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When gonadotrophin-stimulated IVF methods were being developed in the 1970s and
1980s, understanding of the physiology of FSH improved. In addition to its classic actions
of stimulating aromatase activity and oestradiol secretion by ovarian granulosa cells, FSH
was found to stimulate the ovarian production of an uncharacterized hormone known by
its specific effect of reducing pituitary responsiveness to GnRH. This hormone has been
called gonadotrophin surge-attenuating factor (GnSAF), gonadotropin surge-inhibiting
factor (GnSIF), various abbreviations (GnSAF/IF, GnSIF/AF) and also attenuin. Although
first described in the 1980s, GnSAF has still not been convincingly characterized and no
published candidate amino acid sequences conclusively relate to GnSAF bioactivity. On
the basis of superovulation studies and in vitro experimentation into the roles of steroids
in regulating LH, GnRH and GnRH self-priming, the concept that GnSAF has a role in the
regulation of LH secretion, the timing of the LH surge and the prevention of premature
luteinization developed. For at least a decade, understanding of the specific GnSAF effects
of reducing pituitary sensitivity to GnRH, especially GnRH self-priming and antagonizing
the stimulatory effects of oestradiol on GnRH-induced LH secretion, supported this
concept. However, improved knowledge of the changes in GnSAF bioactivity in follicular
fluid and serum in women requires revision of this concept. The present authors propose
that the main role of GnSAF is probably the negative regulation of pulsatile LH secretion,
mainly during the first half of the follicular phase, indicating a critical role in the regulation
of folliculogenesis and oestradiol secretion.

Evidence for an ovarian factor that reduced GnRH-
induced LH secretion dates back to the late 1970s
when de Jong et al. (1979) reported a <10 kDa fraction
of ethanol-extracted bovine follicular fluid (bFF) which
reduced pituitary LH release. By the second half of
the 1980s it was clear from the existing data that
FSH treatment of women, monkeys and rats stimulated
the production of an unidentified, non-steroidal factor.
This factor was named gonadotrophin surge-inhibiting
factor (GnSIF) or gonadotrophin surge-attenuating
factor (GnSAF) (Ferraretti et al., 1983; Littman and
Hodgen, 1984; Sopelak and Hodgen, 1984; Messinis and
Templeton, 1986). Schenken et al. (1984) showed that
when monkeys were superovulated, serum collected
from the ovarian vein inhibited the responsiveness of
cultured rat pituitary cells to GnRH, the first clear
evidence that GnSAF is an ovarian product. However,
ovarian vein serum and follicular fluid normally contain
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high concentrations of sex steroids, especially oestradiol.
Therefore, when trying to characterize this activity many
researchers used charcoal extraction of a wide range
of body fluids before bioassay for GnSAF using rat or
sheep pituitary cells or perifused fragments. Thus GnSAF
bioactivity has been detected in steroid-free serum and
follicular fluid or ovarian extracts from superovulated
and spontaneously cyclic women, cows, pigs and rats
and from testis extract and Sertoli cell-conditioned me-
dium (Fowler et al., 1990, 1994a, 1995; Koppenaal, et al.,
1993; Kita et al., 1994; Tio et al., 1994; Danforth et al.,
1987; van Dieten et al., 1999). Nevertheless, although
GnSAF bioactivity could not be steroidal in nature, it
remained to be demonstrated that the activity was not
due to inhibin. Whereas inhibin had suppressive effects
on GnRH-induced LH secretion at high concentrations
in the rat pituitary (Farnworth et al., 1988), this was not
the case in the ovine pituitary where inhibin stimulated
GnRH-induced LH secretion (Muttukrishna and Knight,
1990). Therefore, as steroid-free human follicular fluid
inhibits GnRH-induced LH secretion from both rat and
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sheep pituitaries (Fowler et al., 1994b), GnSAF cannot
be due to inhibin. This conclusion is reinforced by the
fact that co-incubation of human follicular fluid with
inhibin antiserum has no effect on GnSAF bioactivity,
as shown by continued reduction of GnRH-induced LH
secretion, despite blocking the specific inhibin bioacti-
vity of suppressing basal FSH secretion (Byrne et al.,
1995).

From the evidence for the existence of GnSAF it is
clear that production of this hormone is regulated by
FSH. The data supporting this are summarized in Fig. 1.
Data obtained from in vivo studies after the adminis-
tration of a single FSH injection to women (Fig. 1a)
or multiple FSH injections to cows (Fig. 1b) as well as
in vitro data based on granulosa cells from spontaneously
cyclic women (Fig. 1c) are shown. GnSAF bioactivity
in women (Messinis et al., 1991, 1993a, 1994a) was
calculated from measurements of circulating LH concen-
trations in response to GnRH injections, reduced
LH secretion reflecting increased circulating GnSAF.
GnSAF bioactivity in cows (Fowler and Price, 1997)
was calculated by in vitro bioassay of serial blood
samples. The bioassay depends upon the specific GnSAF
effect of reducing GnRH-induced LH secretion, but not
basal gonadotrophin release from cultured rat anterior
pituitary cells. After the onset of FSH treatment in
both women and cows, GnSAF bioactivity increased
more rapidly than either oestradiol or inhibin. However,
in post-menopausal women (Messinis et al., 1994b)
FSH treatment did not stimulate GnSAF activity. LH
pulse amplitude and frequency were reduced after 20 h
(Gosselin et al., 2000) in FSH-treated cows, the former
indicating increased GnSAF bioactivity in vivo. The
stimulation of other candidate hormones for suppression
of GnRH-induced LH secretion, that is oestradiol,
inhibin A and inhibin B, was markedly slower than
the stimulation of GnSAF (Messinis et al., 1991, 1993a,
1994a; Fowler and Price, 1997; Burger et al., 1998;
Gosselin et al., 2000; Welt et al., 2001). Whether GnSAF
acts on the hypothalamus directly, in this instance to
affect GnRH pulse frequency, is unknown but is unlikely
if GnSAF is about 60–70 kDa. However, by reducing LH
pulse amplitude, GnSAF could reduce the number of
apparent LH pulses detected.

The time course of stimulation of GnSAF bioactivity
from the cultured human granulosa cells collected from
small (6–9 mm) follicles was rapid (Fowler and Mason,
2000; Fig. 1c), supporting the observation of detectable
GnSAF bioactivity in vivo within 8 h of a single FSH
injection in women. It is noteworthy that the stimulation
of GnSAF bioactivity in vitro occurred in the absence
of androgen substrate for the granulosa cells, preventing
these cells from manufacturing significant amounts of
oestradiol in response to FSH treatment. Western blotting
of the proteins secreted by these granulosa cells with
a rat polyclonal antiserum with demonstrable GnSAF-
blocking effects (Fowler et al., 2002) showed upregulated

expression of a number of proteins after 5 h exposure of
the cells to FSH (Fowler and Mason, 2000). In a similar
way, when medium conditioned by granulosa cells and
theca and stromal tissues was added to a rat pituitary
cell bioassay, GnSAF bioactivity was present only in
granulosa cell-conditioned medium (Fowler et al., 2002).

It is now clear that GnSAF bioactivity is not a result
of inhibin A, inhibin B, oestradiol, progesterone or any
other steroid hormone and is an FSH-stimulated ovarian
product, originating specifically from the granulosa
cell.

Current status of GnSAF characterization

A detailed examination of purification strategies for
GnSAF is given in Fowler and Templeton (1996). Here
this review will discuss the status of biochemical
knowledge of GnSAF. To date there have been five
main published attempts to characterize GnSAF, yielding
amino acid sequences on four occasions, as shown
in Table 1. Unfortunately, the collaborative purification
attempt by the Danforth and Fowler groups (Mroueh
et al., 1996) obtained insufficient protein for Edman se-
quencing. This is one of the problems that has slowed
progress on the identification of GnSAF: very small
quantities of bioactive material after purification stra-
tegies. Despite the efforts made, not one of the sequences
in Table 1 has been conclusively demonstrated as con-
stituting the amino acid sequence for GnSAF bioactivity.
Furthermore, when protein sequence matches have been
taken from online databases, the candidate proteins do
not match mass or isolectic point (pI) values obtained for
GnSAF and are not known to have the ability to suppress
GnRH-induced LH secretion (Fowler et al., 2002).

The major problems with purification of GnSAF have
been its co-elution with serum albumin and IgGs, and the
fact that despite marked GnSAF bioactivity in a number
of biological fluids, the protein appears to be present at
low concentrations. The fact that the protein is present
at low concentrations makes it difficult for sufficient
bioactive material to be obtained for Edman sequencing.
Indeed, several sequencing attempts have resulted in
the identification of serum albumin and heavy chain
IgGs despite numerous steps, such as blue dye affinity
chromatography to reduce serum albumin contamination
(P. A. Fowler, H. D. Mason, W. T. Melvin, B. Byrne, Y.
Wilson, P. Cash, T. Sorsa-Leslie, L. Cowking, R. Bates
and W. Harris, unpublished observations, 1990–1999).

The latest published purification procedure has side-
stepped some of the problems previously encountered,
by using a serum and BSA-free granulosa–luteal cell
culture system (Fowler et al., 2002). The authors found
that human ovarian GnSAF bioactivity was associated
with proteins of approximately 64 kDa and a pI of 5.7–
5.8 pH. These values are in agreement with those of
Danforth and Cheng (1995) and Mroueh et al. (1996),
but are not in agreement with those of Tio et al. (1994),
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Fig. 1. The stimulation of gonadotrophin surge-attenuating factor (GnSAF) bioactivity by FSH both
in vivo in (a) normally cyclic and post-menopausal women; (b) dairy cows; and (c) in vitro from
granulosa cells collected from 6–9 mm follicles in spontaneously cyclic women. The periods of
increased GnSAF are shown by vertical yellow bars. In women (a) day 2 of the follicular phase is
subdivided (see italicized text above the horizontal axis) into hours relative to a single injection of
FSH at 0 h, with GnRH challenges shown between day 2 and day 6 of the follicular phase. The days
of the treatment period are shown in normal font below the horizontal axis. In cows (b) time points
are shown relative to the first FSH injection at 0 h. FSH injections were repeated every 12 h. For the
in vitro data (c) time points are shown relative to the addition of FSH to the culture wells at 0 h.
Proteins secreted by the granulosa cells cultured in vitro in the presence and absence of FSH are
shown in the form of silver-stained two-dimensional gels (upper gel pair) and western blot (lower gel
pair) using a rat polyclonal antibody which blocks GnSAF bioactivity in vitro (Fowler et al., 2002).
Both show FSH-induced upregulation of protein at 60–70 kDa.
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Table 1. Candidate gonadotrophin surge-attenuating factor (GnSAF) sequences

Molecular weight (kDa) Amino acid sequence Source Species Reference

37.0 NH2: SDXXPQL Sertoli cell-conditioned Rat Tio et al., 1994
No clear identification medium

69.0 NH2: KPLAE Follicular fluid Pig Danforth and Cheng, 1995
No clear identification

63.0 ? No clear identification Superovulated follicular fluid Human Mroueh et al., 1996
12.5 COOH:ALEVDETYVPK Superovulated follicular fluid Human Pappa et al., 1999

Identification: truncated C-terminus
of serum albumin

64.0 Internal: EPQVYVHAP Granulosa–luteal Human Fowler et al., 2002
No clear identification cell-conditioned medium

64.0 NH2: XVPQGNAXXN
No clear identification

or Pappa et al. (1999). Fowler et al. (2002) found
that a 17 kDa fraction of human granulosa–luteal cell-
conditioned medium caused minor reduction in GnRH-
induced LH secretion from rat gonadotrophs, despite
the main GnSAF bioactivity occurring at 64 kDa. This is
similar to the 12.5 kDa activity reported by Pappa et al.
(1999). However, in contrast to Pappa et al. (1999) who
suggest that GnSAF is a truncated part of the C-terminus
of serum albumin, Fowler and Danforth have not reported
GnSAF bioactivity to be bound to serum albumin affinity
chromatography steps. The activity reported at 37 kDa
by Tio et al. (1994) used conditioned medium from
Sertoli cells rather than granulosa–luteal cells. Again
in contrast to findings by other groups (Danforth and
Cheng, 1995; Mroueh et al., 1996; Pappa et al., 1999;
Fowler et al., 2002), purified material prepared by Tio
et al. (1994) retained inhibin-like bioactivity as it caused
a reduction in basal FSH secretion from rat pituitary
cultures, indicating that the bioactivity is probably not
GnSAF, but possibly a male homologue.

The internal and N-terminal amino acid sequences
reported by Fowler et al. (2002) may be part of the same
protein, but neither matches the other published putative
GnSAF sequences (Tio et al., 1994; Danforth and Cheng,
1995; Pappa et al., 1999). Furthermore, no common
proteins yet identified contain combinations of the five
candidate GnSAF amino acid sequences. However, it is
entirely possible that when GnSAF is finally convincingly
sequenced, one or more of these putative sequences may
prove to have been part of the bioactive molecule.

The current GnSAF purification strategy in our
research group involves the use of phage display antibody
libraries to circumvent the problems encountered by
all groups attempting to purify GnSAF by conventional
means. Sorsa-Leslie et al. (2001, 2002) have successfully
used phage display techniques to produce antibodies
against partially purified human granulosa–luteal cell-
conditioned medium. Three of these antibodies were
found to block the effects of human GnSAF on GnRH-
induced LH secretion from rat pituitary cell cultures.
The phage display-derived antibodies also appear to

be suitable for immunopurification of GnSAF and have
been engineered into human IgGs in order to scale-
up the immunopurification process. Both the phage
antibodies (Sorsa-Leslie et al., 2003) and the anti-GnSAF
rat polyclonal antiserum reported by Fowler et al. (2002)
have been used for the successful immunopurification
of GnSAF bioactivity and the purified preparations are
currently being used for sequencing experiments. It
may be therefore that GnSAF is on the point of being
convincingly characterized.

GnSAF in women

GnSAF in the follicle

The production of GnSAF in the ovarian follicle is
clearly related to follicle size in both stimulated and
spontaneous cycles, and follicular fluid from follicles
<11 mm (stimulated cycles, Fowler et al., 1994b) or 6–
8 mm (spontaneous cycles, Fowler et al., 2001) contain
the greatest amount of GnSAF bioactivity. This is shown
in Fig. 2, which clearly demonstrates a lack of either
positive or negative correlation between follicular fluid
GnSAF bioactivity and follicular fluid concentrations of
inhibin A, inhibin B, oestradiol or progesterone (McNatty,
1981; Westergaard et al., 1986; Fowler et al., 1994b,
2001; Magoffin and Jakimuik, 1997). The same holds true
for activin (Fowler et al., 2001). In a similar way, small
follicles in pig ovaries contain the highest concentrations
of GnSAF, with bioactivity falling sharply in preovulatory
follicles in particular (Kita et al., 1994). These findings
demonstrate that GnSAF is primarily produced by small
growing follicles.

GnSAF in the circulation

An important clue to the physiological roles of many
hormones is the pattern of changes in their concentration
in the peripheral circulation. For GnSAF, certain changes
in serum concentrations, such as a fall before the LH
surge, would be essential to support the hypothesis that
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Fig. 2. Human follicular fluid gonadotrophin surge-attenuating factor (GnSAF) bioactivity is greatest
in small follicles whether collected from (a) spontaneous or (b) stimulated cycles. In both types of
cycle follicular fluid GnSAF content is related to follicle size, with GnSAF production decreasing with
increasing follicle diameter. Note that concentrations of steroid hormones and the inhibins in fol-
licular fluid are known to be extremely variable and only general trends are shown in this diagram.

it has a role in the regulation of the timing and magnitude
of the LH surge. However, whereas GnSAF bioactivity is
readily measurable in serum from women undergoing
ovarian stimulation for IVF, the detection of GnSAF in
serum from spontaneously cyclic women has proved
more difficult. It is predictable that as FSH-stimulated
women have reduced responsiveness to GnRH, their
circulating GnSAF titres would be higher than those of
untreated women. Nevertheless, this slowed attempts to
determine the GnSAF concentrations in the serum of
spontaneously cyclic women throughout the menstrual
cycle. Byrne et al. (1993) concentrated serum from
spontaneously cyclic women tenfold before bioassay
and found that GnSAF bioactivity was low early in the
follicular phase, peaked in the mid-follicular phase and
then declined in the late follicular phase.

Improvements to the GnSAF bioassay developed by
our group allowed the detection of GnSAF bioactivity in
unprocessed serum from spontaneously cyclic women
(Martinez et al., 2002). These data, combined with the
data from Byrne et al. (1993) are shown in Fig. 3. As

expected, GnSAF decreases as the number of small
follicles declines after follicular dominance is estab-
lished. The corpus luteum does not appear to produce
GnSAF in women, but small developing follicles may
produce GnSAF during the luteal phase (Messinis et al.,
1996). Furthermore, decreasing pituitary responsiveness
to GnRH during the luteal–follicular transition indicates
that small follicles, responding to the luteal–follicular
FSH rise, may be producing GnSAF bioactivity at the end
of the luteal phase (Messinis et al., 1993b). Certainly,
by very early in the follicular phase GnSAF bioactivity is
high in the circulation (Martinez et al., 2002). Overall, the
circulating profiles of inhibin A, inhibin B, oestradiol and
progesterone, derived from a number of studies including
Groome et al. (1996), do not explain the in vivo and
in vitro bioassay data upon which the proposed pattern
of GnSAF concentrations in the peripheral circulation of
women is based.

The emergence of new data supporting earlier sugges-
tions of the occurrence of follicular waves in women
during the follicular phase (Baerwald et al., 2003a,b)
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Fig. 3. Gonadotrophin surge-attenuating factor (GnSAF) in relation
to the menstrual cycle. Data on GnSAF bioactivity is predominantly
derived from studies based on the present authors’ in vitro rat
pituitary cell bioassay for GnSAF using serum from spontaneously
cyclic women, and on in vivo studies of LH responses to GnRH in
women. Circulating GnSAF peaks during the early–mid-follicular
phase, is low during the mid–late follicular and most of the luteal
phases, probably increasing with renewed follicular development
driven by the inter-cycle FSH rise.

has the implication that the pattern of circulating GnSAF
concentrations presented in this review may be subject to
at least some modification once a more sensitive means
of GnSAF detection, such as an immunoassay, has been
developed.

A role for GnSAF in the endocrine regulation of the
menstrual cycle?

In women, the cyclic changes in gonadotrophins drive
ovarian function and are regulated by feedback from

the ovary on the hypothalamus–pituitary functional unit
(reviewed by Chabbert Buffet et al., 1998).

Inter-cycle FSH rise

For much of the luteal phase the hypothalamus and
pituitary are ‘clamped’ in a state of reduced activity as
far as gonadotrophin secretion is concerned. However,
towards the end of the luteal phase the function of the
corpus luteum deteriorates, oestradiol, progesterone and
inhibin A begin to decrease and the pituitary undergoes a
rebound, resulting in the inter-cycle FSH rise. The signal
drives recruitment of a cohort of small follicles which
undergo a final development phase.

Oestradiol and inhibin B

As they grow, the small follicles secrete increasing
quantities of inhibin B, peaking at about day 8 of the
follicular phase. In a similar way, early in the follicular
phase the growing follicles produce small quantities of
oestradiol, which has a negative feedback effect on LH
secretion via hypothalamic sites of action. The inhibin B
has a negative feedback effect on FSH which then begins
to decrease. Whereas there are ample data indicating
that oestradiol suppresses FSH secretion (for example
Bassett and Zeleznik, 1990), recent studies indicate
that in women the inhibins play a major role in the
suppression of FSH as the follicular phase progresses
(Welt et al., 2003). In these studies the importance of
oestradiol in the negative regulation of FSH is mainly
via a hypothalamic action. However, several studies, as
reviewed by Zeleznik and Benyo (1994), support the
concept that oestradiol is a significant factor regulating
the reduction in circulating FSH during the mid–late
follicular phase.

Whether due to inhibin B or oestradiol, FSH decreases
and only the dominant follicle survives the loss of FSH
support and this undergoes explosive growth, supported
by the low circulating titres of LH (Sullivan et al., 1999).
It is important that during the follicular phase inhibin B
production by smaller follicles is primarily stimulated by
FSH whereas LH stimulates inhibin A production from
more mature follicles (Welt et al., 2001).

As the follicles grow, oestradiol titres increase and
oestradiol secretion from the dominant follicle increases
exponentially in the last few days of the follicular
phase. During this stage, the feedback effect of oestradiol
switches from negative to positive, acting as a powerful
signal to both hypothalamus and pituitary to produce the
GnRH and LH surges.

GnRH pulses, the GnRH surge and GnRH self-priming

Unlike in many other species, including non-human
primates (Pau et al., 1993), there is no direct evidence for
a preovulatory GnRH surge in women. A recent review
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(Park et al., 2002) assessed the evidence from a number of
studies during the 1970s and 1980s for increased GnRH
pulse frequency during the periovulatory period, on the
basis of LH pulses. However, there is also experimental
evidence that GnRH is reduced at the time of the human
LH surge (Martin et al., 1998). The role of progesterone
should not be ignored and McCartney et al. (2002)
indicated that increasing GnRH pulse frequency in the
course of the follicular phase partly reflects the declining
effects of negative feedback actions of luteal phase
progesterone, a conclusion supported by Skinner et al.
(2000). Whether or not there is a periovulatory GnRH
surge in humans, the patterns of hypothalamic GnRH
production are known to be important in the regulation
of gonadotrophin secretion because abnormal GnRH
pulse patterns are associated with a range of reproductive
dysfunctions (Marshall et al., 2001). If GnRH pulses
are sufficiently frequent, especially after a few days of
increased oestradiol, then GnRH self-priming occurs.
Self-priming, or self-potentiation, is the phenomenon
whereby a subsequent GnRH pulse stimulates a larger
LH pulse from the pituitary than the preceding GnRH
pulse: the pituitary GnRH receptors become ‘primed’.
The exact role of self-priming in the generation of the LH
surge is debatable. In a recent review, de Koning et al.
(2001) concluded that low or absent negative feedback
by GnSAF contributed to increased LH secretion during
the periovulatory period rather than this being due to
increased GnRH effects via self-priming.

The puzzle

The switching of oestradiol feedback from negative
to positive and back to negative during the menstrual
cycle and the fact that overt GnRH self-priming is
limited to the periovulatory period remain incompletely
understood. If steroid hormones alone are responsible
for the LH surge, then reproducing mid-cycle steroid
concentrations in women or monkeys should result in
a normal LH surge. Characteristically, the LH surge
that results is reduced in amplitude but nevertheless
very clear (Yamaji et al., 1971; Taylor et al., 1995).
However, these studies involve either (1) ovariectomized
monkeys which would therefore have no circulating
GnSAF; or (2) women administered late follicular phase
steroids during the early–mid follicular phase. In this
case the secretion of LH (82.7 iu l−1 with oestradiol
alone and 69.7 iu l−1 with oestradiol and progesterone
versus 121.7 iu l−1 in normal controls) is clearly reduced
but not abolished. This effect is probably due to the
fact that higher (mid-follicular phase) concentrations of
GnSAF would be present than would be seen during
the normal late follicular phase. Therefore, the result
would be that sufficient GnSAF would be present to
antagonize the effects of the steroids. However, in
studies in non-ovariectomized monkeys (Karsch et al.,
1973), the administration of high concentrations of

oestradiol, similar to those seen in periovulatory animals,
stimulated LH surges in half the monkeys after 36 h
exposure in the early follicular phase. It may be
that during this 36 h period the exogenous oestradiol
reduces FSH concentration and the population of small
follicles exhibits a declining production of GnSAF.
Oestradiol could then overcome the inhibitory effects
of GnSAF, a possibility highlighted by the way in which
supraphysiological concentrations of oestradiol induced
LH surges after only 24 h exposure.

In summary, overall these data indicate that steroids
alone do not explain the control of the LH surge
although high concentrations of oestradiol stimulate the
occurrence of the LH surge. However, the fact that
GnSAF bioactivity has been observed below the level
of detection in the present authors’ bioassay in women
during the late follicular phase (Martinez et al., 2002)
indicates that there would be very little or no GnSAF to
antagonize oestradiol-positive feedback or GnRH self-
priming during the periovulatory period. However, a
study in sheep (Clarke, 1995) concluded that the increase
in pituitary responsiveness to GnRH at the time of
the LH surge was caused by the disappearance of an
inhibitory signal that was not steroidal in nature, and
which preceded any increase in GnRH release. This
primary role of oestrogen in stimulating the LH surge
has been a feature of reviews on this topic for some
time (for example Shoham et al., 1995) and is based on
work such as that by Knobil’s group (Ordog et al., 1998)
who have shown that oestradiol has undoubted positive
feedback effects on LH secretion, rather than merely
negative effects. However, even in post-menopausal
women, exogenous oestradiol and progesterone retained
some negative feedback effects on LH secretion (Gill
et al., 2002). It was unfortunate that the authors did not
also perform GnRH challenges. Given the well-known
critical functions of steroids in regulating the LH surge,
an interesting possibility is a possible role for GnSAF
in regulating follicular steroidogenesis by reducing LH
pulse amplitude. In cows for instance, increased LH and
subsequently oestradiol is associated with subsequent
follicular deviation to dominance (reviewed by Ginther
et al., 2001). Therefore, rather than regulating the
timing of the LH surge by directly reducing pituitary
responsiveness to GnRH, GnSAF may have a role in
regulating the timing of the LH surge by regulating
follicular phase LH pulse amplitude and therefore playing
a role in the control of oestradiol secretion.

Whereas oestradiol potentiates the suppressive effects
of GnSAF on GnRH-induced LH secretion (P. A. Fowler,
H. D. Mason, Y. Wilson, L. Cowking, T. A. Bramley and
B. Byrne, unpublished; Tijssen et al., 1997, van Dieten
et al., 1999), it is not clear whether such effects are
evident in vivo in women and this may be an artefactual
effect of study design. There is also extensive in vitro and
in vivo evidence for the suppressive effects of GnSAF
on GnRH self-priming (Messinis and Templeton, 1991;
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Fig. 4. Outline of the endocrine regulation of the menstrual cycle. The thickness of arrows is indicative of circulating hormone
concentrations and their relative effect, as indicated by + (positive) or – (negative) signs. (a) Early follicular phase: FSH drives follicular
development, with oestradiol and high concentrations of gonadotrophin surge-attenuating factor (GnSAF) exerting negative feedback
on the amplitude of LH pulses, driven by GnRH pulses at a rate > 1 per h. (b) Mid-follicular phase: inhibin B or oestradiol inhibit
FSH release, leading to selection of the dominant follicle. As the subordinate follicles become atretic GnSAF begins to decrease from
peak concentrations although GnSAF continues to moderate LH pulse amplitude and therefore oestradiol production. GnRH pulses
are approximately circhoral. (c) Periovulatory period: high concentrations of oestradiol, stimulating high frequency GnRH pulses (up
to 1 pulse every 15 min) easily overcome negligible GnSAF antagonism. Prolonged oestradiol positive feedback in the presence of
a small increase in progesterone may lead to a GnRH surge (as occurs in non-human primates), events leading to the LH surge and
ovulation. (d) Luteal phase: the hypothalamus–pituitary–ovary axis is clamped with negative feedback from oestradiol, progesterone
and inhibin A produced by the corpus luteum. GnRH pulse frequency decreases to approximately one pulse every 4 h, whereas LH
pulse amplitude is initially high. Low concentrations of GnSAF are released from quiescent small follicles. At the end of the luteal
phase the inter-cycle FSH increase begins the next cycle of folliculogenesis and GnSAF production increases as a new cohort of small
follicles begin to grow rapidly. During the luteal–follicular transition GnSAF may reduce LH pulse amplitude as GnRH pulse frequency
increases.
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Koppenaal et al., 1992, 1993; Fowler et al., 1994b;
Byrne et al., 1996). This effect is not due to occupancy
of the pituitary GnRH receptor, but involves blockade
of several second messenger mechanisms (Fowler et al.,
1994c; Tijssen et al., 1997). A preliminary study indicates
that the as yet unidentified GnSAF receptor may act via
the c-AMP signal transduction pathway (Helder et al.,
1997). Therefore, it may be hypothesized that GnSAF
will antagonize the effects of GnRH on the pituitary by
interfering with the positive feedback effects of oestradiol
and reducing post-GnRH receptor second messenger
signalling to prevent GnRH self-priming and reduce the
resulting amplitude of LH pulses.

A working hypothesis for the role of GnSAF
in regulating LH secretion

A schematic diagram for the potential role of GnSAF
in the endocrine regulation of the menstrual cycle and
LH surge is shown in Fig. 4. Early in the follicular
phase (Fig. 4a), small growing follicles, stimulated by
FSH, produce high concentrations of GnSAF and small
quantities of oestradiol, the GnSAF in particular having
a negative feedback effect on pituitary responsiveness
to GnRH and thus maintaining low concentrations
of LH and keeping LH pulse amplitude low. As the
follicles grow, inhibin B secretion peaks during the mid-
follicular phase (Fig. 4b). Inhibin B or oestradiol cause
FSH secretion to decline, resulting in the selection and
further growth of the dominant follicle, but atresia of
subordinate follicles. At this stage oestradiol begins to
switch to positive feedback, but this is antagonized to
an extent by continuing GnSAF production, resulting
in the maintenance of low concentrations of LH and
small LH pulses. Nevertheless, increasing GnRH pulse
frequency is occurring, slowly rising from the roughly
circhoral pulses of the early–mid follicular phase.
Explosive dominant follicle growth into the preovulatory
period (Fig. 4c) is matched by a large increase in
circulating oestradiol and atresia of the subordinate
follicles, resulting in a decrease in GnSAF production.
At this time falling GnSAF may act permissively in
terms of follicular steroidogenesis by allowing higher LH
pulse amplitude. The oestradiol also has hypothalamic
effects, stimulating GnRH neurones (Herbison, 1998).
The positive feedback effects of oestradiol on the
hypothalamus and pituitary become predominant and
rapid GnRH pulses, possibly augmented by GnRH self-
priming or even a GnRH surge, occur. There is very
little, if any, GnSAF remaining in the circulation by
this stage to inhibit pituitary responsiveness to GnRH
and the LH surge results, followed by ovulation some
36 h later. During the luteal phase (Fig. 4d), the corpus
luteum maintains pituitary ‘clamping’ via progesterone
and inhibin A signalling and the next cohort of small
follicles is relatively quiescent. The role of GnSAF in
regulating LH secretion is probably negligible at this

time. However, towards the end of the luteal phase,
failure of the corpus luteum and the resulting inter-cycle
FSH increase stimulates follicular growth and GnSAF
production. The latter will again begin to inhibit LH pulse
amplitude, allowing a more favourable environment for
follicular development.

It must be noted that this tentative scheme requires
validation by carefully designed studies once the GnSAF
molecule has been fully characterized.

Conclusions

GnSAF is a non-steroidal, non-inhibin, ovarian hormone,
secreted by the granulosa cell in response to FSH. It has
the specific effect of negatively regulating the release
of GnRH-induced LH, therefore having a probable role
in the regulation of the magnitude of LH pulses, co-
ordinating the LH signal with follicular development
and steroidogenesis in women and other mammals. In
terms of the timing and magnitude of the preovulatory
LH surge, GnSAF probably has far less direct effect
than previously thought. The study of the role and
importance of GnSAF has been hampered by the extreme
difficulty experienced in definitively characterizing the
bioactive molecule. Nevertheless, substantial progress in
identifying the nature of GnSAF and its putative role
in the regulation of the LH surge has been made in
the last 20 years. Furthermore, recent progress by our
group indicates that GnSAF may soon be identified. This
would resolve problems associated with the absence of
an immunoassay to measure circulating and follicular
fluid GnSAF titres and the lack of homogeneous GnSAF
preparations for physiological investigation. It is hoped
that exciting studies to establish the importance and
potential application of GnSAF in the regulation of
reproduction in the female will be possible in the near
future.
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