Molecular physiology and pathology of Ca2+-conducting channels in the plasma membrane of mammalian sperm

Ricardo Felix

Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico

Correspondence should be addressed to R Felix, Departamento de Fisiología Biofísica y Neurociencias, Cinvestav-IPN, Avenida IPN #2508, Colonia Zacatenco, México D.F., CP 07300; Email: rfelix@fisio.cinvestav.mx

Abstract

Current evidence indicates that mechanisms controlling the intracellular Ca2+ concentration play pivotal roles in determining sperm fertilizing ability. Multiple Ca2+-permeable channels have been identified and characterized in the plasma membrane and in the acrosome membrane of mammalian sperm. This review summarizes the recent findings and assesses the evidence suggesting that these channels play roles in controlling a host of sperm functions ranging from motility to the acrosome reaction, and describes recent advances in the identification of the underlying gene defects of inherited sperm Ca2+ channelopathies.

Reproduction (2005) 129 251–262

Introduction

Cytosolic Ca2+ signals can control several physiological processes in excitable and non-excitable cells. These signals are produced by opening channels permeable to Ca2+ either in the plasma membrane or in the membrane of intracellular organelles containing high Ca2+ concentrations. Ca2+-permeable channels can catalyze the flow of millions of Ca2+ ions through non-conducting lipid bilayers and therefore a small number of channels can cause significant changes in a tiny cell such as the sperm within milliseconds. Over the last few years, a large repertoire of Ca2+ permeable channels has been detected in mammalian sperm; these channels respond to different stimuli and couple to different cellular responses. Changes in the intracellular concentration of Ca2+ due to the activation of such channels have been associated with different aspects of mammalian sperm function such as sperm motility, capacitation and the acrosome reaction.

Recently, molecular and genetic information has been reported on human and animal models which may shed new light on the causes of altered sperm function. A variety of Ca2+ channelopathies and targeted mutations have been described for sperm Ca2+-permeable channels and to discuss future avenues of research. Previous reviews by the research groups of Barratt, Catterall, Campbell, Darszon, de Lamirande, Florman, Kaupp, Miller, Patrat, Perez-Reyes, Primakoff, Putney, Publicover, Suarez and Visconti provide supplementary reading and complement the material of this review article.

Ca2+-conducting channels in sperm

Voltage-gated Ca2+ channels

Voltage-gated Ca2+(Ca\textsubscript{V}) channels are transmembrane proteins that open in response to membrane depolarization and allow Ca2+ ions to enter the cell from the extracellular space. Ca\textsubscript{V} channels have been subdivided according to their electrophysiological and pharmacological properties into (i) low voltage-activated (LVA or T-type) channels, and (ii) high-voltage activated (HVA) channels, a class that includes the L-, N-, P/Q-, and R-types. The \(\alpha\) subunit protein is the permeation pathway of all Ca\textsubscript{V} channels, and is also responsible for voltage sensing, and binding of channel-specific drugs and toxins. Molecular cloning has identified 7 different genes coding HVA Ca\textsubscript{V} channel \(\alpha\) subunits (Ca\textsubscript{V}1.1 to Ca\textsubscript{V}2.3) and 3 genes encoding LVA channels (Ca\textsubscript{V}3.1 to Ca\textsubscript{V}3.3) (Catterall 2000, Catterall...
In contrast to the CaV3 channels that express by themselves as typical T-type Ca\(^{2+}\) channels in heterologous systems, HVA Ca\(_V\) channels function as oligomeric complexes comprising three auxiliary subunits (\(\beta\), \(\alpha_2\delta\), and \(\gamma\)) that modulate the properties of the Ca\(^{2+}\) currents (Arrikath & Campbell 2003, Kang & Campbell 2003). The sequence of the \(\alpha_1\) subunit exhibits repeats comprising four transmembrane modules or domains. Each module contains the canonical arrangement for voltage-gated ion channels, i.e. six transmembrane alpha helices (S1–S6) surrounding a central pore (Catterall 2000, Catterall et al. 2003). Modules are connected by linkers that are located in the intracellular milieu, as are both the N and C termini (Fig. 1).

Due to their small size, complex geometry and motile nature, sperm ion channels are very difficult to study by using conventional electrophysiological methods. In addition, molecular techniques that are of great value in associating gene products with specific ionic currents in many cell types cannot be applied directly to sperm, where transcription and translation have been terminated. Instead, sperm Ca\(^{2+}\) channels may be examined by applying planar bilayer techniques in combination with in vivo measurements using intracellular, ion selective and membrane potential-sensitive fluorescent probes. Likewise, immunocytochemical studies with specific antibodies have been performed to reveal the expression and localization of different Ca\(^{2+}\) channel isoforms.

However, the channels that are used by mature sperm must be synthesized by spermatogenic immature cells during spermatogenesis, where their structure and function can be readily examined using electrophysiology, as well as by molecular cloning (Felix et al. 2004). Notably, patch-clamp studies have revealed that T-type is the only Ca\(^{2+}\) current expressed in mouse spermatogenic cells (Arnoult et al. 1996, 1998, Lievano et al. 1996, Santi et al. 1996). This current shares many of the fundamental features of somatic cell LVA currents, including low voltage thresholds for activation and inactivation, about the same Ba\(^{2+}\) selectivity relative to Ca\(^{2+}\), and inhibition by amiloride, pimozide, mibebradil and low concentrations of Ni\(^{2+}\) (Arnoult et al. 1996, 1998, Lievano et al. 1996, Santi et al. 1996, Perez-Reyes 2003). The channels that generate this current may be constructed from proteins of the CaV3 class, as expression of these genes has been reported in spermatogenic cells and sperm (Espinosa et al. 1999, Jagannathan et al. 2002a, Park et al. 2003, Trevino et al. 2004) (Table 1). In addition, the genes coding HVA CaV\(_{1,2}\), CaV\(_{2,1}\) and CaV\(_{2,3}\) channels have been identified in spermatogenic cells (Lievano et al. 1996), while CaV\(_{1,2}\), CaV\(_{2,2}\) and CaV\(_{2,3}\) genes have been reported in mature sperm (Park et al. 2003). Although the protein products of these genes seem to be expressed in both male germ cells and mature sperm (Serrano et al. 1999, Westenbroek & Babcock 1999) (Table 1), intriguingly, HVA currents are not detected in spermatogenic cells. It has been speculated that these channels might be inserted in the spermatogenic cell membrane in a functionally inactive state and are activated, possibly by post-translational modifications, only in sperm (Serrano et al. 1999).

Store-operated Ca\(^{2+}\) channels

Ca\(^{2+}\) signaling in non-excitable cells stimulated by agonists is divided into two phases: an initial release of Ca\(^{2+}\) from stores inside the cell, and a subsequent entry of Ca\(^{2+}\) from the extracellular space. Binding of an agonist to a G protein-coupled receptor activates phospholipase C, which breaks down phosphoinositides in the plasma membrane to form inositol-1,4,5-trisphosphate (IP\(_3\)) and diacylglycerol. The IP\(_3\) triggers Ca\(^{2+}\) release from intracellular stores through IP\(_3\) receptor channels (IP\(_3\)R), producing the initial transient increase in intracellular Ca\(^{2+}\). After a short delay, Ca\(^{2+}\) also enters the cell from the extracellular space, producing a sustained elevation of Ca\(^{2+}\), which is called capacitative Ca\(^{2+}\) entry. The channels involved in this process are known as capacitative channels or store-operated channels (SOCs) (Putney 1986).

Three different hypotheses have been evoked to explain capacitative Ca\(^{2+}\) entry. Depletion of Ca\(^{2+}\) stores may trigger release or formation of a signaling factor that diffuses to the plasma membrane to activate the channels (Randriamampita & Tsien 1993). Alternatively, a conformational coupling mechanism has been suggested according to which proteins in the Ca\(^{2+}\) stores, specifically IP\(_3\) receptors, directly interact with Ca\(^{2+}\) permeable channels in the plasma membrane via protein–protein interactions (Berridge 1995, Kiselyov et al. 1998). More recently, an exocytotic model, in which vesicles containing channels fuse with the plasma membrane upon an appropriate signal, has been proposed (Yao et al. 1999).

Recent evidence suggests that the protein encoded by the transient receptor potential (trp) gene expressed in *Drosophila* photoreceptors may be homologous with capacitative Ca\(^{2+}\) entry channels in mammals (Venkatachalam et al. 2002). The TRP proteins are six transmembrane-containing subunits that combine to form cation-selective ion channels. TRP proteins are a diverse group of proteins organized into six families: canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), muclopins (TRPML), polycystin (TRPP), and ANKTM1 (TRPA). Mammals contain at least 22 distinct genes encoding these ion channels (Moran et al. 2004).

A total of seven closely related genes encoding TRPC channels have been identified in mammals (termed TRPC1-7). As mentioned above, C denotes canonical, as these genes are all closely related to the original *Drosophila* TRP channel. The mammalian TRPC channels consist of a group of six transmembrane-spanning segments and an additional pore-forming hydrophobic domain between segments 5 and 6. The topology of this pore-forming domain is similar to that of CaV channels (Fig. 1), although the voltage-sensing segment of the CaV channels is not conserved in TRP channels. Interestingly, TRPC1 seems
Figure 1. Topology of Ca2+-permeable channels in mammalian sperm. (A) The pore-forming subunit (\(\alpha_1\)) of voltage-gated (Ca\textsubscript{v}) channels has four repeats of the six transmembrane (S1–S6) spanning domain. The putative pore region is formed by a hydrophilic region between S5 and S6. The S4 domain has positively charged residues (lysine/arginine) that function as the voltage sensor of the channel. Key regions of Ca\textsubscript{v} channel regulation include binding regions in the C-terminus for Ca2+ (EF hand) and calmodulin (CaM) (IQ domain) in most, but not all Ca\textsubscript{v}\(\alpha_1\) subunits. (B) Structural model of cation channels of the transient receptor potential canonical (TRPC) family. Six transmembrane spanning segments are linked by short extracellular or intracellular loops. The intracellular N-terminus contains four ankyrin-like repeats (Ank R) and a coiled-coil (CC) domain. Apparently, these are sites where TRPC channels interact with other proteins. CIRB is the putative CaM- and IP\textsubscript{3}R-binding domain, and PDZ is the region that binds PDZ domains in other proteins. The TRP box in TRPC is EWKFAR. (C) Model of the architecture of a cyclic nucleotide-gated (CNG) channel. S1–S6 are the putative transmembrane domains. The cyclic nucleotide binding site has been defined by homology to the sequences of cAMP and cGMP binding proteins. A putative CaM binding domain in the N-terminus is labeled (IQ domain). (D) The sperm cation channel, CatSper, is also a six transmembrane spanning repeat protein. CatSper1 contains a remarkable abundance of histidine (His-Rich) residues in its N-terminus, which might be involved in the pH regulation of sperm motility. (E) The topology of the polycystin-2 channel is also determined by the paradigmatic six putative transmembrane domains of the Ca2+-permeable channels. The carboxyl terminal of polycystin-2 includes consensus binding regions for Ca2+ (EF hand), calmodulin and cytoskeletal proteins. (F and G) Except for the Ca\textsubscript{v} channels where the four repeat protein is coded by the expression of one gene, the rest of the sperm functional Ca2+-permeable channels are formed by the expression of four separate subunits clustered around the central pore. Thus, the tetrameric channel complex can be formed by physical association of identical (homomers) (F) or different (heteromers) subunits (G).
Table 1 Expression of Ca2+ channels in the plasma membrane of mature mammalian sperm.

<table>
<thead>
<tr>
<th>Channel type</th>
<th>Species</th>
<th>Experimental approach</th>
<th>Subunit detected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage-gated</td>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}1.2</td>
<td>Westenbroek & Babcock (1999)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}1.2</td>
<td>Carlson et al. (2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rat In-situ RT–PCR</td>
<td>Ca\textsubscript{v}1.2</td>
<td>Goodwin et al. (2000)</td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}1.2</td>
<td>Park et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}1.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}2.1</td>
<td>Westenbroek & Babcock (1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}2.1</td>
<td>Park et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}2.2</td>
<td>Wemmuth et al. (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}2.2</td>
<td>Carlson et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse WB</td>
<td>Ca\textsubscript{v}2.2</td>
<td>Wemmuth et al. (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}2.3</td>
<td>Carlson et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}2.3</td>
<td>Park et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>Ca\textsubscript{v}2.3</td>
<td>Westenbroek & Babcock (1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}2.3</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>Ca\textsubscript{v}3.1</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}3.1</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human RT-PCR</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>Ca\textsubscript{v}3.2</td>
<td>Trevino et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>TRPC1</td>
<td>Trevino et al. (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>TRPC1</td>
<td>Castellano et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC/WB</td>
<td>TRPC2</td>
<td>Jungnickel et al. (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>TRPC2</td>
<td>Trevino et al. (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>TRPC3</td>
<td>Trevino et al. (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>TRPC3</td>
<td>Castellano et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>TRPC4</td>
<td>Castellano et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>TRPC4</td>
<td>Castellano et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse ICC</td>
<td>TRPC6</td>
<td>Trevino et al. (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ICC</td>
<td>TRPC6</td>
<td>Castellano et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td>Bovine ICC</td>
<td>CNGA3</td>
<td>Weyand et al. (1994)</td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td>Bovine ICC</td>
<td>CNGA3</td>
<td>Wiesner et al. (1998)</td>
<td></td>
</tr>
<tr>
<td>Catsper</td>
<td>Bovine ICC/WB</td>
<td>CNGB1</td>
<td>Wiesner et al. (1998)</td>
<td></td>
</tr>
<tr>
<td>Catsper</td>
<td>Mouse ICC/WB</td>
<td>Catsper1</td>
<td>Ren et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>Catsper</td>
<td>Mouse ICC/WB</td>
<td>Catsper2</td>
<td>Quill et al. (2001)</td>
<td></td>
</tr>
</tbody>
</table>

ICC, immunocytochemistry; RT-PCR, reverse-transcription polymerase chain reaction; WB, Western blot.

to be a key subunit of SOCs (Beech et al. 2003). Nevertheless, it seems not to act alone; there is evidence that it can heteromultimerise with the related proteins TRPC4, TRPC5 and polycystin-2 (Venkatachalam et al. 2002).

Interestingly, in mammalian sperm, activation of phospholipase C (PLC) generates IP\textsubscript{3}, thereby mobilizing Ca2+ from the sperm’s intracellular Ca2+ store, the acrosome (Fukami et al. 2003). These early responses appear to promote a subsequent sustained Ca2+ influx signal via SOCs that results in the acrosome reaction (see below) (Florman 1994, O’Toole et al. 2000, Breitbart 2002). Recent studies have provided evidence for the expression in sperm of TRPC1, 3, 4 and 6 (Trevino et al. 2001, Castellano et al. 2003) (Table 1), and TRPC2 has been described to play a role in the ZP3 (a glycoprotein constituent of the zona pelucida)-induced acrosome reaction in mouse sperm (Jungnickel et al. 2001). It is worth mentioning also that a sperm-enriched Caenorhabditis elegans TRPC homolog (TRPC-3) has been identified. Notably, trp-3 mutant sperm are motile, but fail to fertilize oocytes after gamete contact. TRPC-3 is initially located in intracellular vesicles, and is translocated to the plasma membrane during sperm activation. This event coincided with an increase in store-operated Ca2+ entry (Xu & Sternberg 2003).

Other relevant sperm Ca2+-permeable channels

Cyclic nucleotide-gated (CNG) channels belong to a heterogeneous gene superfamily of ion channels that share a common transmembrane topology and pore structure and that harbor in their COOH-terminal region a binding domain for nucleoside 3’,5’-cyclic monophosphates (cNMPs). CNG channels are nonselective cation channels that allow the passage of divalent cations, in particular Ca2+. All known native CNG channels respond to both cAMP and cGMP, but lower concentrations of cGMP than cAMP are required to open the channels. The current model for the membrane topology of CNG channels is illustrated in Fig. 1. The core structural unit consists of six membrane-spanning segments (S1–S6), followed by a cNMP binding domain near the C terminus. A pore region is located between S5 and S6. The S4 segment in CNG channels resembles the voltage-sensor motif found in the Ca\textsubscript{v} channels (Kaupp 1995, Kaupp & Seifert 2002).
The mammalian CNG channel genes fall into two different gene subfamilies (termed CNGA and CNGB). These testicular expression of several CNG channel subunits (A3, B1, and B3) has been suggested by cloning of cDNA from testis libraries and by Northern analysis (Kapp & Seifert 2002). Antibodies specific for the A3 and B1 subunits labeled the flagellum of mature sperm and spermatogenic cells in cross-sections of seminiferous tubules (Wiesner et al. 1998) (Table 1). Heterologous expression of the A3 subunit cloned from testis produces channels that are ~200-fold more sensitive to cGMP than to cAMP (Weyand et al. 1994). Therefore, these channels might be involved in a cGMP-stimulated Ca\(^{2+}\) influx into intact sperm, and their localization on the flagellum suggests that Ca\(^{2+}\) entry through CNG channels controls sperm motility (Wiesner et al. 1998). Intriguingly, knockout mice lacking the CNG channel A3 subunit are fertile (Biel et al. 1999). Lastly, a Ca\(^{2+}\)-permeable channel activated both by cNMPs and hyperpolarizing potentials (termed SPIH) was initially cloned from sea urchin testis and functionally expressed in HEK-293 cells (Gauss et al. 1998). A channel with similar characteristics named human hyperpolarization-activated and cyclic nucleotide-gated channel 4 (hHCN4) was then cloned from a human thalamus cDNA library and heterologously expressed (Seifert et al. 1999). Experimental evidence suggests that hHCN4 is also expressed in spermatogenic cells and sperm. Although the functional significance of pacemaker channels in sperm is not known, both the SPIH and hHCN4 may be involved in the generation of rhythmic activity that controls the waveform of flagellar beating (Seifert et al. 1999).

Likewise, two sperm-specific membrane proteins (CatSper 1 and 2) have been reported (Quill et al. 2001, Ren et al. 2001). These proteins are ion channel \(\alpha\) subunits resembling the six-transmembrane one-repeat of Ca\(_V\) channels (Fig. 1). Interestingly, functional studies have shown that these channels may also be sensitive to cell membrane permeant cAMP and cGMP analogs. CatSper mRNA expression is restricted to the testis, and the subcellular localization of the protein seems to be confined to the sperm flagellum (Quill et al. 2001, Ren et al. 2001) (Table 1). More recently, by using in silico gene identification and prediction techniques, two novel members of the CatSper family (CatSper3 and 4) have been identified (Lobley et al. 2003). Each of the new CatSper genes are predicted to be expressed in the testis, and the corresponding proteins may share the characteristic molecular arrangement of the voltage gated channel ion transport \(\alpha\) subunit found in voltage-gated Ca\(_{\text{v}}\) channels. Interestingly, coiled-coil protein–protein interaction domains in the C-terminal tails of each of the CatSper channels have been identified, implying that all members of this family may interact directly or indirectly to form a functional tetramer (Lobley et al. 2003). However, neither CatSper1 nor CatSper2 has been shown to function as a cation channel when transfected into cells, singly or in conjunction (Quill et al. 2001, Ren et al. 2001). In addition, the cloning of CatSper3 has been described (Arias et al. 2003). As predicted, RNA analysis indicates that the gene is predominantly expressed in testis; however, similar to other members of the CatSper family, expression in heterologous systems did not lead to the induction of identifiable currents (Arias et al. 2003).

Role of Ca\(^{2+}\) channels in sperm function

Sperm capacitation

Sperm capacitation is a highly complex physiological event occurring in the female genital tract, rendering the mammalian sperm capable of binding to and fusing with the oocyte. Although several hypotheses have been developed, the molecular mechanisms of capacitation are not well understood. Changes associated with this process include, among others, an increase in respiration and subsequent changes in the sperm motility pattern, removal of cholesterol from the plasma membrane, increases in pH, and Ca\(^{2+}\), and activation of second-messenger cascades (de Lamirande et al. 1997, Purohit et al. 1999, Darszon et al. 2001). The most significant change in sperm after capacitation is its ability to undergo the acrosome reaction (AR).

Ion environment and ion fluxes through the sperm plasma membrane are highly important in capacitation. In particular, Ca\(^{2+}\) has been shown to be increased during capacitation. This may be the result of (i) reduced Ca\(^{2+}\) efflux due to inhibition of the Ca\(^{2+}\) ATPase pump, (ii) increased leakage of Ca\(^{2+}\) across the membrane due to instability caused by removal of cholesterol, and/or (iii) increased Ca\(^{2+}\) influx due to the activation of unidentified channels (Jagannathan et al. 2002b). However, regulation of Ca\(_V\) channels during sperm capacitation may also occur, although such a regulation has not been directly established. Within this context, there is evidence suggesting that T-type Ca\(_V\) channels through their window current might contribute to setting Ca\(^{2+}\) at the resting potential and therefore influence sperm capacitation. In spermatogenic cells, serum albumin induces an increase in Ca\(^{2+}\) window current by shifting the voltage dependence of both steady-state activation and inactivation of T-type Ca\(_V\) channels (Espinosa et al. 2000). As there is evidence that these channels are present in mature sperm (Darszon et al. 2001, Jagannathan et al. 2002b) serum albumin might facilitate an increase in Ca\(^{2+}\) entry, a prerequisite to capacitation. Another potential mechanism for regulation of Ca\(_V\) channels during sperm capacitation includes phosphorylation. The capacitation process has been correlated with increased tyrosine phosphorylation of a subset of sperm proteins (Visconti & Kopf 1998, Ficarro et al. 2003). Interestingly, T-type Ca\(^{2+}\) channel activity of mouse spermatogenic cells can be enhanced by tyrosine dephosphorylation (Arnoult et al. 1997), although no evidence for channel phosphorylation during capacitation has been documented.
Besides Ca\(^{2+}\), an increase in pH, has been reported in capacitation (de Lamirande et al. 1997, Purohit et al. 1999, Olds-Clarke 2003). Either or both Ca\(^{2+}\) and pH\(_{i}\) may regulate one or more types of K\(^{+}\) channels in the sperm plasma membrane, causing the hyperpolarization of the membrane potential observed during capacitation. This hyperpolarization is thought to release the T-type Cav channels from inactivation such that they are competent to respond to a stimulus provided by the zona pellucida (ZP) and undergo the AR (Arnoult et al. 1999). Notably, a pH-regulated K\(^{+}\) channel with strong inward rectification properties has been described in spermaticogenic cells (Munoz-Garay et al. 2001). The increase in pH\(_{i}\) that occurs during capacitation may activate this channel, contributing, at least in part, to enhance the K\(^{+}\) permeability that leads to hyperpolarization. A second putative mechanism for hyperpolarization during sperm capacitation is the opening of Ca\(^{2+}\)-activated K\(^{+}\) channels. It has been shown that injection of RNAs of spermaticogenic cells isolated from the rat testis into Xenopus oocytes resulted in the expression of currents that show similarity to maxi-K channels, the Ca\(^{2+}\)-activated K\(^{+}\) channels of somatic cells (Chan et al. 1998, So et al. 1998, Wu et al. 1998a). Immunolocalization and RT-PCR assays showed these channels to be present in spermaticogenic cells and sperm (Wu et al. 1998a). Such channels may be activated by the increase in Ca\(^{2+}\) upon capacitation.

The acrosome reaction

The sperm acrosome reaction (AR) is a fundamental reproductive strategy which is a prerequisite for successful fertilization. It involves exocytosis of the acrosomal vesicle contained in the head of the sperm. During this process, lytic enzymes and material required for sperm binding are released into the extracellular space leading to the fusion of the gametes. Ca\(^{2+}\) influx is an absolute requirement for the physiological AR in sperm from all species examined to date (Publicover & Barratt 1999, Darszon et al. 2001). In mammals, fertilization begins with the direct interaction of sperm and egg, a process mediated primarily by gamete surface proteins. To penetrate the cumulus cell barrier surrounding ovulated eggs, sperm use hyperactivated motility and a glycosylphosphatidylinositol (GPI) anchored surface hyaluronidase, named PH-20 (Primakoff & Myles 2002). Once the sperm has penetrated the cumulus cells and reaches the ZP, it undergoes exocytosis, releasing the acrosomal content. Sperm adhesion to the ZP is a carbohydrate-mediated event (Primakoff & Myles 2002).

Sperm–ZP adhesion activity has been confirmed by gene knockout of one sperm surface enzyme that putatively binds ZP3, β-1,4-galactosyl transferase I (GalT I). Compared with wild-type, GalT I-null sperm show substantially reduced binding of soluble ZP3 and no ZP3-induced acrosome reaction (Rodeheffer & Shur 2004a,b). ZP3-induced exocytosis of the acrosomal contents proceeds through two sperm signaling pathways. In the first, ZP3 binding to GalT I and other potential receptors results in activation of a heterotrimeric GTP-binding protein and PLC, thus elevating the concentration of Ca\(^{2+}\). In the second pathway, ZP3 binding to the same receptor(s) stimulates a transient influx of calcium through T-type channels. In a later phase of the signaling, these initial ZP3-induced events produce additional Ca\(^{2+}\) entry through TRPC family Ca\(^{2+}\) channels, resulting in a sustained increase in Ca\(^{2+}\) that triggers exocytosis (Darszon et al. 2001, Primakoff & Myles 2002) (Fig. 2).

The Ca\(^{2+}\) signal elicited by ZP is prolonged and the sperm AR occurs some minutes after the start of this signal. In contrast, the influx of Ca\(^{2+}\) through T-type Cav channels is transient (<500 ms) (Darszon et al. 2001, Jagannathan et al. 2002b). However, the comparison of the pharmacological profile of the T-type current of spermaticogenic cells and the ZP-induced Ca\(^{2+}\) increase in mouse sperm shows great similarity (Arnoult et al. 1996, 1998). Furthermore, the initial response to ZP is a large, transient Ca\(^{2+}\) spike with kinetics comparable to those of T-currents (Arnoult et al. 1999). This initial Ca\(^{2+}\) entry induces a second, sustained Ca\(^{2+}\) influx. Recent evidence indicates that the sustained component of Ca\(^{2+}\) influx is mediated primarily by SOCs activated after depletion of a small Ca\(^{2+}\) store (O’Toole et al. 2000, Jungnickel et al. 2001), probably in the acrosome.

It has been proposed that TRPC2 participates in the sustained mouse sperm Ca\(^{2+}\) influx triggered by ZP3 (Jungnickel et al. 2001). However, other TRPCs or unknown subunits may substitute for TRPC2 since TRPC2 \(-/-\) mutant mice are fertile (Leypold et al. 2002). It is worth mentioning that the human TRPC2 gene appears to be a pseudogene considering that several independent expressed sequence tags (ESTs) show mutations introducing early stop codons (Zhu et al. 1996, Vannier et al. 1999). Lastly, as mentioned earlier, the sperm-enriched C. elegans TRPC homolog, trp-3, was shown to be required for fertilization (Xu & Sternberg 2003). As C. elegans oocytes lack egg coats, these data suggest that some TRPC channels might function to mediate Ca\(^{2+}\) influx at some stage in sperm–egg membrane interactions in addition to the AR. However, it should be noted that gamete interaction in nematodes is quite different from that in mammals. Actually, C. elegans sperm do not possess an acrosome, which makes the AR unnecessary for fertilization in this species.

Ca\(^{2+}\) channels and sperm motility

Although the external triggering mechanisms that initiate sperm motility are largely unknown, evidence supports a modification of the Ca\(^{2+}\) balance by several separate Ca\(^{2+}\)-dependent mechanisms. Elevation of Ca\(^{2+}\) can occur by entry of Ca\(^{2+}\) ions into cells through the plasma membrane or release of Ca\(^{2+}\) from internal stores. Therefore, the possibility that Cav channels are expressed in the sperm tail and may participate in the regulation of flagellar
motility has been investigated. Immunolocalization studies showed that at least two CaV3 channels (α1.2 and α1.3.3) are heterogeneously distributed in mouse and human sperm. These channels are present in the sperm flagella and compounds known to inhibit them induce a small decrease in human sperm motility, indicating they might participate in regulating this function (Trevino et al. 2004). In addition, confocal immunofluorescence data have shown that at least four distinct types of capacitative Ca2+ channels (TRPC1, 3, 4 and 6) are expressed and differentially localized in the human sperm. By analyzing the effects of distinct TRPC channel antagonists using a computer-assisted assay, evidence has been provided that these proteins may play an important role in controlling human sperm flagellar movement (Castellano et al. 2003).

Likewise, at some time before fertilization, mammalian sperm undergo a change in movement pattern, named hyperactivation, which is critical to the success of fertilization because it enhances the ability of sperm to penetrate the egg’s ZP (Ho & Suarez 2001a,b). Recent experimental evidence suggests that hyperactivated motility may be regulated by an IP3R-gated intracellular Ca2+ store in the neck region of mammalian sperm (Ho & Suarez 2001b). This is supported by the fact that thapsigargin induced an increase in Ca2+ sufficient to switch on hyperactivation in the absence of external Ca2+ (Ho & Suarez 2001b). In addition, as mentioned earlier, the unique sperm cation channel, CatSper, is expressed by meiotic and postmeiotic spermatogenic cells but not by other cells, and is present in the sperm flagellum, suggesting a role in the regulation of sperm motility. In line with this, targeted disruption of mouse CatSper gene results in male sterility, due mainly to the inability of sperm to maintain normal patterns of motility and their inability to penetrate the egg’s ZP (Ren et al. 2001).
Knockout models for studying sperm function and inherited sperm \(\text{Ca}^{2+} \) channelopathies

The genes for CatSper1 and CatSper2 have been disrupted (Ren et al. 2001, Carlson et al. 2003, Quill et al. 2003) and, as expected, male mice but not females are infertile. Interestingly, CatSper1 seems to be essential for depolarization-evoked \(\text{Ca}^{2+} \) entry. Carlson et al. (2003) have shown that when sperm of a wild-type mouse received brief applications of a depolarizing medium (high \(K^+ \)), \(\text{Ca}^{2+} \) channels are opened causing \(\text{Ca}^{2+} \) to increase slightly. After recovery and a brief conditioning exposure to bicarbonate (which initiates several cellular responses that result in \(\text{Ca}^{2+} \) channel facilitation), a third stimulus evokes a much faster and larger \(\text{Ca}^{2+} \) increase.

Interestingly, CatSper1 seems to be essential for depolarization-evoked \(\text{Ca}^{2+} \) entry. Carlson et al. (2003) have shown that when sperm of a wild-type mouse received brief applications of a depolarizing medium (high \(K^+ \)), \(\text{Ca}^{2+} \) channels are opened causing \(\text{Ca}^{2+} \) to increase slightly. After recovery and a brief conditioning exposure to bicarbonate (which initiates several cellular responses that result in \(\text{Ca}^{2+} \) channel facilitation), a third stimulus evokes a much faster and larger \(\text{Ca}^{2+} \) increase. In sharp contrast, sperm of a CatSper1 null mouse showed little or no depolarization-evoked \(\text{Ca}^{2+} \) increase. These data support the idea that CatSper1 forms functional \(\text{Ca}^{2+} \) channels in the membrane of the sperm flagellum, alone or with unidentified partners that perhaps include other members of the CatSper family (Carlson et al. 2003, Lobley et al. 2003). In addition, sperm from CatSper1 null mice did not develop the large amplitude, asymmetric waveform found for hyperactivated wild-type sperm. This requirement of CatSper1 for hyperactivated motility is consistent with the \(\text{Ca}^{2+} \) dependence of hyperactivation (Ho & Suarez 2001a), as well as with the presence of CatSper1 in flagellar membranes, and with the ability of CatSper1 null sperm to penetrate \(\text{ZP} \)-free, but not \(\text{ZP} \)-intact, eggs (Ren et al. 2001). Similarly, it has been shown that CatSper2 is essential for the generation of the hyperactivated form of sperm motility. Hence, although CatSper2 \(-/-\) cells can undergo capacitation and the AR, the time-dependent appearance of hyperactivated movement characteristics (high track velocity and nonlinear trajectory) is not present in the CatSper2 null sperm (Carlson et al. 2003). This may explain why CatSper2 knockout sperm fail to penetrate the \(\text{ZP} \) of intact eggs (Carlson et al. 2003).

Interestingly, recent genetic studies have linked male human infertility to a mutation in the CatSper2 gene (Avidan et al. 2003). In these studies, a 106 kb tandem duplication and a large genomic deletion on chromosome 15q15 were identified in three members of a family suffering from ashenotteratozoospermia and nonsyndromic deafness in addition to congenital dyserythropoietic anemia type 1 (CDAI). Besides the CDAI mutation, these patients carried a deletion causing the inactivation of four genes. CatSper2, partially removed by the deletion, appears to be the best candidate for the etiology of the observed male infertility. The implication of CatSper2 in ashenotteratozoospermia is the first description of an autosomal gene associated with nonsyndromic male infertility in humans (Avidan et al. 2003).

In addition, a member of the TRPP class of \(\text{Ca}^{2+} \) channels, called polycystin-2, is encoded by the \(\text{PKD2} \) gene. This polypeptide is an integral membrane glycoprotein with similarity to the \(\text{Ca}_{\text{V}1} \) channel \(\alpha_1 \) subunits (Mochizuki et al. 1996), and indeed seems to behave as a non-selective \(\text{Ca}^{2+} \)-permeable channel (Hanaoka et al. 2000, Gonzalez-Perrett et al. 2001). Mutations in \(\text{PKD2} \) cause autosomal dominant polycystic kidney disease (ADPKD) (Wu et al. 1998b, 2000), a genetic disorder in which the renal parenchyma is progressively substituted by fluid-filled cysts (Peters & Breuning 2001). Interestingly, a mutant mouse with ADPKD (Tg737) displays abnormal ciliary structure and function. Tg737 mutant mice have defects in bronchial and photoreceptor cilia, implying a relationship between ADPKD with primary ciliary defects (Yoder et al. 1996, Kierszenbaum 2004). The Tg737 mouse lacks a protein called polars which co-localizes with polycystin-2 in cilia (Yoder et al. 2002). Notably, sperm tail development is abortive in the Tg737 mutant.

Moreover, molecular studies have indicated that the developing mouse heart, kidney and pancreas are particularly susceptible to \(\text{Pkd2} \) gene disruption, with the ensuing phenotypes often resulting in mid-gestational embryonic lethality (Wu et al. 2000). It has not yet been determined whether the \(\text{Pkd2} \) null embryos have alterations in germ cell differentiation. However, recent cellular and molecular analysis indicates that \textit{Drosophila Pkd2} is expressed in the tail and the head of sperm, and that targeted disruption of \textit{Pkd2} results in male infertility without affecting spermatogenesis (Gao et al. 2003). The mutant sperm are motile but fail to swim into the storage organs in the female (semen receptacles and spermathecae), suggesting that the \textit{Drosophila PKD2} \(\text{Ca}^{2+} \) permeable channel operates in sperm for directional movement inside the female reproductive tract (Gao et al. 2003). Supporting a role of polycystin-2 in \textit{Drosophila} fertilization is the finding that a \textit{Drosophila} flagellar polycystin-2 homolog specifically expressed in the male germ cells (called \textit{amo}) is localized in the sperm flagellum (Watnick et al. 2003). A targeted disruption of the \textit{amo} gene causes sterility. Both the structure of the testis and the characteristics of sperm motility in the \textit{amo} mutant were normal. However, sperm of the mutant deposited in the uterus were unable to enter the female sperm storage organs (Watnick et al. 2003).

This is interesting because sea urchin and human sperm, which also express sperm-specific members of the PKD1 family, also move directionally to meet the egg in the oviduct. The finding in human, sea urchin and \textit{Drosophila} sperm of polycystin gene homologs provided support for evolutionary conservation and unveiled genetically defined components required for fertilization (Kierszenbaum 2004). In line with this, it is worth mentioning that a small group of patients whose sperm lacked the central microtubules (the axonemal 9 + 0 defect) of the flagellum were diagnosed ADPKD (Okada et al. 1999). However, there have been no genetic studies of the defect in the central microtubules in infertile men, and therefore the genetic linkage between ADPKD and this defect in sperm remains to be determined.
Likewise, in the CaV channel field, exciting new insights into the function of these proteins have been obtained by examining the phenotypes of animal models in which CaV genes have been deleted. The knockout approach has been applied to almost all CaV channel α1 subunit genes, and has also been used to try to elucidate the actions of the various auxiliary subunits (Miller 2001, Muth et al. 2001). Although the information regarding the function of sperm CaV channels has appeared slowly, it would be anticipated that this strategy would be very useful in allowing the understanding of many aspects of sperm CaV channel physiology.

Knockout mice of obvious interest are those for the CaV3 channels. Mice lacking CaV3.1 channels show thalamocortical relay neurons lacking the burst mode firing of action potentials (Kim et al. 2001), while mice deficient in CaV3.2 channels have constitutively constricted coronary arterioles and focal myocardial fibrosis (Chen et al. 2003). Very recently, by using mice deficient for CaV3.1 channels, it has been reported that the T-type current activity in spermatogenic cells is not reduced in the knockout mice (Stamboulian et al. 2004). In addition, the biophysical and pharmacological properties of the T-type current from the CaV3.1 channel-deficient mice suggest that CaV3.3 may not contribute to the whole-cell Ca2þ current in spermatogenic cells. Together, these data suggest that (i) T-type Ca2þ current in mouse spermatogenic cells is mainly carried through CaV3.2 channels, (ii) CaV3.1 channels may contribute to a minor extent, and (iii) CaV3.3 channels are unlikely to contribute significantly to the T-type Ca2þ current recorded in spermatogenic cells (Stamboulian et al. 2004). However, it is interesting that although the impact of the gene disruption on the male gamete physiology has not been studied in detail, CaV3.2 null mice show apparently normal reproduction (Chen et al. 2003). The preservation of the male reproductive function in these animals might be the result of compensatory changes in the expression of other CaV proteins.

Moreover, it has been suggested that several CaV α1 subunits of the HVA class exist in mammalian sperm, including CaV2.3 (Westenbroek & Babcock 1999, Wenne-muth et al. 2000, Trevino et al. 2004) which encodes the R-type Ca2þ currents (Smith et al. 1999, Tottene et al. 2000). The presence of this type of current in mature sperm has been suggested pharmacologically (Wenne-muth et al. 2000). Initial studies proposed the CaV2.3 channel as a candidate for the LVA Ca2þ currents observed in spermatogenic cells (Lievano et al. 1996); however, more recently, it has been reported that these channels may not contribute to these Ca2þ currents (Sakata et al. 2001). Instead, CaV2.3 channels are expected to play roles in the control of capacitation, the AR and/or the flagellar movement, although no definite functions have been defined as yet. In order to try to elucidate the functions of these channels, a mouse model lacking CaV2.3 was developed (Sakata et al. 2002). Although male mice lacking CaV2.3 were found to be fertile, the Ca2þ transients induced by mannose-bovine serum albumin (BSA) were significantly lower than that of wild-type sperm. Mannose-BSA has been shown to increase Ca2þ in human sperm, which accounts for its ability to induce the AR (Blackmore & Eisoldt 1999). Previous observations indicated that CaV channels may be involved in the actions of mannose-BSA (Blackmore & Eisoldt 1999, Son et al. 2000), although a potential mannose-BSA-induced internal Ca2þ rise by a different activation pathway cannot be ruled out. Lastly, the linearity of movement was apparently increased in CaV2.3 null sperm (Sakata et al. 2002), suggesting that these channels may be functional in sperm and may play roles in Ca2þ signaling and the control of flagellar motility.

As described earlier, the mammalian sperm AR is initiated by binding to the ZP. This event is thought to induce a transient Ca2þ influx through CaV channels (Darszon et al. 2001, Jagannathan et al. 2002b). A tyrosine kinase-regulated PLC may also be activated during ZP binding (Patrat et al. 2000), whose activation generates IP3, mobilizing Ca2þ from an intracellular Ca2þ store, presumably the acrosome. The initial Ca2þ response appears to promote a subsequent sustained Ca2þ influx via SOCs that results in the AR (Florman 1994, O’Toole et al. 2000). Experimental evidence for the expression of TRP protein channels in sperm, putative SOCs, has been provided (Jungnickel et al. 2001, Trevino et al. 2001). Notably, in PLC64—/— mice there is an alteration in the release of Ca2þ induced by ZP, as well as a reduction in Ca2þ influx through SOCs (Fukami et al. 2003). Nevertheless, given that some of the sperm from PLC64 null mice undergo the AR, the possibility that other PLC isoforms might be involved in the AR cannot be excluded (Fukami et al. 2003).

Challenges and prospects

In numerous research fields, including male gamete biology, molecular research is now focusing on the identification and characterization of genes and proteins. Numerous Ca2þ channels responsible for sperm Ca2þ signals have been cloned, and the consequence is the generation of cDNA and antibody probes which have been used to investigate channel organization, localization and function at the molecular level. However, sperm physiological genomics is considered a starting point for the more challenging aim of understanding how a cell actually functions at a molecular level during health and disease. To achieve this goal, new technologies are emerging. For instance, proteomics can be applied to study a host of aspects of male gamete physiology such as following the expression of particular proteins (including Ca2þ-permeable channels) in germ cells during spermatogenesis (Cossio et al. 1997, Guillaume et al. 2001), as well as proteins putatively involved in post-testicular sperm maturation (Dacheux et al. 1998, Starita-Geribaldi et al. 2001). In addition, proteomics may allow the mapping and...
characterizing of sperm surface proteins that (i) are phosphorylated during capacitation (Naaby-Hansen et al. 2002, Ficarro et al. 2003), (ii) are responsible for gamete recognition during interaction with the ZP (Peterson et al. 1991), and (iii) may activate the signaling cascades that trigger the sperm AR and may sustain sperm motility (Ostrowski et al. 2002). In the future, it will be possible to navigate throughout sperm databases containing complementary information on nucleic acid and protein sequences, genome mapping, diseases, protein structure, post-translational modifications, antibodies and cellular localization of antigens, signaling pathways, etc. (Celis et al. 1998). Hence, proteomics and other molecular tools may provide us with a better mechanistic understanding of male gamete function.

Acknowledgements

Support by grants from CONACyT and the Miguel Aleman Foundation is gratefully acknowledged. The authors declare there is no conflict of interest that would prejudice the impartiality of this scientific work.

References

Arnoult C, Cardullo RA, Lemos JR & Florman HM 1996 Activation of mouse sperm T-type Ca\(^{2+}\) channels by adhesion to the egg zona pellucida. PNAS 93 13004–13009.

Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, Garbers DL & Babcock DF 2003 CatSper1 required for evoked Ca\(^{2+}\) entry and control of flagellar function in sperm. PNAS 100 14864–14868.

Florman HM 1994 Sequential focal and global elevations of sperm intracellular Ca\(^{2+}\) are initiated by the zona pellucida during acrosomal exocytosis. Developmental Biology 165 152–164.

Ca2+-conducting channels in the plasma membrane of mammalian sperm

Ho HC & Suarez SS 2001b An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivation. Biology of Reproduction 65 1606–1615.

Kaupp UB & Seillert R 2002 Cyclic nucleotide-gated ion channels. Physiological Reviews 82 769–824.

Lievan A, Santi CM, Serrano CJ, Treviño CL, Bellve AR, Hernandez-Cruz A & Darsonz A 1996 T-type Ca2+ channels and Ca2+ expression in spermatogenic cells and their possible relevance to the sperm acrosome reaction. FEBS Letters 388 150–154.

Miller RJ 2001 Rocking and rolling with Ca2+ channels. Trends in Neuroscience 24 445–449.

O’Toole CM, Arnould C, Darsonz A, Steinhardt RA & Florman HM 2000 Ca2+ entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Molecular Biology of the Cell 11 1571–1584.

Publicover SJ & Barratt CL 1999 Voltage-operated Ca2+ channels and the acrosome reaction: which channels are present and what do they do? Human Reproduction 14 873–879.

Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE & Garbers DL 2003 Hyperactivated sperm motility driven by CatSper2 is required for fertilization. PNAS 100 14869–14874.

Randriamampita C & Tsien RY 1993 Entrapment of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364 809–814.

www.reproduction-online.org
Rodeheffer C & Shur BD 2004a Sperm from beta1,4-galactosyltransferase I-null mice exhibit precocious capacitation. Development 131 491–501.

Santi CM, Darszon A & Hernandez-Cruz A 1996 A dihydropyridine-sensitive T-type Ca2+ current is the main Ca2+ current carrier in mouse primary spermatocytes. American Journal of Physiology 271 C1583–C1593.

Son WY, Lee JH, Lee JH & Han CT 2000 Acrosome reaction of human spermatozoa is mainly mediated by α1H T-type calcium channels. Molecular Human Reproduction 6 893–897.

Stamboulian S, Kim D, Shin HS, Ronjal M, De Waard M & Arnout C 2004 Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the Cav3.1 (α1G) calcium channel: Cav3.2 (α1H) is the main functional calcium channel in wild-type spermatogenic cells. Journal of Cellular Physiology 200 116–124.

Westenbroek RE & Babcock DF 1999 Discrete regional distributions suggest diverse functional roles of calcium channel α1 subunits in sperm. Developmental Biology 207 467–469.

Received 30 August 2004
First decision 4 October 2004
Accepted 4 November 2004