Expression profile of protein kinase C isozymes in preimplantation mouse development

Hesam Dehghani and Ann C Hahnel

Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada

Correspondence should be addressed to A C Hahnel; Email: ahahnel@ovc.uoguelph.ca

(H Dehghani is now at Programme in Cell Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8 Canada)

Abstract

In the preimplantation mouse embryo, the protein kinase C (PKC) family has been implicated in regulation of egg activation, progression of meiotic and mitotic cell cycles, embryo compaction, and blastulation, but the involvement of the individual isozymes is largely unknown. Here, using semiquantitative immunocytochemistry and confocal microscopy we analyze the relative amount and subcellular distribution of ten isozymes of PKC (α, βI, βII, γ, δ, ε, η, θ, ζ, γ/λ) and a PKC-anchoring protein, receptor for activated C-kinase 1 (RACK1). Our results show that all of these isoforms of PKC are present between the two-cell and blastocyst stages of mouse preimplantation development, and that each has a distinct, dynamic pattern and level of expression. The data suggest that different complements of the isozymes are involved in various steps of preimplantation development, and will serve as a framework for further functional studies of the individual isozymes. In particular, there was a transient increase in the nuclear concentration of several isozymes at the early four-cell stage, suggesting that some of the PKC isozymes might be involved in regulation of nuclear organization and function in the early mouse embryo.

Reproduction (2005) 130 441–451

Introduction

The protein kinase C (PKC) family is a family of serine/threonine protein kinases that plays an important role in cell signal transduction. Based on structural differences that produce differential sensitivity to activators and co-factors, the isozymes have been categorized into three subfamilies. The conventional PKCs (cPKCs) are α, βI, βII, and γ and are activated by phosphatidylserine, diacylglycerol, Ca²⁺, and 4β-phorbol 12-myristate 13-acetate (4β-PMA). The novel PKCs (nPKCs) are δ, ε, η, and θ, and are not Ca²⁺-dependent, but otherwise activated as the cPKCs. PKC μ is sometimes included in the nPKCs (Geiges et al. 1997), but it has homologies to both the PKC and calmodulin kinases, and is often placed into a PKC-like family (Hauser et al. 2002). The atypical PKCs (aPKCs) are ζ and γ/λ and are lipid-dependent, but cannot be activated by either Ca²⁺ or 4β-PMA (Newton 2001). Production of monoclonal antibodies and polyclonal antisera against peptides that distinguish the various isozymes has led to a number of experiments that indicate that individual PKC isozymes are localized differentially within cells before and after stimulation. Their restricted localization exposes them to different substrates and is believed to largely specify function (Schechtman & Mochly-Rosen 2001). It has been shown that phosphorylation of a group of conserved amino acids determines the activation state of PKC and affects the subcellular localization of each isozyme (Keranen et al. 1995). Also, binding of substrate and non-substrate proteins affects the ability of PKC isozymes to relocate and hence associate with particular substrates (Jaken & Parker 2000, Mochly-Rosen & Kauvar 2000, Schechtman & Mochly-Rosen 2001).

Several studies have established involvement of PKC in egg activation, fertilization, and progression through the meiotic cycles in mice and rats (Gallicano et al. 1995, 1997, Raz et al. 1998, Downs et al. 2001, Viveiros et al. 2001, 2003, Eliyahu & Shalgi 2002, Quan et al. 2003). However, there is less known of the role of the PKC during early cleavage. Activation with phorbol ester of the cPKC and nPKC blocks progression through the mitotic cycles (Quan et al. 2003). The synthesis of proteins that are required for embryonic gene activation is inhibited by H8 and H7, non-specific inhibitors of protein kinases A and C that act by competitive inhibition of their ATP-binding sites (Schultz 1993). During mouse preimplantation development, phorbol ester causes premature compaction of two-, four-, and early eight-cell-stage embryos (Ohsugi et al. 1993a, 1993b,
Ohsugi & Yamamura (1993), and the non-specific PKC inhibitor d-sphingosine blocks induced and natural compaction (Winkel et al. 1990). PKC α may be involved in compaction, since it redistributes to contact sites as compaction initiates and can phosphorylate β-catenin (Pauken & Capco 1999). It has also been demonstrated that blastocoele formation is regulated through phospholipase C (an enzyme that is known to activate PKC-dependent pathways; Stacheki & Armant 1996), and that targeted disruption of mouse phospholipase Cβ3 (the most widely expressed member of the phospholipase Cβ family) results in early preimplantation death (Wang et al. 1998). Although all of these studies suggest a role for the PKC family in preimplantation development, the relative importance of each isozyme is unknown.

In rat oocytes, Raz et al. (1998) detected PKCs α, βI, βII, γ, δ, ε, λ, and ζ by Western blot and immunocytochemistry with isozyme-specific antibodies, but not PKCs θ or υ, and Eliyahu & Shalgi (2002) detected PKCs α, βI, and βII by immunocytochemistry. PKCs α, βI, and γ have been detected in pig oocytes (Fan et al. 2002). The studies of mouse oocytes have given inconsistent results. Gangeswaran & Jones (1997) detected only PKCs δ and λ among nine isozymes by Western blot. Pauken & Capco (2000) detected PKCs α, γ, δ, λ, μ, and ζ by Western blot and immunocytochemistry, but not PKC β. While Luria et al. (2000) found that PKCs α, βI and βII were present by immunocytochemistry, and Downs et al. (2001) found that PKCs α, βI, δ, and ζ, but not ε were present by Western blot. Luria et al. (2000), Eliyahu & Shalgi (2002) and Baluch et al. (2004) have supported some of the results with PKC activator/inhibitor studies. In preimplantation embryos, Pauken & Capco (2000) detected PKCs α, γ, δ, λ, and ζ but not isoform β by Western blot and immunocytochemistry, but Eckert et al. (2004) detected PKCs βI and βII in freshly isolated inner cell masses of mouse blastocysts. Clearly neither Western blot nor immunocytochemistry has provided consistent results with PKC β.

In this study, we used immunocytochemistry to examine the expression of 10 members of the PKC family (α, βI, βII, γ, δ, ε, η, θ, ζ, uλ) between the two-cell and blastocyst stages of mouse development. We chose to use immunocytochemistry because it is very sensitive and provides the ability to localize individual PKC isozymes within cells. We included antibodies from two commercial sources that have been widely used in immunocytochemical detection of PKCs, and support the immunocytochemistry data with results from treatments with specific PKC activators. This study differs from previous ones in that we quantified the fluorescence resulting from binding of the antibody to each PKC isozyme. This was done in order to estimate concentrations of each isozyme in various subcellular compartments at various stages of cleavage. This is significant since it has been suggested that small changes in subcellular distribution can lead to functional changes in PKC action. It is difficult to obtain the numbers of preimplantation embryos that would be required for cell fractionation and biochemistry. Quantifying immunofluorescence is one way to circumvent this problem and has been used by others for live cell imaging of PKC translocations (Almholt et al. 1999, Schechtman et al. 2004).

Materials and Methods

Embryo collection and treatment

Mice were maintained and handled in accordance with the guidelines of the Animal Care Committee, University of Guelph, Guelph, Ontario, Canada. Mice (CD1; Charles River, Saint-Constant, QC, Canada) were super-ovulated by intraperitoneal injection of 5 IU pregnant mare's serum gonadotropin followed 46 h later by 5 IU human chorionic gonadotropin (hCG). Each female mouse was placed with a male and was checked the following morning for the presence of a copulation plug. Embryos (two-cell, four-cell, 8–16-cell, morula, and early blastocyst) were flushed from oviducts or uterine horns with PBS (8.0 g/l NaCl, 0.2 g/l KCl, 0.15 g/l Na2HPO4, and 0.2 g/l KH2PO4) at 45, 52, 69, 76, and 93 h after hCG injection, respectively, as described by Hogan et al. (1994). At these time points, two-cell embryos are in the G2 phase, and four-cell embryos should be in the G1 or S phase of the cell cycle (Pratt 1987). For most immunofluorescence analysis, the embryos were fixed immediately after harvest and processed as described in the next section.

To study the effects of activating PKC isozymes, two-cell embryos were flushed from oviducts at 45 h post-hCG with flushing-holding medium (Lawitts & Biggers 1993), and cultured in KSOM/AA medium at 37 °C under silicone oil in an atmosphere of 5% CO2/5% O2/90% N2 (Lawitts & Biggers 1993, Ho et al. 1995) with or without PKC activator. Activation was with 100 nM 4B-PMA for 15 min (LC Laboratories, Woburn, MA, USA) or with 100 nM of the cPKC-activating peptide, pseudo-BRACK (where RACK is receptor for activated C kinase) for 60 min (kindly donated by D Mochly-Rosen, Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA, USA). The 4B-PMA was dissolved in ethanol at 30 μM (Watanabe et al. 2002), and used at 100 nM in medium as described for myocytes (Disatnik et al. 1994, Dorn et al. 1999) and similar to what has been used with oocytes (80, 100, and 160 nM; Gallicano et al. 1995, 1997, Raz et al. 1998, Luria et al. 2000). Control embryos were cultured in medium with 0.33% ethanol. We did not include inactive analogues of 4B-PMA because others have shown that the analogues have non-specific activities (for example, see Doerner et al. 1990, Watanabe et al. 2002). The peptide activator pseudo-BRACK is cross-linked to a dimer of Antennapedia carrier peptide (CRQIKiWFQRRMKK). This conjugate has been used extensively by Mochly-Rosen's group, and shown to enter cells and affect PKC distribution and cell function without compromising cell viability (Dorn et al. 1999). This group has also shown
that pseudo-βRACK does not affect distribution of other PKC isoforms at concentrations between 100 nM and 1 μM, and that scrambled peptide and peptides derived from other parts of the PKC molecule do not affect distribution of the PKC. Negative-control embryos were cultured in medium containing 100 nM carrier−carrier dimer (also kindly donated by D Mochly-Rosen). After culture in treatment or control media, the embryos were immediately fixed and processed for immunocytochemistry.

Immunocytochemistry

Monoclonal antibodies against seven isozymes of PKC (α, γ, δ, ε, θ, ϵ, and λ) and RACK1 were purchased from Transduction Laboratories (Lexington, KY, USA). Polyclonal antibodies raised against specific peptides of nine isozymes of PKC (α, βI, βII, γ, δ, ε, ζ, η, and θ) were purchased from Research & Diagnostics Antibodies (Berkeley, CA, USA). These antibodies have been previously characterized and used in a number of studies on PKC in embryonic or adult cells (Disatnik et al. 1994, Johnson et al. 1996, Csukai et al. 1997, Miyamae et al. 1998, Dorn et al. 1999, Pauken & Capco 2000). Embryos were fixed in 2% paraformaldehyde in PBS for 30 min, and then permeabilized in 0.5% Triton-X 100 in PBS for 10 min. They were washed three times (20 min each) with 5 mM glycine in PBS, treated with 1% Tween-20 (10 min), and equilibrated in intracellular buffer (ICB; 100 mM KCl, 5 mM MgCl₂, 3 mM EGTA, 1% BSA, and 20 mM Hepes, pH 6.8) for 5 min, as described by Pauken & Capco (1999, 2000). Groups of five embryos were transferred into 50 μl drops of ICB containing 10% serum of 1:100 for polyclonal antibodies, and a final dilution of 1:100 for polyclonal antibodies, and incubated overnight at 4°C. Embryos were washed four times (30 min each) with ICB and transferred into 50 μl drops of diluted secondary antibody at 20 μg/ml for 2 h at room temperature in the dark. Fluorescein-conjugated, affinity-purified F(ab)₂ fragment of sheep anti-mouse IgG (Boehringer Mannheim, Mannheim, Germany) was used to detect the polyclonal antibodies, and affinity-purified F(ab)₂ fragment of goat anti-rabbit IgG labeled with Rhodamine Red-X (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) was used to detect the monoclonal antibodies. The embryos were washed four times (30 min each at room temperature in the dark) with ICB and then mounted on 0.1% poly-lysine coated slides using Vectashield containing 4',6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA, USA). Negative controls for immunocytochemistry were embryos exposed to medium rather than primary antibody. For each isozyme at each stage, there were at least nine embryos analyzed from three independent experiments.

Imaging was performed using a Bio-Rad MRC 600 confocal laser-scanning microscope attached to an Optiphot-II Nikon fluorescence microscope (with a 60 X, 1.4 numerical aperture plan-apochromat oil-immersion objective). Excitation was with 488 and 568 nm wavelengths from a krypton–argon laser.

Quantification of fluorescence intensity

We used the same confocal microscope settings for images from all embryos regardless of antibody, and for all trials. The settings were based on the fluorescence intensity of embryos immunostained for PKC βII, because this antibody gave us the strongest signal (see Fig. 2C, below). The settings were selected to ensure that the PKC βII images were always less than 256 on the gray scale in the highest part of the linear range.

A minimum of three embryos were imaged in three trials on separate days. For each blastomere of each embryo up to the blastocyst stage, an image (optical slice) was selected from the stack that bisected the nucleus and included apical and basal membranes. In our experience, this mid-blastomere slice provides the best single representation of blastomere asymmetry, since the polarized distribution of components in blastomerers is radially disposed. At the blastocyst stage, 10 cells were randomly chosen from the trophectoderm or inner cell mass. The images were converted to TIFF files using Bio-Rad’s ConfoCal Assistant software (version 4.02), and the fluorescence analyzed using Scion Image (Scion Corporation, Frederick, MD, USA). For quantification of fluorescence within the nucleus and cytoplasm, the whole area for nucleus and cytoplasm was selected manually. The cytoplasm further subdivided by selecting 10 sub-regions (four pixels each) that were immediately sub-adjacent to plasma membrane that was not in contact with another cell (apical cytoplasm), immediately sub-adjacent to plasma membrane that was in contact with another blastomere (basal cytoplasm), or that was midway between these two areas and the nucleus (central cytoplasm).

The mean fluorescence intensity for each subcellular area of each blastomere was calculated by dividing the sum of all gray values in the sub-regions by the total number of pixels enclosed. The background gray value in each image (a region outside of the embryo) was subtracted from the mean fluorescence intensity. Analysis of variance did not show a significant difference between the three trials, and thus we were able to treat the readings from each subcellular area of each blastomere at a given time point as a single population. The error bars in the graphs are the standard deviations of these readings, and represent the variations among blastomerers, embryos, and trials.

Difference in fluorescence intensity between the nucleus and cytoplasm was analyzed using a Student’s t-test (P < 0.05), and is indicated in Figs 2–5 (see below) by an asterisk. Differences in fluorescence intensity among the apical, central, and basal regions of the cytoplasm were compared using ANOVA (P < 0.05), and the statistically different groups were identified by Tukey’s test.
(P < 0.05). Statistical difference is indicated by lower-case letters on Figs 2 and 5.

Results

Specificity of PKC antibodies

To ascertain that the expression pattern and intracellular location of PKC isozymes are correctly identified, we applied the following measures. First, we compared expression of PKC isozymes using monoclonal and polyclonal antibodies from two sources. Figure 1A shows the staining of both an isozyme-specific monoclonal antibody and polyclonal antiserum from two manufacturers for PKCs γ, δ, ε, and θ. In each case the monoclonal antibodies and polyclonal antisera were raised against two distinct regions of the PKC isozyme, and both antibodies produced the same distribution patterns, although intensity of staining was usually less with the monoclonal antibodies (Fig. 1A). Hence, all further experiments used polyclonal antisera for PKCs α, βI, βII, γ, δ, ε, η, θ, and ζ, and monoclonal antibodies for PKCs ι and λ, and RACK1. The monoclonal antibodies that recognize mouse PKCs ι and λ cross-react, and the proteins are 99% homologous (Transduction Laboratories). They are thought to be equivalent genes of human (ι) and mouse (λ; Kazanietz 2000), so it was reassuring that they displayed almost identical patterns of binding on mouse embryos (see Fig. 5 below). Secondly, the evidence that the antisera against PKCs βI and βII detected these PKCs is that 4β-PMA (a general activator of cPKCs and nPKCs) and pseudo-βRACK (a specific peptide activator of cPKCs) affected expression of the molecules detected by these antisera at the two-cell stage. The changes were isozyme-specific, and the same with both types of activation (Fig. 1B); the distributions of PKCs βI, βII, and γ changed, but PKC α staining remained more concentrated in nuclei, although the nuclear/cytoplasmic ratio decreased. The peptide pseudo-βRACK was designed using PKC β sequence, but from the constant (C2) region shared by all cPKCs. Thirdly, whereas all isozymes were detected during preimplantation development, not all isozymes were expressed at every stage. There were negative embryos for some isoforms with each of the two secondary antibodies, one that recognized the polyclonal antiserum, and one that recognized the monoclonal antibodies. The stages that were negative for PKCs α and γ (Figs 2A and 3A) were stained with the polyclonal secondary, and the stages that were negative for PKCs ι and λ and RACK1 (see Fig. 5 below) were stained with the monoclonal secondary. Finally, fluorescence intensity was above that of negative control embryos (no primary antibody) that were part of each trial.

Intracellular distribution of PKC isozymes

Summary

The intracellular location of each isozyme was distinctive and dynamic (Figs 2–5). Whenever detected, PKCs βI, ι, and λ and RACK 1 were more concentrated in the cytoplasm than in the nucleus (Figs 2 and 5). The opposite was true of PKC η; its nuclear concentration was consistently higher than the cytoplasmic concentration except at the late two-cell stage (Fig. 4). For the other PKCs, there were changes in the nuclear/cytoplasmic distribution between stages of preimplantation development. It is interesting that in early four-cell embryos there were more PKCs localized to the nuclei than at any other stage; the concentrations of seven out of 10 isozymes were higher in nuclei than in the cytoplasm.

Figure 1 Analysis of antibody specificity. (A) Representative confocal images of two-cell (for PKC δ), four-cell (for PKC γ), blastocyst (for PKC ε), and eight-cell (for PKC θ) mouse embryos which were immunostained with antibodies from two different sources. TD, monoclonal antibody, Transduction Laboratories; R&D, polyclonal antiserum, Research & Diagnostics Antibodies. (B) Treatment of two-cell embryos with two different activators of cPKC: 15 min in 100 nM 4β-PMA or 60 min in 100 nM pseudo-βRACK. Embryos subsequently were immunostained for each of the cPKC isozymes and examined with a confocal microscope.
Cytoplasmic versus nuclear distributions

At the two-cell stage (45 h post-hCG, G2), PKCs \(\beta \), \(\delta \), \(\epsilon \), \(\eta \), \(\theta \), and \(\zeta \) were distributed equally between the cytoplasmic and nuclear compartments (Figs 2–4). Only PKC \(\alpha \) was more concentrated in the nucleus \((P < 0.05)\), whereas PKCs \(\beta \), \(\gamma \), \(\iota \), and \(\lambda \) were more concentrated in the cytoplasm \((P < 0.05)\).

At the four-cell stage (52 h post-hCG, G1/S), the distributions of PKCs \(\alpha \), \(\beta \), \(\gamma \), \(\delta \), \(\epsilon \), \(\eta \), and \(\theta \) changed, with six out of seven (all but PKC \(\alpha \)) becoming more concentrated in nuclei \((P < 0.05)\). PKC \(\alpha \) became equally distributed after being more concentrated in two-cell nuclei. PKC \(\iota \) was below the detection limits of the assay.

At the eight-cell stage (69 h post-hCG), three out of six PKC isozymes with high nuclear concentrations at the four-cell stage became equally distributed between the cytoplasm and nucleus \((\beta \), \(\delta \), and \(\theta \) or became more concentrated in the cytoplasm \((P < 0.05)\). Only PKCs \(\gamma \) and \(\eta \) retained higher nuclear fluorescence intensity at this stage \((P < 0.05)\). The concentration of PKC \(\iota \) became higher in the cytoplasm from the equal distribution of the four-cell stage \((P < 0.05)\).
At the morula stage (76 h post-hCG), the concentrations of PKC α, βI, and ζ once again increased in nuclei ($P < 0.05$), whereas PKCs δ and ε became evenly distributed between the nucleus and cytoplasm. Immunostaining for PKCs γ, ι, and λ and RACK1 decreased to negative-control levels.

Of the eight PKC isozymes detectable at the blastocyst stage (93 h post-hCG), PKC η was the only isozyme that was more concentrated in the nucleus ($P < 0.05$).

Cytoplasmic distributions

In the first photomicrographs, there seemed to be uneven distribution within the cytoplasm of some isozymes. Therefore, we separately measured fluorescence in the apical, basal, and central regions of the cytoplasm. At the two-cell stage, PKCs βII, ι, and λ were localized preferentially to the apical cytoplasm ($P < 0.05$; Figs 2, 4, and 5), and at the four-cell stage RACK1 was localized to the basal cytoplasm ($P < 0.05$; Fig. 5).
Discussion

Subcellular localization of PKC isozymes

In this study, we have quantified the relative subcellular concentrations of 10 PKC isozymes and the anchoring protein RACK1 during mouse preimplantation development. To do this we measured the mean fluorescence intensity from subcellular regions (nucleus, cytoplasm, apical cytoplasm, central cytoplasm, and basal cytoplasm) of all blastomeres of embryos immunostained for a PKC isozyme up to the blastocyst stage. Since the fluorescence intensity of the embryo depends on the quantity of primary antibody–secondary antibody associations, it is an indicator of the amount of each isozyme. Because the number of antibody-binding sites and affinities are uncertain, the assay does not measure the absolute amount of isozyme, or allow quantitative comparison between isozymes. Therefore, the assay is semi-quantitative. However, by maintaining antibody reaction conditions, by using the same confocal microscope settings, and by averaging three independent trials, the assay does produce...
information on relative concentrations (fluorescence intensity) of a single isozyme between subcellular compartments and between stages. In the accompanying study (Dehghani et al. 2005), the ratio of nuclear to cytoplasmic fluorescence is calculated as a way to accommodate intertrial variation in staining intensity. This calculation was not performed in this study because various parts of the cytoplasm as well as the whole of the cytoplasm are examined. Also, fluxes in concentration between stages are indicated by the data in this form that would not be seen with ratios. On the other hand, variability in staining between trials may have reduced sensitivity of the analysis. Finally, the zona pellucida was not removed prior to immunostaining, following the protocol of Pauken & Capco (1999). This was to fix embryos as soon as possible after recovery. Trapping of antibody in the zona pellucida could have caused the absence of staining of blastocysts with some of the antibodies. However, it seemed that the amount of antibody trapped varied more with trial than stage or antibody.

In most studies with adult cell types, PKC in different subcellular fractions has been detected by Western blots...
using 200 μg–1 mg protein, depending on isozyme abundance. Similar studies with preimplantation embryos certainly would be hampered by lack of material. A mouse oocyte has approximately 23 ng total protein (Hogan et al. 1994). However, live-cell imaging of translocation in individual cells, imaging for co-localization of intracellular signaling molecules, and photobleaching studies have quantified relative fluorescence intensity (Almholt et al. 1999, Ron et al. 1999, Echevarria et al. 2003, Schechtman et al. 2004). Thus whereas quantifying fluorescence intensity is not novel, it has not been used to localize signaling molecules in preimplantation mammalian embryos in quite this manner. The success of the approach is seen in the fact that differences were detected between the nucleus and cytoplasm and different areas of the cytoplasm. Thus, this approach should be effective for studying intracellular distribution and associations of molecules in preimplantation embryos where starting material is too limited for cell fractionation.

There are differences between this study and that of Pauken & Capco (2000) especially in the subcellular distribution of PKCs α, γ, and ζ. More recently, Quan et al. (2003) and Baluch et al. (2004) have shown PKC α distribution similar to ours. However, discrepancies in distribution will likely remain since distribution of PKC is dynamic, and precisely when and how embryos are collected could affect results. In this study, we controlled timing of gonadotrophin administration and embryo collection as much as possible. The major difference between this study and that of Pauken & Capco (2000) is the presence of PKCs βI and βII. Pauken & Capco found no PKC β in preimplantation mouse embryos. However, Eckert et al. (2004) detected both PKCs βI and βII in freshly isolated mouse inner cell masses. The expression of the PKC β isoforms in mouse oocytes has been similarly controversial using both Western blots and immunofluorescence (Gangeswaran & Jones 1997, Luria et al. 2000, Pauken & Capco 2000, Downs et al. 2001). Because of this, we decided to use activation as a means to verify antibody specificity. The fact that both general and specific peptide activators of the cPKC caused translocation of the molecules recognized by our antibodies against PKCs βI and βII suggests that what is recognized are PKC β, or at least PKC β-like, molecules.

Localization of PKC isozymes to subcellular compartments can be mediated by binding to isozyme-specific anchoring proteins or through the cytoskeleton (Moehly-Rosen & Gordon 1998, Jaken & Parker 2000, Newton 2001, Schechtman & Moehly-Rosen 2001). Known anchoring proteins include substrates that interact with C kinases (STICKs) and isozyme-specific RACKs. Most known STICKs are located at interfaces between membranes and cytoskeletal structures, and phosphorylation by PKC modifies their function. They may or may not be multi-enzyme scaffold proteins. An example of the latter is AKAP 79, which binds to PKCs α and βII (Klauck et al. 1996), as well as at least two other signal transducers, protein kinase A and calcineurin (a Ca\(^{2+}\)/calmodulin-dependent phosphatase). RACK1 is a non-substrate receptor for PKC βII, although it also binds other PKC isoforms and other molecules (Jaken & Parker 2000, Rigas et al. 2003). Since RACK1 is involved in the translocation and association of PKC βII with a normal substrate in cardiac myocytes (Ron & Mochly-Rosen 1995, Csukai et al. 1997), it is interesting that RACK1 and PKC βII distributions differ in preimplantation embryos. In particular, RACK1 is concentrated in the basal region of cytoplasm in four-cell stage embryos, whereas PKC βII is concentrated in the apical cytoplasm. Other RACKs, STICKs, or a receptor for inactivated C kinase (RICK) may govern PKC βII localization at this stage. Further studies to find molecular partners of PKC isozymes are needed to elucidate their localization and function.

Although translocation of PKC is associated with activation in other cell types (Csukai & Mochly-Rosen 1999, Teruel & Meyer 2000), it must be noted that the state of activation of each isozyme during preimplantation development still needs to be determined. Also, there are several sources of change in the relative concentration of an isozyme observed in this study. First, there could be translocation of existing molecules between the cytoplasm and nucleus or of newly synthesized protein from the cytoplasm into the nucleus. Second, new synthesis of an isozyme without translocation would increase the relative cytoplasmic concentration. Or thirdly there could be differential degradation of an isozyme among subcellular compartments, which would decrease the relative concentration in that compartment. Further studies with individual isozymes to separate these possibilities are in order.

Functional implications of subcellular localization of PKC isozymes

This study defines the intracellular distribution of each PKC isozyme at specific times during cleavage, because it is subcellular location of PKC isozymes that correlates with different functions in a cell (Newton 2001). In adult cells, the PKC isozymes have a large and varied number of regulatory roles. Regulation of nuclear architecture (Hocevar et al. 1993, Maraldi et al. 1999), cell cycle (Livneh & Fishman 1997), and cellular polarization (Plant et al. 2003) are just a few examples. The PKC isozymes translocate to different subcellular areas during preimplantation mouse development, and likely are involved in multiple steps in preimplantation development. We found that nuclear localization of PKC α (early two- and four-cell nuclei) overlaps with that of PKC γ (four- and eight-cell nuclei), whereas PKCs δ and ε are more concentrated in nuclei only at the early four-cell stage (Figs 2 and 3). Furthermore, we found that PKC η localizes to the nuclei of eight-cell- to blastocyst-stage embryos (Fig. 4). Nuclear localization may indicate involvement in regulation of transcription. Hamatan et al. (2004) have shown increases in the number of genes transcribed at each stage of mouse preimplantation development. There is also
evidence for chromatin remodeling in early mouse embryos (Thompson et al. 1998, Schultz et al. 1999). Recently, Santos et al. (2003) and Sarmento et al. (2004) have described constant modulation of histones during this period. It is very likely that some of the PKCs are involved in changing the relative lengths of the cell-cycle components during early cleavage (Pratt 1987, Livneh & Fishman 1997).

In conclusion, this study suggests fertile areas for further research. Activation state, effects of specific inhibitors and activators, co-localization with potential substrates and regulators, and temporal and spatial correlation of the isoforms with specific processes of mouse preimplantation embryogenesis are studies that can be undertaken in the future using this semi-quantitative approach. In the accompanying paper (Dehghani et al. 2005), we study the relationship between translocation of PKCs δ and ε into four-cell nuclei and transcription and nuclear morphology.

Acknowledgements

We thank Dr Mochly-Rosen for providing the isoyme-specific translocation activator of cPKC. This work was supported by a NSERC Canada grant to A C H, and H D was supported by a scholarship from MCHE Iran. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

References

Doerner D, Abdel-Latif M, Rogers TB & Alger BE 1990 Protein kinase C-dependent and independent effects of phorbol esters on hippocampal calcium channel current. Journal of Neuroscience 10 1699–1706.

Gallicano GI, McGaughey RW & Capco DG 1995 Protein kinase M, the cytosolic counterpart of protein kinase C, remodels the internal cytoskeleton of the mammalian egg during activation. Developmental Biology 167 482–501.

Kazanietz MG 2000 Eyes wide shut: protein kinase C isoforms are not the only receptors for the phorbol ester tumor promoters. Molecular Carcinogenesis 28 5–11.

Received 15 November 2004
First decision 6 January 2005
Revised manuscript received 22 March 2005
Accepted 21 June 2005