Evaluation of the contribution of cyclooxygenase 1 and cyclooxygenase 2 to the production of PGE\textsubscript{2} and PGF\textsubscript{2α} in epithelial cells from bovine endometrium

J. Parent1,*, C. Villeneuve1,* and M. A. Fortier1,2†

1Unité de Recherche en Ontogénie et Reproduction, Centre Hospitalier Universitaire de Québec (CHUL), Centre de Recherche en Biologie de la Reproduction (CRBR); and 2Département d’Obstétrique et Gynécologie, Université Laval, Ste-Foy, QC, Canada G1V 4G2

In ruminants, the production of prostaglandins by the endometrium is critical for recognition of pregnancy. In the absence of an embryonic signal, luteolytic pulses of PGF\textsubscript{2α} are released by the uterus. In contrast, the presence of a viable conceptus reduces the production of PGF\textsubscript{2α} relative to PGE\textsubscript{2} and prevents luteolysis through the release of trophoblastic interferon (IFN-\texttau). Initially, it was thought that epithelial and stromal endometrial cells were specialized in the production of a single type of prostaglandin. However, purified cell populations of both types of cell can produce PGF\textsubscript{2α} and PGE\textsubscript{2}; therefore, selective production of PGF\textsubscript{2α} and PGE\textsubscript{2} must be regulated within each type of cell. Two distinct prostaglandin synthases, cyclooxygenase 1 and cyclooxygenase 2, are involved in prostaglandin production and each may catalyse the production of a different prostaglandin. This possibility was investigated in cultured epithelial cells from bovine endometrium. Cells were treated with oxytocin or arachidonic acid, and expression of cyclooxygenase 1 and cyclooxygenase 2 proteins was monitored over time and correlated with prostaglandin accumulation. Cells were also treated with increasing doses of inhibitors of cyclooxygenase 1 or cyclooxygenase 2 (non-steroidal anti-inflammatory drugs; NSAIDs) with or without arachidonic acid or oxytocin: flurbiprofen (0–50 \textmu mol l−1) was used as a non-selective inhibitor; valeryl salicylate (0–500 \textmu mol l−1) was used as a cyclooxygenase 1 inhibitor and NS-398 (0–1 \textmu mol l−1) was used as a cyclooxygenase 2 inhibitor. After stimulation with arachidonic acid or oxytocin, prostaglandin production and expression of cyclooxygenase 2 protein were increased. All inhibitors were able to block basal and stimulated prostaglandin production. These results indicate that in endometrium most, if not all, prostaglandin production is probably processed through cyclooxygenase 2.

*J. Parent and C. Villeneuve contributed equally to this work.

†Correspondence

Email: mafortier@crchul.ulaval.ca

Introduction

Prostaglandins are important regulators of reproductive events including ovulation, implantation, parturition, luteolysis and recognition of pregnancy (Poyser, 1995; Dubois \textit{et al.}, 1998). In ruminants, PGF\textsubscript{2α} originating from the endometrium is responsible for luteolysis (McCracken \textit{et al.}, 1999). Exogenous PGF\textsubscript{2α} can be used to terminate pregnancy and to initiate a new oestrous cycle for synchronization of ovulation in cyclic animals (Horton and Poyser, 1976; McCracken \textit{et al.}, 1999). Although it is less clearly established, PGE\textsubscript{2} is thought to exert actions opposite to PGF\textsubscript{2α} to favour establishment of pregnancy and may have a luteoprotective action that is either luteotrophic or anti-luteolytic (Pratt \textit{et al.}, 1977; Magness \textit{et al.}, 1981). PGE\textsubscript{2} also modulates the immune system to prevent rejection of the embryo allograft (Lala, 1990).

In bovine endometrium, epithelial and stromal cells have specific morphological and functional properties. Epithelial cells preferentially produce PGF\textsubscript{2α}, whereas stromal cells produce mainly PGE\textsubscript{2} (Fortier \textit{et al.}, 1988; Kim and Fortier, 1995; Asselin \textit{et al.}, 1996, 1997a,b,c). In bovine endometrial cells in primary culture, PGF\textsubscript{2α} content is increased after stimulation with oxytocin in epithelial cells only (Kim and Fortier, 1995; Asselin \textit{et al.}, 1996). In contrast, exposure to interferon tau (IFN-\texttau), the pregnancy recognition signal produced by the embryo in ruminants, increases PGE\textsubscript{2} production by both epithelial and stromal cells when used at high physiological concentrations (Asselin \textit{et al.}, 1997a). This stimulation is such that it changes the relative production of prostaglandin in favour of PGE\textsubscript{2} in epithelial cells. In stromal cells, PGE\textsubscript{2} production is also increased by IFN-\texttau, maintaining the preferential production of PGE\textsubscript{2} in these cells (Asselin \textit{et al.}, 1997a).
Cyclooxygenase proteins are rate-limiting enzymes for the conversion of arachidonic acid into PGH₂, the common precursor of all prostaglandins. There are two isoforms of cyclooxygenase: cyclooxygenase 1 and cyclooxygenase 2. The constitutive isoform, cyclooxygenase 1, is expressed in most nucleated cells, whereas the inducible cyclooxygenase 2 isoform plays a role in various pathological and some physiological conditions (Smith et al., 1996, 2000). The same authors proposed that the two different cyclooxygenase isoforms could be associated with distinct pools of arachidonic acid and different downstream enzymes (Smith et al., 1996, 2000). Accordingly, it has been shown that different prostaglandin isomerases are functionally associated with cyclooxygenase 1 and cyclooxygenase 2 when transfected into HEK-293 cells (Murakami et al., 2000; Tanioka et al., 2000). The activity of cyclooxygenase can be blocked by non-steroidal anti-inflammatory drugs (NSAIDs) (Poyser, 1995). Selective inhibitors for the cyclooxygenase 2 isoform have recently been developed. In sheep, cyclooxygenase 1 is expressed at a steady state during the oestrous cycle and in early pregnancy (Charpigny et al., 1997). During the oestrous cycle in sheep, cyclooxygenase 2 is expressed transiently from day 12 to day 15 and expression decreases thereafter, whereas in early pregnancy, expression is first detected on day 12 and remains high until day 17, when it decreases progressively until day 25 (Charpigny et al., 1997). Arosh et al. (2002) demonstrated that during the bovine oestrous cycle, cyclooxygenase 1 is not expressed either at the mRNA or at the protein level, but that cyclooxygenase 2 is expressed throughout the cycle with maximal expression between day 16 and day 18. In vivo, cyclooxygenase 1 is localized in both epithelial and stromal cells of sheep endometrium, and cyclooxygenase 2 is localized in the luminal epithelium and in the superficial glands (Charpigny et al., 1997). In primary cultures of bovine endometrial cells, northern blot analysis demonstrated that expression of cyclooxygenase 1 mRNA is fairly high in epithelial and stromal cells, whereas expression of cyclooxygenase 2 mRNA is very low under non-stimulated conditions in both types of cell (Asselin et al., 1997c). Asselin et al. (1997b) reported an increase in expression of cyclooxygenase 2 mRNA and PGF₂α production after stimulation with oxytocin. In contrast, a similar increase in expression of cyclooxygenase 2 mRNA was observed with increased PGE₂ production after stimulation with IFN-γ (Asselin et al., 1997a,c). Expression of cyclooxygenase 1 was not affected by either treatment; cyclooxygenase 1 and cyclooxygenase 2 proteins were not studied (Asselin et al., 1997b,c).

The aim of the present study was to determine whether preferential production of PGE₂ or PGF₂α in endometrial epithelial cells could be attributed to a specific cyclooxygenase isoform. Treatment with oxytocin and arachidonic acid, both of which stimulate the production of prostaglandin, was used in the presence and absence of NSAIDs to inhibit cyclooxygenase 1 and cyclooxygenase 2.

Materials and Methods

Materials

Tissue culture plates were purchased from Sarstedt (Newton, NC) and fetal bovine serum was obtained from Wisent Inc. (Saint-Bruno, QC). RPMI-1640 was obtained from ICN Biomedicals (Aurora, OH). Cyclooxygenase 1 and cyclooxygenase 2 antibodies were kindly provided by S. Kargman (Merck Frosst, Kirkland, QC). Tracers for PGE₂ and PGF₂α used in the enzyme immunoassay and inhibitors (flurbiprofen, NS-398 and valeryl salicylate) were purchased from Cayman Chemical (Ann Arbor, MI). The goat anti-rabbit and the goat anti-mouse antibodies conjugated to horseradish peroxidase were obtained from Jackson ImmunoResearch Laboratories (West Grove, PA). Renaissance western blot chemiluminescence reagent was purchased from Perkin-Elmer (Boston, MA). Oxytocin, arachidonic acid and anti-β-actin antibody were obtained from Sigma (St Louis, MO). Hyperfilm ECL was purchased from Amersham Pharmacia Biotech (Baie d’Urfé, QC).

Isolation and culture of epithelial cells

Bovine uteri were collected from an abattoir within 15 min of death, and the physiological status of the tissue was estimated by examination of ovarian morphology (Arosh et al., 2002). Uteri were transported on ice to the laboratory and dissected in a laminar flow hood. Epithelial cells were isolated by selective digestion with trypsin as described by Fortier et al. (1988) and grown in RPMI-1640 supplemented with 10% FBS-DC (depleted of steroids by dextran–charcoal extraction) at 37°C in a humidified atmosphere of 5% CO₂ in air. Cells were cultured in 24-well plates; the medium was changed every 2 days until the cells were used. Confluence of epithelial cells occurred after 6–10 days in culture. A total of five early-cycle uteri (days 1–5 determined as described by Arosh et al. (2002)) was used.

Experimental protocol

After cells reached confluence, the medium was replaced with 1.0 ml fresh serum-free RPMI-1640 containing stimulators or increasing doses of inhibitors or both (arachidonic acid: 10 μmol l⁻¹; oxytocin: 10⁻⁷ mol l⁻¹; flurbiprofen: 0–50 μmol l⁻¹; valeryl salicylate: 0–500 μmol l⁻¹; NS-398: 0–1 μmol l⁻¹). According to the manufacturer’s indications, flurbiprofen is a non-selective inhibitor, with a preferential affinity for cyclooxygenase 1 at 0.04 μmol l⁻¹ and for cyclooxygenase 2 at 0.51 μmol l⁻¹. Valeryl salicylate, another
non-selective inhibitor (IC50 value: 0.8 mmol l⁻¹ for cyclooxygenase 1 and 15 mmol l⁻¹ for cyclooxygenase 2) was used at concentrations (1–500 µmol l⁻¹) close to the cyclooxygenase 1 IC50 value, and NS-398 was used as a cyclooxygenase 2 specific inhibitor (IC50 value: 220 µmol l⁻¹ for cyclooxygenase 1 and 0.15 µmol l⁻¹ for cyclooxygenase 2). Each treatment was carried out in triplicate. The cells were incubated for 24 h, except for the time-course experiments, in which supernatant was recovered and cells were lysed at each time point indicated. For all experiments, at the end of the incubation period the culture medium was recovered for prostaglandin measurement and was stored at −20°C until further processing. For protein extraction, the cells were lysed with 200 µl lysis buffer (10 mmol Tris–HCl l⁻¹, pH 7.4; 1% (w/v) SDS; 1 mmol dithiothreitol l⁻¹; and 1 mmol phenylmethylsulphonylfluoride l⁻¹ (PMSF)) and extraction was performed immediately.

Protein extraction

Protein extraction and measurement were performed as described by Chapdelaine et al. (2001). Protein samples were suspended in 30 µl SDS-PAGE loading buffer (0.06 mol Tris–HCl l⁻¹, pH 6.8; 1% (w/v) SDS; 1% (v/v) 2-mercaptoethanol; 10% (v/v) glycerol; and 0.025% (w/v) bromophenol blue) and boiled for 3 min. Protein content was estimated using 1 µl of the sample.

Western blot analysis

Aliquots (5 µg) of total protein were loaded in each lane and subjected to electrophoresis through 10% (w/v) SDS–polyacrylamide gels followed by electrophoresis on to a nitro-cellulose membrane. Prestained protein markers were used as molecular weight standards for each analysis. After staining with Ponceau Red to ensure that the same amount of protein was transferred on to the membrane, blocking was done in 5% (w/v) fat-free dry milk powder in PBS and 0.05% (v/v) Tween (PBS–Tween) overnight. The membrane was incubated with the antibody raised against cyclooxygenase 2 (lot no. 243; Merck Frosst) or cyclooxygenase 1 (lot no. 241; Merck Frosst; dilution 1 in 3000), or β-actin (dilution 1 in 5000 in 2% (w/v) fat-free dry milk powder in PBS–Tween) for 1 h at room temperature. Washings were done for 30 min in PBS–Tween. The second antibody, goat anti-rabbit (cyclooxygenase 1 or cyclooxygenase 2 analysis) or goat anti-mouse (β-actin analysis) conjugated to horseradish peroxidase (dilution 1 in 10 000 in 2% (w/v) fat-free dry milk powder in PBS–Tween) was then incubated for 45 min at room temperature. The membrane was washed for another 30 min in PBS–Tween. The bands were revealed by addition of a chemiluminescent substrate applied according to the manufacturer’s instructions (Renaissance; Perkin-Elmer). The blots were exposed to Hyperfilm ECL with intensifying screen. The bands were quantified by Biologic Visage 110s from Genomic Solutions Inc. (Ann Harbor, MI).

ELISA for prostaglandins

An enzyme immunoassay was used for measurement of PGE2 and PGF2α, using acetylcholinesterase-linked prostaglandin tracers as described by Asselin et al. (1996). Fully characterized rabbit anti-PGE2 (Evans et al., 1982; Asselin et al., 1996) and sheep anti-PGF2α (Bio Quant, Ann Arbor, MI) were used. The inter- and intra-assay coefficients of variation (n = 12) were 16 and 10%, respectively.

Statistical analyses

Data for prostaglandin concentrations are presented as the mean ± SEM of ratio of protein:β-actin or percentage of control or percentage of content at time 0. The data were treated by analysis of variance using Super ANOVA Software (Abacus Concepts Inc., Berkeley, CA). Sources of variation included experiments, treatments and their interactions. Individual comparison of means was made using Student–Newman–Keuls test. Independent variables were the concentration of inhibitor or time of stimulation, and the dependent variables were the amount of prostaglandins produced or the amount of cyclooxygenase proteins. Differences were considered significant at P < 0.05.

Results

Expression of cyclooxygenase 1 and cyclooxygenase 2 protein in relation to PGF2α and PGE2 production

Expression of cyclooxygenase 1 and cyclooxygenase 2 proteins was measured by western blot analysis after treatment of epithelial cells with optimal concentrations of oxytocin (Fig. 1) or arachidonic acid (Fig. 2), both of which are stimulators of prostaglandin production. Expression of cyclooxygenase 1 protein was not significantly affected after treatment with oxytocin (Fig. 1) or arachidonic acid (Fig. 2), whereas with arachidonic acid, expression of cyclooxygenase 2 protein occurred before the increase in expression of cyclooxygenase 2 protein.
Fig. 1. Expression of cyclooxygenase 1 and 2 proteins in relation to prostaglandin production in the presence of oxytocin. Primary bovine epithelial cells were grown to confluence and treated with oxytocin (10^{-7} \text{ mol l}^{-1}) for time periods ranging from 0 h to 24 h. The supernatant of each well was collected for prostaglandin estimation by ELISA (in triplicate). Proteins were extracted at each time point and western blot analysis was performed. (a) Expression of cyclooxygenase 1 protein. (b) Expression of cyclooxygenase 2 protein. (c) Amounts of PGE_2 (□) and PGF_2α (■). The blots were exposed for 20 s. Representative blots of one experiment are presented. Results are expressed as mean ± SEM of four different experiments. a–b Columns with different letters are significantly different (P < 0.05).

Fig. 2. Expression of cyclooxygenase 1 and 2 proteins in relation to prostaglandin production in the presence of arachidonic acid. Primary bovine epithelial cells were grown to confluence and treated with arachidonic acid (10 \mu\text{mol l}^{-1}) for time periods ranging from 0 h to 24 h. The supernatant of each well was collected for prostaglandin estimation by ELISA (in triplicate). Proteins were extracted at each time point and western blot analysis was performed. (a) Expression of cyclooxygenase 1 protein. (b) Expression of cyclooxygenase 2 protein. (c) Amounts of PGE_2 (□) and PGF_2α (■). The blots were exposed for 20 s. Representative blots of one experiment are presented. Results are expressed as mean ± SEM of four different experiments. a–b Columns with different letters are significantly different (P < 0.05).
in prostaglandin production. The accumulation of both prostaglandins was progressive throughout the experimental period up to 24 h, but the difference compared with time 0 was significant only after 24 h (P < 0.05). Arachidonic acid induced a 30-fold stimulation of both PGE2 and PGF2α production, whereas oxytocin preferentially stimulated PGF2α production (14-fold) compared with PGE2 (fourfold) (Table 1).

Effect of cyclooxygenase inhibitors on selective production of prostaglandins by epithelial cells

The specific contribution of each isoform of cyclooxygenase to the selective production of PGE2 or PGF2α was evaluated using non-selective and selective inhibitors in the absence and presence of oxytocin or arachidonic acid stimulation. Under non-stimulated conditions (Fig. 3), prostaglandin production was inhibited in a dose-dependent manner by all the NSAIDs tested (P < 0.05). Flurbiprofen (Fig. 3a), valeryl salicylate (Fig. 3b) and NS-398 (Fig. 3c) induced similar patterns of inhibition, progressively reducing the production of both PGE2 and PGF2α. Flurbiprofen and NS-398 inhibited PGE2 and PGF2α to a similar extent (approximately 90% and 80% inhibition, respectively), whereas valeryl salicylate appears to inhibit PGE2 more than PGF2α (85% versus 70%, respectively). Flurbiprofen achieved the highest inhibition (90% inhibition at 50 µmol l−1), whereas NS-398 was the most potent inhibitor (80% inhibition at 0.05 µmol l−1).

Table 1. Prostaglandin accumulation in bovine epithelial cells in culture

<table>
<thead>
<tr>
<th>Condition</th>
<th>PGE2 (ng ml⁻¹)</th>
<th>PGF2α (ng ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>0.33 ± 0.19a</td>
<td>0.99 ± 0.58b</td>
</tr>
<tr>
<td>24 h</td>
<td>2.42 ± 0.16a</td>
<td>6.49 ± 0.41a</td>
</tr>
<tr>
<td>24 h + arachidonic acid</td>
<td>63.71 ± 16.46b</td>
<td>189.47 ± 42.62b</td>
</tr>
<tr>
<td>24 h + oxytocin</td>
<td>11.07 ± 2.21c</td>
<td>90.81 ± 17.16c</td>
</tr>
<tr>
<td>Flurbiprofen</td>
<td>0.26 ± 0.11a</td>
<td>0.72 ± 0.31a</td>
</tr>
<tr>
<td>Valeryl salicylate</td>
<td>0.31 ± 0.06a</td>
<td>0.17 ± 0.02a</td>
</tr>
<tr>
<td>NS-398</td>
<td>0.36 ± 0.09a</td>
<td>0.62 ± 0.32a</td>
</tr>
<tr>
<td>Flurbiprofen + oxytocin</td>
<td>0.30 ± 0.15a</td>
<td>1.31 ± 0.61a</td>
</tr>
<tr>
<td>Flurbiprofen + valeryl salicylate</td>
<td>0.73 ± 0.42a</td>
<td>1.63 ± 0.48a</td>
</tr>
<tr>
<td>Flurbiprofen + NS-398</td>
<td>1.05 ± 0.18a</td>
<td>2.28 ± 0.79a</td>
</tr>
<tr>
<td>Valeryl salicylate + oxytocin</td>
<td>14.29 ± 1.62a</td>
<td>8.06 ± 0.65a</td>
</tr>
<tr>
<td>Valeryl salicylate + NS-398</td>
<td>17.41 ± 5.88a</td>
<td>15.05 ± 3.81a</td>
</tr>
<tr>
<td>Arachidonic acid + flurbiprofen</td>
<td>23.54 ± 6.41a</td>
<td>35.68 ± 13.65a</td>
</tr>
</tbody>
</table>

Absolute values (ng ml⁻¹) under control conditions and after treatment with different doses of stimulants or inhibitors (arachidonic acid: 10 µmol l⁻¹; oxytocin: 10⁻⁷ mol l⁻¹; valeryl salicylate: 500 µmol l⁻¹; NS-398: 1 µmol l⁻¹; flurbiprofen: 50 µmol l⁻¹) are shown. Values are mean ± SEM of three different experiments. a,b,cWithin each column, values with different superscripts are significantly different (P < 0.05).

The NSAIDs induced a dose-dependent inhibition of the production of both prostaglandins in cells treated with oxytocin (Fig. 4) (P < 0.05). At low concentrations of
inhibited more completely than was observed without stimulation (reduction of > 95% for flurbiprofen at 50 μmol l\(^{-1}\); 93% reduction for valeryl salicylate at 500 μmol l\(^{-1}\); 85% reduction for NS-398 at 1 μmol l\(^{-1}\)).

A dose-dependent inhibition was also observed in cells treated with arachidonic acid (Fig. 5) \((P < 0.05)\). In general, the production of PGF\(_{2\alpha}\) was reduced at lower concentrations and at a greater extent than PGE\(_2\) for all three inhibitors tested. PGE\(_2\) production was inhibited less in arachidonic acid-treated cells than in cells treated with oxytocin or that had not been stimulated (60–75% at maximal concentration).

Discussion

The specific contribution of each cyclooxygenase isoform to the production of prostaglandins was studied *in vitro*. Under non-stimulated conditions, expression of cyclooxygenase 1 protein by endometrial epithelial cells was high, whereas expression of cyclooxygenase 2 was low. Stimulation of the same cells with oxytocin or arachidonic acid at concentrations known to stimulate prostaglandin production increased the amounts of cyclooxygenase 2 but did not affect cyclooxygenase 1. These results support the concept that under basal conditions, PGF\(_{2\alpha}\), the principal prostaglandin produced by epithelial cells \((Fortier et al., 1988; Kim and Fortier, 1995; Asselin et al., 1996, 1997a,b,c)\), would be produced through constitutively expressed cyclooxygenase 1. The increase in cyclooxygenase 2 in response to stimulators of prostaglandin production supports its identification as an inducible enzyme. This is further supported by the observation that expression of cyclooxygenase 2 protein in response to oxytocin or arachidonic acid treatment closely matched the production of prostaglandins. However, the hypothesis suggesting that the cyclooxygenase 1 pathway could be linked to the production of PGF\(_{2\alpha}\) and the cyclooxygenase 2 pathway to PGE\(_2\) production cannot be supported conclusively by the results of the present study. Both arachidonic acid and oxytocin stimulated the expression of cyclooxygenase 2 protein, but whereas arachidonic acid induced comparable increases in PGF\(_{2\alpha}\) and PGE\(_2\) accumulation, oxytocin stimulated PGF\(_{2\alpha}\) to a greater extent, as was also observed by Asselin *et al.* (1996). The use of selective inhibitors (NS-398 for cyclooxygenase 2; valeryl salicylate at concentrations close to cyclooxygenase 1 IC\(_{50}\) value; and flurbiprofen for cyclooxygenase 1 at low concentrations and cyclooxygenase 2 at high concentrations) did not produce conclusive results. First, all three inhibitors were able to block the production of both PGF\(_{2\alpha}\) and PGE\(_2\) in a dose-dependent way, even under non-stimulated conditions in which cyclooxygenase 1 was the major cyclooxygenase expressed. Second, all three inhibitors reduced prostaglandin production under stimulated conditions, in which cyclooxygenase 2 was presumably responsible for increased prostaglandin production.
These results question the ability of cyclooxygenase 1 to contribute significantly to the production of prostaglandin in the endometrium and the selectivity of the available cyclooxygenase inhibitors in endometrial cells.

It has been reported previously that oxytocin stimulates PGF$_{2a}$ production in a time- and dose-dependent manner (Asselin et al., 1996), and also expression of cyclooxygenase 2 mRNA and protein (Asselin et al., 1997b; Parent et al., 2003). The results of the present study demonstrate that the increase in prostaglandin production closely followed the induction of expression of cyclooxygenase 2 protein. The increase in expression of cyclooxygenase 2 protein preceded the increase in prostaglandin production; however, it should be noted that accumulation of prostaglandin was measured over time and hence the amounts shown at 24 h represent net production over the entire period of culture. As expression of cyclooxygenase 1 protein did not vary in response to oxytocin treatment, it is assumed that cyclooxygenase 2 is the primary pathway for increased production of prostaglandin under that condition. The same conclusion can be drawn from results with arachidonic acid stimulation. The reported differences in substrate sensitivity of cyclooxygenase 1 and cyclooxygenase 2 with respect to arachidonic acid (Swinney et al., 1997) can be used to predict their relative contributions to the production of PGF$_{2a}$ and PGE$_2$. The concentration of arachidonic acid ($10\, \mu$mol l$^{-1}$) used in the present study is optimal to study prostaglandin production over time. Indeed, concentrations < 10 μmol l$^{-1}$ did not stimulate prostaglandin production, and higher concentrations induced cell death (results not shown). It has been reported that cyclooxygenase 1 requires concentrations of arachidonic acid $\geq 10\, \mu$mol l$^{-1}$ to operate, whereas lower concentrations (< 2.5 μmol l$^{-1}$) are oxygenated exclusively by cyclooxygenase 2 (Morita, 2002). In the present study, a progressive increase in prostaglandin production was observed only after induction of cyclooxygenase 2 expression. Thus, it appears that the immunoreactive cyclooxygenase 1 expressed in the bovine endometrial cells was not able to process the exogenous arachidonic acid provided as would be expected from its enzymatic properties (Reddy and Herschman, 1994). The time-course study of cyclooxygenase 2 expression and prostaglandin accumulation showed that expression of cyclooxygenase 2 was a prerequisite for prostaglandin accumulation. As the rate of prostaglandin production followed the expression of cyclooxygenase 2, this pathway appeared more functional in cultured epithelial cells. Naderali and Poyser (1996) concluded that cyclooxygenase 2 was the predominant prostaglandin-forming enzyme in guinea-pig uterus; therefore, it is possible that it may also be the predominant prostaglandin-forming enzyme in bovine endometrium.

If the increased production of prostaglandins in response to oxytocin was mediated by activation of

![Figure 5](https://via.placeholder.com/150)

Fig. 5. Effect of cyclooxygenase inhibitors on selective production of PGE$_2$ (□) and PGF$_{2a}$ (■) in the presence of arachidonic acid. Primary bovine epithelial cells were grown to confluence and treated with oxytocin 10 min before treatment with (a) flurbiprofen, (b) valeryl salicylate or (c) NS-398 for 24 h. The supernatant of each well was collected for prostaglandin estimation by ELISA (in triplicate). Data are expressed as percentage of control and are mean ± SEM of three different experiments. a−eColumns with different letters are significantly different ($P < 0.05$).
cyclooxygenase 2 expression, the effect of the cyclooxygenase inhibitors is problematic. The production of PGF$_{2\alpha}$ appeared more sensitive to inhibition by all three inhibitors at low concentrations, and at high concentrations in the presence of arachidonic acid. The comparable effects of cyclooxygenase 1 and cyclooxygenase 2 inhibitors are strongly indicative of a lack of selectivity in our system. Similar results were observed in enterocytes by Longo et al. (1998), who concluded that cyclooxygenase inhibitors produce various responses depending on conditions and cell models. Such differences are also used for clinical management of hypertension with aspirin through differential sensitivity of platelets and endothelial cells.

The high cyclooxygenase 1 expression in endometrial epithelial cells in culture is difficult to explain as Arosh et al. (2002) showed that this isoform is not expressed in bovine endometrium during the oestrous cycle. In contrast, in ovine uterus cyclooxygenase 1 is expressed during the oestrous cycle without any modulation of its expression (Charpigny et al., 1997). Even if it is concluded that cells behave differently in culture, the fact that no variation in the expression of cyclooxygenase 1 protein was observed when prostaglandin production was stimulated supports the conclusion that cyclooxygenase 1 does not contribute to the production of prostaglandins in cultured endometrial cells. Indeed, cyclooxygenases are suicide enzymes that disappear as they catalyse the formation of prostaglandin and, thus, the amounts of cyclooxygenase 1 protein that should have decreased rapidly in the absence of messenger to replenish the pool. An alternative explanation could be that the cyclooxygenase 1 protein that was measured was present in an inactive form or in an inaccessible location such as occurs when it is located in the nucleus (Morita et al., 1995).

In conclusion, the hypothesis that cyclooxygenase 1 is preferentially linked to the production of PGF$_{2\alpha}$ and that cyclooxygenase 2 is preferentially linked to PGE$_2$ production in bovine endometrium cannot be supported by the results of the present study. In addition, the inhibitors tested were non-selective in our system, as all three showed the same pattern of inhibition for both prostaglandins. Cyclooxygenase 1 was present in high amounts and may contribute to the low amounts of prostaglandins produced under basal conditions, but it does not appear to contribute to any increase in prostaglandin production. However, these findings contradict our recent observations in vivo showing no expression of cyclooxygenase 1 in bovine endometrium during the oestrous cycle (Arosh et al., 2002). In contrast, expression of cyclooxygenase 2 was low under basal conditions, but could be induced by oxytocin and arachidonic acid, thus increasing prostaglandin production. Together, these results indicate that cyclooxygenase 2 is probably the functional isofrom present in bovine endometrium. If this is also true in mice, it could explain why cyclooxygenase 2 and not cyclooxygenase 1 knockout females show multiple reproductive failures (Lim et al., 1997).

The authors would like to thank T. G. Kennedy for generously donating the PGE$_2$ antiserum for the ELISA technique and S. Kargman from Merck Frosst for kindly providing the antibodies raised against cyclooxygenase 1 and cyclooxygenase 2. This research was supported by grants from CIHR and NSERC, Canada (M. A. Fortier). J. Parent is a holder of a studentship from NSERC, Canada.

References

Asselin E, Goff AK, Bergeron H and Fortier MA (1996) Influence of sex steroids on the production of prostaglandin F$_{2\alpha}$ and E$_2$ and response to oxytocin in cultured epithelial and stromal cells of the bovine endometrium Biology of Reproduction 54 371–379

Asselin E, Drolet P and Fortier MA (1997b) Cellular mechanisms involved during oxytocin-induced prostaglandin F$_{2\alpha}$ production in endometrial epithelial cells in vitro: role of cyclooxygenase-2 Endocrinology 138 4798–4805

Chapdelaine P, Vignola K and Fortier MA (2001) Protein expression directly from SDS-PAGE loading buffer for standardisation of samples from cell lysates or tissue homogenates before western blot analysis Biotechniques 31 478–482

Horton EW and Posyer NL (1976) Uterine luteolytic hormone: a physiological role for prostaglandin F$_{2\alpha}$. Physiological Reviews 56 595–651

Lala PK (1990) Interruption of murine pregnancy by activation of antigen-specific killer cells in the endometrium with indomethacin, high dose IL-2 or a combination Research in Immunology 141 159–167

human enterocytes stimulated by calcium ionophore and inflammatory agents Prostaglandins and Other Lipid Mediators 56 325–339

Received 3 April 2003.
First decision 5 June 2003.
Revised manuscript received 12 June 2003.
Accepted 23 June 2003.