Phospholipase Cζ causes Ca2+ oscillations and parthenogenetic activation of human oocytes

N T Rogers1, E Hobson2, S Pickering2, F A Lai3, P Braude2 and K Swann4

1Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, 2Assisted Conception Unit and GKT Department of Women’s Health, Guy’s and St Thomas’s NHS Trust, Guy’s Hospital, London SE1 9RT, 3Welsh Heart Research Institute, Wales College of Medicine, Heath Park, Cardiff University, Cardiff CF14 4YN and 4Department of Obstetrics and Gynaecology, Wales College of Medicine, Heath Park, Cardiff University, Cardiff CF14 4YN, UK

Correspondence should be addressed to K Swann; Email: SwannK1@cf.ac.uk

Abstract

At fertilization in mammals the sperm activates development of the oocyte by inducing a prolonged series of oscillations in the cytosolic free Ca2+ concentration. One theory of signal transduction at fertilization suggests that the sperm cause the Ca2+ oscillations by introducing a protein factor into the oocyte after gamete membrane fusion. We recently identified this sperm-specific protein as phospholipase Cζ (PLCζ), and we showed that PLCζ triggers Ca2+ oscillations in unfertilized mouse oocytes. Here we report that microinjection of the complementary RNA for human PLCζ causes prolonged Ca2+ oscillations in aged human oocytes that had failed to fertilize during \textit{in vitro} fertilization or intracytoplasmic sperm injection. The frequency of Ca2+ oscillations was related to the concentration of complementary RNA injected. At low concentrations, PLCζ stimulated parthenogenetic activation of oocytes. These embryos underwent cleavage divisions and some formed blastocysts. These data show that PLCζ is a novel parthenogenetic stimulus for human oocytes and that it is unique in its ability to mimic the repetitive nature of the Ca2+ stimulus provided by the sperm during human fertilization.

Introduction

Mammalian oocytes are ovulated in a state of arrest at metaphase of the second meiotic division. During fertilization the sperm releases the oocyte from metaphase arrest and initiates development by inducing a series of repeated rises in the cytosolic free Ca2+ concentration (Whittingham 1980, Cuthbertson & Cobbold 1985, Stricker 1999). Such repeated rises in Ca2+, or Ca2+ oscillations, occur at intervals of several minutes for the first few hours after sperm–oocyte interaction. These Ca2+ oscillations have been observed during \textit{in vitro} fertilization (IVF) in a range of mammalian species including oocytes from humans (Taylor \textit{et al.} 1993). In addition, in human and mouse oocytes prolonged Ca2+ oscillations have also been demonstrated following intracytoplasmic sperm injection (ICSI; Tesarik & Sousa 1994, Nakano \textit{et al.} 1997). The Ca2+ oscillations seen in mammals appear to be both necessary and sufficient for the activation of development. In the mouse, for example, it has been shown that the Ca2+ oscillations are necessary for second-polar-body emission and pronuclear formation (Kline & Kline 1992). The importance of Ca2+ is also underlined by the finding that most of the treatments that cause the parthenogenetic activation of development in mammals are effective because they cause a marked rise in the cytosolic Ca2+ concentration (Whittingham 1980, Swann & Ozil 1994). In mouse and domestic animal oocytes parthenogenetic activating agents such as ethanol, Ca2+ ionophores and electrical-field stimulation cause a single and prolonged rise in Ca2+ (Swann & Ozil 1994). In mouse, and some other species, parthenogenetic activating agents such as Sr2+ ions or thimerosal have been shown to cause Ca2+ oscillations that are similar, but not identical, to those seen at fertilization (Kline & Kline 1992, Cheek \textit{et al.} 1993).

The mechanism by which the sperm stimulates the Ca2+ oscillations at fertilization is not fully resolved (Stricker 1999). However, one theory is that the sperm introduces a protein factor into the egg cytosol after gamete fusion, and that this sperm factor protein initiates Ca2+ release in the oocyte via the generation of inositol 1,4,5-trisphosphate (InsP\textsubscript{3}; Swann \textit{et al.} 2004). This theory is supported by the finding that injecting cytosolic extracts from sperm can cause Ca2+ oscillations in a range of different mammalian oocytes, including those from...
humans (Swann 1990, Homa & Swann 1994, Wu et al. 1997). We recently demonstrated that mouse sperm possess a novel and specific isof orm of phospholipase C (PLC) referred to as PLCζ (Saunders et al. 2002). PLCζ was shown to be the protein present in the sperm extracts that is responsible for generating Ca²⁺ release and InsP₃ production (Saunders et al. 2002). Most critically it was demonstrated that PLCζ is an effective mimic of the sperm because microinjection of complementary RNA (cRNA) encoding for PLCζ into mouse oocytes causes Ca²⁺ oscillations identical to those seen during fertilization. Injection of cRNA for PLCζ also leads to egg activation and development to the blastocyst stage in the mouse (Saunders et al. 2002). As well as mice, both humans and monkeys have been shown to possess a sperm-specific PLCζ (Cox et al. 2002). Previous work suggested that the sperm factor protein was not species specific and, consistent with this, we found that injection of cRNA for the human or monkey isof orms of PLCζ is able to cause Ca²⁺ oscillations in mouse oocytes and stimulate embryo development up to the blastocyst stage at similar rates to those seen after in vivo fertilization (Cox et al. 2002). However, the effect of PLCζ in human oocytes has not previously been reported.

Like other mammals human oocytes can also be parthenogenetically activated by stimuli that elevate Ca²⁺ levels. Calcium ionophores such as A23187 have been shown to cause both fresh and aged oocytes to undergo pronuclear formation and begin early cleavage divisions (Winston et al. 1991). However, some studies have found that Ca²⁺ ionophore alone does not reliably activate human oocytes (Balakier & Casper 1993, Rinaudo et al. 1997). So the most common current activation protocols combine Ca²⁺ ionophore with protein synthesis or protein kinase inhibitors such as 6-dimethylaminopurine (6-DMAP) or puromycin (Cibelli et al. 2001, Nakagawa et al. 2001, Lin et al. 2003). These combination protocols have proved effective in stimulating human oocytes to form pronuclei, but the success rates of subsequent preimplantation development are still poor compared with embryo development after fertilization. In order to try and improve activation and development after parthenogenesis, attempts have been made to use stimuli that mimic IVF in causing repetitive Ca²⁺ increases. Data in mouse and rabbit oocytes that were exposed to repeated electrical-field pulses have suggested that repeated rises in Ca²⁺ can improve activation rates, and subsequent development, compared with stimuli that cause a single Ca²⁺ increase (Ozil 1990, Ozil & Huneau 2001). Limited application of this technology has suggested that the repetitive stimuli may also be useful in activating human oocytes (Zhang et al. 1999). In this study we demonstrate that microinjection of cRNA encoding human PLCζ protein can cause a prolonged series of Ca²⁺ oscillations in aged human oocytes that have failed to fertilize during IVF or ICSI. The induction of Ca²⁺ oscillations by PLCζ can also lead to parthenogenetic activation up to the blastocyst stage.

Materials and Methods

Obtaining and handling of human oocytes

Human oocytes were obtained from patients whose gametes had failed to fertilize following conventional IVF or ICSI. Ethical approval for the project was obtained from St Thomas’s Hospital Local Research Ethics Committee and from the Human Fertilization and Embryology Authority who issued a licence for the work (R0147). Consent for the use of unfertilized oocytes was obtained from patients before starting their treatment. For treatment the patients underwent pituitary downregulation and controlled ovarian hyperstimulation using gonadotrophins. Ovarian stimulation was achieved using a daily dose of 150–450 IU of recombinant follicle-stimulating hormone (Gonal F; Serono Laboratories, Welwyn Garden City, Herts, UK; or Puregon; Organon, Cambridge, UK). Human chorionic gonadotrophin, 10 000 IU (Profasi from Serono Laboratories or Pregnyl from Organon), was administered when at least three follicles had reached a mean diameter of 18 mm or more. Transvaginal follicular aspiration was performed 34–36 h after human chorionic gonadotrophin injection and 3–6 h later oocytes were prepared for IVF or ICSI dependent upon earlier semen analysis. Following IVF insemination or ICSI oocytes were cultured overnight and checked for signs of fertilization 19–20 h later. Only those oocytes that appeared to be at metaphase II or I and that showed no signs of fertilization were used for the project. Such unfertilized oocytes were transferred from the Assisted Conception Unit at Guy’s Hospital to laboratories at University College London and microinjected within the next 1–2 h. Unless otherwise stated, all manipulations in the laboratory were carried out on oocytes in Hepes/KSOM (HKSOM) medium (Saunders et al. 2002).

In experiments where Ca²⁺ was monitored oocytes were injected with solutions containing various concentrations of PLCζ cRNA and 1 mM Oregon Green BAPTA dextran (Molecular Probes, Eugene, OR, USA) in a buffered salt solution (120 mM KCl/20 mM Hepes, pH 7.4) that had been treated with Chelex 100 beads (Sigma) to remove divalent cations. In developmental experiments where Ca²⁺ was not monitored the Oregon Green BAPTA dextran was omitted from the injection buffer. cRNA encoding the 608-amino-acid sequence of the human form of PLCζ was prepared as described previously (Saunders et al. 2002). The cRNA was stored in aliquots at −80°C until being thawed immediately prior to injection. For injection the oocytes were placed on a Nikon Diaphot stage and microinjected by application of brief pressure pulses as described previously (Swann 1990). The injection was between 3 and 5% of the oocyte’s total volume. For Ca²⁺ measurements oocytes were immediately transferred to a chamber of approximately 1 ml containing HKSOM medium and fluorescence monitored as described below. For separate developmental studies the oocytes
were placed in 2 μM cytochalasin D (Sigma) for approximately 2h to prevent second-polar-body extrusion and then cultured in 20 μl drops of Sydney IVF cleavage medium (COOK) under mineral oil (Sigma) at 37°C in a 6% CO₂ incubator from days 1 to 3 (up to the eight-cell stage). Embryos were transferred to Sydney IVF blastocyst medium (COOK) for the remaining culture time. Each day embryos were removed from the incubator briefly and their developmental stage was noted.

Measurements of intracellular Ca²⁺

Fluorescence measurements were carried out on oocytes in drops of media in a heated chamber on the stage of a Zeiss Axiovert microscope equipped with epifluorescence optics and a 20 x 0.75NA objective lens. Low-level fluorescence excitation was used to minimize oocyte damage. The light from a halogen lamp passed through a 490 nm bandpass filter and emission collected with a 510 nm long-pass filter. Fluorescence light (100–1000 photons/s) was measured from each oocyte with an imaging photon detector (Photek Ltd, East Sussex, UK) using software and a system designed by Science Wares (Falmouth, MA, USA).

Results

Microinjection of human PLCζ cRNA into aged human oocytes caused a series of Ca²⁺ oscillations as indicated by the repetitive increases in the fluorescence of Oregon Green BAPTA dextran. Fig. 1 shows examples of the pattern of Ca²⁺ oscillations triggered in different oocytes by injecting different concentrations of PLCζ cRNA. The Ca²⁺ oscillations consisted of series of sharp rises in Ca²⁺, followed by a fairly abrupt return to baseline Ca²⁺ levels. There was then a very gradual increase in Ca²⁺ before the next Ca²⁺ rise suggesting the existence of a pacemaker that leads to another Ca²⁺ increase every 10 min to 2h (Fig. 1a). This general pattern of Ca²⁺ oscillations is similar to those reported after IVF or ICSI in human oocytes (Tesarik & Sousa 1994), and broadly similar to the pattern of Ca²⁺ oscillations seen in other mammals during fertilization (Swann & Ozil 1994). The main difference between the patterns of oscillation was in regard to the frequency of Ca²⁺ oscillations. In particular high concentrations of PLCζ caused the highest-frequency oscillations. In addition we found that pipette concentrations of 1 or 10 μg/ml cRNA lead to oscillations that started with a relatively low frequency, but oscillations tended to show an increase in frequency with time such that the final frequency tended to match that seen with higher concentrations of PLCζ cRNA (Fig. 1b). A sustained low frequency of Ca²⁺ oscillations was only seen when we injected pipette concentrations of approximately 0.1 μg/ml PLCζ cRNA (Fig. 1c). This concentration of PLCζ cRNA also appeared to be the minimally effective concentration because only six out of 13 oocytes showed Ca²⁺ responses. With pipette concentrations of 10 μg/ml or greater all the oocytes we injected underwent Ca²⁺ oscillations. Table 1 shows the intervals of Ca²⁺ oscillations seen after injecting different amounts of PLCζ into human oocytes. Despite some changes in frequency with time at intermediate concentrations, there is a trend towards greater intervals between Ca²⁺ increases with lower concentrations of injected PLCζ cRNA. Since the amount of PLCζ protein synthesized in mouse oocytes was shown to be proportional to the concentration of PLCζ cRNA injected (Saunders et al. 2002), these data suggest that the concentration of PLCζ protein affects the frequency of Ca²⁺ oscillations.

As well as studying Ca²⁺ oscillations we also examined groups of oocytes injected with PLCζ for signs of activation. Since light exposure during fluorescence measurements can impair development, we carried out a separate set of experiments where PLCζ cRNA was injected without monitoring Ca²⁺. In mice it is known that diploid parthenogenetic embryos have greater developmental potential than haploid embryos (Liu et al. 2002). Consequently we treated oocytes with cytochalasin D (to block second-polar-body emission) for the first 2h following PLCζ injection. When we injected oocytes with a pipette...
The pattern of Ca$^{2+}$ oscillations induced by PLCζ in aged human oocytes. The mean interval of Ca$^{2+}$ transients was only scored for oocytes that showed Ca$^{2+}$ oscillations. For concentrations of 10 μg/ml PLCζ cRNA and less the data are taken from oocytes where prolonged recording were made (at least 10 h). The final frequency of Ca$^{2+}$ transients was scored in the last 4 h of a 12 h (\dagger) or 10 h (\ddagger) recording. PLCζ cRNA concentration refers to the concentration in the pipette.

<table>
<thead>
<tr>
<th>Concentration of PLCζ cRNA</th>
<th>Number of oocytes</th>
<th>Mean interval between Ca$^{2+}$ spikes (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg/ml</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>100 μg/ml</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>10 μg/ml</td>
<td>9</td>
<td>86</td>
</tr>
<tr>
<td>1 μg/ml</td>
<td>5</td>
<td>20$^+$</td>
</tr>
<tr>
<td>0.1 μg/ml</td>
<td>5</td>
<td>75$^+$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23$^+$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>109$^+$</td>
</tr>
</tbody>
</table>

Previous experiments injecting human PLCζ into mouse oocytes showed that high-frequency Ca$^{2+}$ oscillations lead to cleavage stage arrest (Cox et al. 2002), so it was possible that relatively poor development was due to the development of the later high-frequency responses seen in Fig. 1b. Accordingly we tested the developmental potential further by injecting oocytes with the lowest concentration that caused low frequency Ca$^{2+}$ oscillations in most oocytes. We injected oocytes with pipette concentrations of 0.1 μg/ml PLCζ cRNA and found that more embryos reached the two-cell stage. Furthermore, some of these embryos developed further and we obtained four parthenogenetic blastocysts from the 24 injected oocytes (Table 2). These data suggest that injecting low concentrations of PLCζ into aged human oocytes can activate development to the blastocyst stage.

Discussion

PLCζ is a sperm-specific isoform of the PLC family of enzymes (Saunders et al. 2002). Injection of PLCζ as cRNA, or as a recombinant protein, has been shown to cause Ca$^{2+}$ oscillations and oocyte activation in the mouse (Saunders et al. 2002, Kouchi et al. 2004). PLCζ protein has also been shown to be present in mammalian sperm at concentrations that are effective at causing Ca$^{2+}$ oscillations in mouse eggs. We have previously identified the human isoform of PLCζ and showed that it causes prolonged Ca$^{2+}$ oscillations and the activation of development in mouse oocytes. The current data are the first to report that human PLCζ is also highly effective at causing Ca$^{2+}$ oscillations in aged human oocytes. PLCζ generates the Ca$^{2+}$-releasing second messenger InsP$_3$ which has been shown to cause Ca$^{2+}$ release in human oocytes (Goud et al. 2002). Our data therefore suggest that PLCζ could be the protein from the sperm that is responsible for stimulating InsP$_3$ production and Ca$^{2+}$ oscillations and the activation of development in humans.

Our work also represents the first clear demonstration of a method for generating prolonged repetitive Ca$^{2+}$ signals in human oocytes. One study has reported the activation of aged human oocytes by applying three electrical-field pulses rather than one (Zhang et al. 1999). However, the fertilized human oocyte clearly displays more than three Ca$^{2+}$ rises and extending this methodology requires rapid washing techniques that are technically demanding (Ozil 1990). Strontium-containing medium has been used to stimulate repetitive Ca$^{2+}$ increases in mouse eggs and might offer another simpler means of stimulating oscillations in human oocytes. However, we failed to observe any Ca$^{2+}$ transients when we incubated human oocytes in 10 mM Sr$^{2+}$ media (N Rodgers & K Swann, unpublished observations), and it remains uncertain whether Sr$^{2+}$ can be used for this purpose. Thimerosal is reported to cause Ca$^{2+}$ oscillation in human oocytes (Homa & Swann 1994), but as a thiol oxidizing agent it also effects the cytoskeleton and may not be compatible with human embryo development (Cheek et al. 1993). Our current data with PLCζ, therefore, provide perhaps one of the only relatively simple means of stimulating multiple and long-lasting Ca$^{2+}$ increases in human oocytes.

Previous work on mouse oocytes demonstrated that injecting cRNA encoding the human, mouse or monkey isoforms of PLCζ could initiate Ca$^{2+}$ oscillations and activation of mouse oocytes (Cox et al. 2002, Saunders et al. 2002). The injected cRNA is converted into PLCζ protein in proportion to the amount of cRNA injected (Saunders et al. 2002). The amount of human PLCζ that caused Ca$^{2+}$ oscillations in aged human oocytes in this study is within a similar range to that which causes Ca$^{2+}$ oscillations in mouse oocytes (Cox et al. 2002). However, mouse oocytes were induced to undergo Ca$^{2+}$ oscillations by injection of final concentrations of approximately 1 ng/ml human PLCζ cRNA, which is about 10 times lower than the amount that we used to generate Ca$^{2+}$ oscillations in aged human oocytes. This could mean that there are differences in sensitivity to PLCζ between mouse and human oocytes. Nevertheless, it is also likely that aged human oocytes do not translate the cRNA into protein as efficiently as the recently ovulated mouse oocytes. We used the method of injecting cRNA, rather than PLCζ protein, because of the unstable nature of the recombinant protein. Injecting the cRNA also provides a way of introducing PLCζ into an...
oocyte without any contamination from other proteins. Nevertheless, injecting cRNA rather than recombinant protein leads to a gradual increase in PLC\(\gamma\) with time. This probably accounts for the increase in frequency of Ca\(^{2+}\) oscillations seen in oocytes injected with intermediate concentrations of PLC\(\gamma\).

There appears to be a narrow concentration range of PLC\(\gamma\) that can be used to activate oocytes. The lowest concentrations of PLC\(\gamma\) cRNA are not effective in all oocytes, but too high a concentration can lead to high-frequency Ca\(^{2+}\) oscillations that appear to be detrimental to development beyond the two-cell stage (Cox et al. 2002). The low frequency of Ca\(^{2+}\) oscillations that was consistent with reasonable rates of implantation development is similar to the low frequency of oscillations that were first reported using aequorin to measure Ca\(^{2+}\) levels during human fertilization (Taylor et al. 1993). Such low-frequency Ca\(^{2+}\) oscillations during fertilization are also seen in the mouse when aequorin is used to measure Ca\(^{2+}\) (Cuthbertson & Cobbold 1985). In parallel experiments we found that a slightly greater proportion of oocytes activated (75%) than showed Ca\(^{2+}\) oscillations (approximately 50%) when 0.1 \(\mu\)g/ml PLC\(\gamma\) cRNA was injected. This could reflect the fact that Oregon Green BAPTA dextran buffers the Ca\(^{2+}\) levels to some extent, and so a higher proportion of oocytes may actually undergo oscillations when Ca\(^{2+}\) is not measured. In future it would be useful to measure Ca\(^{2+}\) with less-invasive probes so that the same oocytes can be observed for Ca\(^{2+}\) oscillations and development.

Whereas the overall numbers are small, our data are noteworthy in that development to the blastocyst stage was seen after artificial activation of aged human oocytes. Previous studies have reported the same parthenogenetic development to the blastocyst stage with freshly ovulated human oocytes (Cibelli et al. 2001, Lin et al. 2003). However, when using aged human oocytes the Ca\(^{2+}\)-ionophore-based protocols have stimulated early cleavage stage development, but blastocyst formation has not been reported (Winston et al. 1991, Balakier & Casper 1993, Nakagawa et al. 2001). It is possible that we obtained blastocysts in some cases because oocytes were stimulated with a repetitive Ca\(^{2+}\) signal. However, more-extensive studies are required to make direct developmental comparisons between oocytes activated by PLC\(\gamma\) compared with those stimulated by ionophore. Whatever the case our data do suggest that PLC\(\gamma\) could be used to generate human parthenogenetic embryos and this in itself has clinical implications. First, there are clearly some cases where failed fertilization after ICSI is due to failed oocyte activation (Rawe et al. 2000). In some cases embryo development and live births have been achieved after sperm injection by providing an activation stimulus in the form of Ca\(^{2+}\) ionophore (Eldar-Geva et al. 2003, Murase et al. 2004). PLC\(\gamma\) offers an alternative means by which failed activation may be restored with a more physiological stimulus than ionophore. Secondly, the generation of parthenogenetic blastocysts from oocytes can provide a source of embryos for the creation of stem cells (Lin et al. 2003, Vrana et al. 2003). The use of such parthenogenetic embryos may be more ethically acceptable than using embryos from fertilized zygotes.

Acknowledgements
We thank Mark Larman and Christopher Saunders for advice and preparation of cRNA and Nazar Amso for discussion about the manuscript. We also thank the patients of the Assisted Conception Unit at Guy’s Hospital who so willingly took part in this study to advance the understanding of fertilization. This work was supported by a Wellcome Trust grant (K S), an MRC studentship (N T R) and KEF funds (F A L). The imaging equipment was from a JIF fund to the Anatomy Department at University College London.

References
Goud PT, Goud AP, Leybaert L, Van Oostveld P, Mikoshiba K, Diamond MP & Dhont M 2002 Insolotil 1,4,5-trisphosphate receptor function in human oocytes: calcium responses and oocyte activation-related phenomena induced by photolytic release of InsP3 are blocked by a specific antibody to the type 1 receptor. Human Reproduction 8 912–918.
Kline D & Kline JT 1992 Repetitive calcium transients and the role of calcium in exocytosis and cell cycle resumption activation in the mouse egg. Developmental Biology 149 80–89.

Stricker SA 1999 Comparative biology of calcium signaling during fertilization and egg activation in animals. *Developmental Biology* 211 57–76.

Swann K, Larman MG, Saunders CM & Lai FA 2004 The cytosolic sperm factor that triggers Ca\(^{2+}\) oscillations and egg activation in mammals is a novel phospholipase C: PLC\(\gamma\). *Reproduction* 127 431–439.

Received 7 September 2004
First decision 17 September 2004
Accepted 20 September 2004