on oocyte maturation is receptor-mediated and is a biological effect of IL-1\(\beta\) rather than a cytotoxic effect of IL-1\(\beta\) in the culture conditions used.

As equine COCs contain IL-1\(\beta\) mRNA (Martoriati et al., 2002), it can be hypothesized that COCs are capable of producing some biologically active IL-1\(\beta\). This local IL-1\(\beta\) could then interact with eLH or EGF and thus limit the rate of oocyte maturation in the culture conditions used. This hypothesis was tested in Expts 3 and 4 of the present study. In both experiments, IL-1RA was added to the culture medium containing LH to neutralize the potential inhibitory action of some locally produced IL-1\(\beta\). In Expt 3, a slight, but not significant, positive effect of IL-1RA (50 ng ml\(^{-1}\)) on the rate of oocyte maturation induced by eLH was observed. In Expt 4, the supplementation of culture medium with IL-1RA at 50 and 100 ng ml\(^{-1}\) confirmed the absence of a
positive effect of IL-1RA on the rate of oocyte maturation induced by eLH. This observation can be explained by the absence of active IL-1β production by COCs in the culture conditions used. It is possible that the IL1β mRNA that is present in equine COCs (Martoriati et al., 2002) may not be translated (or is translated at very low level), or is translated in a non-biologically active protein, or is not secreted. Thus, the effect of IL-1RA cannot be visualized. The absence of a positive effect of IL-1RA on rate of oocyte maturation induced by eLH can also be explained by the fact that the rate of maturation cannot be increased in our culture conditions, as non-matured oocytes are incompetent to resume IVM. Finally, considering that equine COCs contained some IL-1RA mRNA (Martoriati et al., 2002), the absence of a positive effect of IL-1RA might also be explained by the neutralization of endogenous IL-1β by some locally produced IL-1RA. The significant decrease in rate of maturation was observed in medium supplemented with IL-1RA at 150 ng ml⁻¹, indicating that IL-1RA probably has a cytotoxic effect at high concentration.

In conclusion, the results of the present study confirm that IL-1β has an inhibitory effect on the IVM of equine oocytes induced by eLH. This effect is dose-dependent and is significant at a dose of 50 ng IL-1β ml⁻¹. The use of IL-1RA allowed us to demonstrate indirectly that IL-1β acts by binding to specific IL-1 receptors. Finally, the inhibitory effect of IL-1β was not exclusive to eLH, as it was also observed with EGF. This result indicates that the action of IL-1β is probably on the regulation of meiosis. Although the mechanism by which IL-1β regulates oocyte maturation is unclear, the IL-1 family may play an essential role in the physiology of COCs in equine species.

The authors would like to thank C. Lahuec, M. Musset and A. Dabert for technical assistance. Equine LH was generously provided by NIDDK’s National Hormone & Pituitary Program (A. F. Parlow, NIH).

References

Ben-Shlomo I, Adashi EY and Payne DW (1994a) The morphogenic/cytotoxic and prostaglandin-stimulating activities of interleukin-1 beta in the rat ovary are nitric oxide independent Journal of Clinical Investigation 94 1463–1469

Best CL and Hill JA (1995) Interleukin-1α and -β modulation of luteinized human granulosa cell oestrogen and progesterone biosynthesis Human Reproduction 10 3206–3210

Bonello NP, Norman RJ and Brännström M (1995) Interleukin-1β inhibits luteinizing hormone-induced plasminogen activator activity in rat preovulatory follicles Endocrine 3 49–54

Brännström M, Wang L and Norman RJ (1993a) Ovulatory effect of interleukin-1 on the perfused rat ovary Endocrinology 132 399–404

Dinarello CA (1994) The interleukin-1 family: 10 years of discovery FASEB Journal 8 1314–1325

Dripps DJ, Brandhuber BJ, Thompson RC and Eisenberg SP (1991) Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction Journal of Biological Chemistry 266 10 331–10 336

Kokia E, Hurwitz A, Ben-Shlomo I, Adashi EY and Yanagishita M (1993) Receptor-mediated stimulatory effect of IL-1 beta on hyaluronic acid
and proteoglycan biosynthesis by cultured rat ovarian cells: role for heterologous cell–cell interactions Endocrinology 133 2391–2394
Kol S, Ruutiainen-Altman K, Scherzer WJ, Ben-Shlomo I, Ando M, Rohan RM and Adashi EY (1999a) The rat intraovarian interleukin (IL-1) system: cellular localization, cyclic variation and hormonal regulation of IL-1β and of the type I and II IL-1 receptors Molecular and Cellular Endocrinology 149 115–128
Martorati A and Gerard N (2002) Interleukin-1 (IL-1) system genes expression in granulosa cells: kinetics during terminal preovulatory follicle maturation in the mare Reproductive Biology and Endocrinology 1 42 (http://www.rbej.com/content/pdf/1477-7827-1–42.pdf)
Peterson CM, Hales HA, Hatasaka HH, Mitchell MD, Rittenhouse L and Jones KP (1993) Interleukin-1β (IL-1β) modulates prostaglandin production and the natural IL-1 receptor antagonist inhibits ovulation in the optimally stimulated rat ovarian perfusion model Endocrinology 133 2301–2306
Sims JE and Dower SK (1994) Interleukin-1 receptors European Cytokine Network 5 539–546
Whitmore HL, Wentworth BC and Ginther OJ (1973) Circulating concentrations of luteinizing hormone during estrous cycle of mares as determined by radioimmunoassay American Journal of Veterinary Research 34 631–636

Received 13 November 2002.
First decision 19 December 2002.
Revised manuscript received 20 June 2003.
Accepted 25 June 2003.