The role of IGF1 in the in vivo production of bovine embryos from superovulated donors

M A Velazquez1,2, J Zaraza1, A Oropeza3, R Webb4 and H Niemann1

1Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Höltystrasse 10, 31535 Neustadt-Mariensee, Germany, 2Escuela Superior de Ciencias Agropecuarias, Universidad Autónoma de Campeche, Calle 53 s/n, C.P. 24350 Escárcega, Campeche, México, 3Departamento de Genética y Reproducción Animal, Decanato de Ciencias Veterinarias, Universidad Centroccidental 'Lisandro Alvarado' (UCLA), Apartado 400, Barquisimeto 3001, Venezuela and 4Division of Animal Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK

Correspondence should be addressed to M A Velazquez; Email: lestaurus_18@hotmail.com
H Niemann; Email: heiner.niemann@fli.bund.de

Abstract

IGF1 plays an important role in bovine follicular growth, acquisition of oocyte competence and embryo viability. Current data also indicate a critical role for IGF1 in both the ovarian response and the embryo yield following the superovulatory treatments. IGF1 can have either positive or negative effects on embryo viability which is related to the concentration of IGF1 induced by superovulation treatment. These effects impact either on oocyte competence or directly on the embryo. Concentrations in the physiological range appear to result in the production of high quality embryos, mainly due to the mitogenic and the anti-apoptotic activities of IGF1. However, high superovulatory responses are associated with decreased embryo viability and a concomitant increase in apoptosis. Studies in mice suggest that this increase in apoptosis is related to the downregulation of the IGF1 receptor in the embryo associated with high IGF1 concentrations. Strategies capable of controlling the IGF1 concentrations could be one approach to improve superovulation responses. A range of possible approaches for research within the IGF system in gonadotrophin-stimulated cattle is discussed in this review, including the possible use of superovulated female cattle as an alternative animal experimental model for research on reproductive disorders in humans associated with abnormal IGF1 concentrations.

Reproduction (2009) 137 161–180

Introduction

Superovulatory treatments are being used worldwide for the production of bovine embryos in multiple ovulation and embryo transfer (MOET) programmes. The goal of superovulatory treatments in the cattle industry is the production of a large number of viable embryos capable of establishing and maintaining pregnancy after transfer and delivering healthy offspring. During superovulation, the quality of the embryo might be affected either through effects on the oocyte during follicular growth (Sirard et al. 2006) or directly during embryo development while in the oviduct and/or uterus (Barnes 2000, Greve & Callesen 2001, Killian 2004). Several growth factors have been shown to regulate follicular growth and embryo development, including insulin-like growth factor 1 (IGF1; Díaz-Cueto & Gerton 2001, Hardy & Spanos 2002, Diskin et al. 2003, Fortune 2003, Wolf et al. 2003, Webb et al. 2004). IGF1 plays an essential role in mammalian reproduction, as shown by the impaired ovarian activity and embryo development in gene knockout mouse models (Liu et al. 1993, Baker et al. 1996, Zhou et al. 1997, Kadakia et al. 2001).

IGF1 concentrations in ovarian follicular fluid of superstimulated donors were related to increased numbers of viable embryos in vivo (Herrler et al. 1994, Cushman et al. 2001).

In this review, we emphasize the link between both local and peripheral IGF1 concentrations and bovine embryo production in vivo by superovulation, and propose new directions for future research, including the possible use of superovulated cattle as an alternative model to investigate reproductive disorders in humans associated with IGF1 concentrations outside the physiological range.

The IGF superfamily

IGF1 and IGF2 were first identified by Salmon & Daughaday (1956, 1957), and designated ‘sulphation factor’ due to their ability to incorporate sulphate into rat cartilage in vitro. They were also known as non-suppressible insulin-like activity (NSILA) I and II (Froesch et al. 1963). A decade later, the terms sulphation factor and NSILA were replaced by the term ‘somatomedin’ (Daughaday et al. 1972) and subsequently they were renamed ‘IGFs 1 and 2’ due to their structural similarity with insulin and their growth-promoting activities (Rinderknecht & Humbel 1976a, 1976b).

IGF1 is one of two ligands of the IGF family (Hwa et al. 1999, Spicer 2004) and is a small peptide consisting of 70 amino acids with a molecular mass of 7649 kDa (Laron 2001). The established components of the IGF system also include two receptors, six high-affinity IGF-binding proteins (IGFBPs) and IGFBP proteases (Giudice 1995, Hwa et al. 1999, Spicer 2004). Furthermore, another group of low-affinity binding proteins, known as IGFBP-related proteins (IGFBP-rPs), belongs to the IGF family. However, no final nomenclature has been agreed for these proteins, as several research groups have identified the same protein and each group has used a different nomenclature (Hwa et al. 1999, Rosenfeld et al. 2001). Potential receptors for IGFBP(s) and IGFBP-rP(s) have also been reported to be part of the IGF family (Hwa et al. 1999; Table 1). Due to similarities in structure and sharing intracellular signalling cascades with other members of the IGF system, insulin, its receptor and a hybrid insulin/IGF receptor are also considered to be part of the IGF superfamily (Jones & Clemmons 1995, Monget & Martin 1997, McCusker 1998, Poretsky et al. 1999, Butler & Le Roith 2001, Juul 2003).

Table 1 The insulin-like growth factor superfamily.

<table>
<thead>
<tr>
<th>Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1</td>
</tr>
<tr>
<td>IGF2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 IGF receptor</td>
</tr>
<tr>
<td>Type 2 IGF or IGF 2/mannose-6-phosphate (IGF2/M6P) receptor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binding proteins</th>
<th>Binding protein proteases</th>
<th>Binding protein-related proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFBP1</td>
<td>IGFBP2 proteases</td>
<td>IGFBP-rP1 *{IGFBP7/MAC25/TAF/PSF}</td>
</tr>
<tr>
<td>IGFBP2</td>
<td>IGFBP3 proteases</td>
<td>IGFBP-rP2 *{CTGF}</td>
</tr>
<tr>
<td>IGFBP3</td>
<td>IGFBP4 proteases</td>
<td>IGFBP-rP3 *{NovH}</td>
</tr>
<tr>
<td>IGFBP4</td>
<td>IGFBP5 proteases</td>
<td>IGFBP-rP4 *{CYR61}</td>
</tr>
<tr>
<td>IGFBP5</td>
<td></td>
<td>IGFBP-rP5 *{LS6/HTRA1}</td>
</tr>
<tr>
<td>IGFBP6</td>
<td></td>
<td>IGFBP-rP6 *{ESM1}</td>
</tr>
</tbody>
</table>

In italics are the components of the established IGF system. Based on Giudice (1995), Hwa et al. (1999), Monget & Bondy (2000) and Spicer (2004). *Other designations.

Effects of IGF1 in bovine ovarian follicular growth and oocyte quality

The IGF1 receptor has been localized in bovine oocytes, cumulus cells and in both granulosa and theca cells (Yoshida et al. 1998, Perks et al. 1999, Armstrong et al. 2001, Schams et al. 2002, Nuttinck et al. 2004, Sudo et al. 2007). In vitro studies have shown that IGF1 synergizes with FSH to regulate the aromatase activity of granulosa cells (Spicer et al. 2002). Accordingly, a positive association was found between supplementation in vitro of the media with human recombinant IGF1 (100–400 ng/ml) and oestradiol production by bovine ovarian cells (Spicer et al. 1993, 2002, Yang & Rajamahendran 1998). Other in vitro effects of IGF1 include enhanced secretion of follistatin, inhibin-A, activin-A in granulosa cells (Glister et al. 2001, 2003, 2006), increased androstenedione production from theca cells (Stewart et al. 1995) and protection from apoptosis in oocytes and granulosa cells (Quirk et al. 2000, Yang & Rajamahendran 2000, Wasielak & Bogacki 2007). Several studies also observed that cumulus–oocyte complexes treated with IGF1, alone or in combination with either epidermal growth factor or angiotensin II, showed increased cumulus expansion,
infusion of an IGF1 analogue for 12 h (80–90 μg/h) into the ovarian artery of the conscious animal significantly enhanced the secretion of oestradiol (Scaramuzzi et al. 1999). Spicer et al. (2000) infused IGF1 concentrations closer to the physiological range with osmotic mini-pumps at a rate of 150 ng/ml per hour for 7 days directly into the ovary. This treatment increased the concentrations of oestradiol and IGF1 in the follicular fluid of small follicles (2–5 mm). Surprisingly, the follicle diameter was increased by IGF1 infusion only in the largest follicle, even though follicular fluid IGF1 concentrations were not altered. This discrepancy was attributed to an increased clearance of IGF1 in large follicles due to lower levels of IGFBPs when compared with small follicles (Spicer et al. 2000). IGFBPs play a pivotal role in the control of IGF1 bioavailability. IGFBPs inhibit the effects of IGF1 possibly by sequestering extracellular IGF1 and thereby limiting access to cell surface receptors. IGFBPs also potentiate IGF1 actions by prolonging its half-life (via protection against degradation), acting as a reservoir to sustain controlled delivery to target cells and facilitating transport from the peripheral circulation to target tissues (Clemmons 1998, Baxter 2000, Firth & Baxter 2002). As evidenced in several studies, high levels of IGFBP2, 4 and 5 were found in bovine follicular fluid from atretic subordinate follicles compared with dominant healthy follicles (Table 2). These three IGFBPs correlate negatively with follicular diameter during antral follicle development (Austin et al. 2001). IGFBP3 is the major circulatory

Table 2 Changes of insulin-like growth factor binding protein 2, 3, 4 and 5 (IGFBPs) and their proteolytic activity in bovine follicular fluid during ovarian follicular antrum development and atresia.

<table>
<thead>
<tr>
<th>Folicular status</th>
<th>Diameter (mm)</th>
<th>Sampling frequency</th>
<th>Contrasting follicle* (mm)</th>
<th>FF changes of IGFBP</th>
<th>Proteolytic activity in FF of IGFBP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 3 4 5</td>
<td>2 3 4 5</td>
</tr>
<tr>
<td>S-DF</td>
<td>(~13.5)</td>
<td>Single</td>
<td>SubF (~5–12)</td>
<td>↓ ↑ – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~8.5)</td>
<td>Multiple</td>
<td>SubF (~4–8.5)</td>
<td>↓ ↑ ↑ –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~11–16.5)</td>
<td>Multiple</td>
<td>SubF (~7 to 8.5)</td>
<td>– – ↑ ↑</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~12)</td>
<td>Single</td>
<td>SubF (~9)</td>
<td>↓ ↑ ↑ ↑</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~19.5)</td>
<td>Single</td>
<td>SubF (~1–8.5)</td>
<td>↓ ↑ ↑ ↑</td>
<td>↑ ↑ ↑ ↑</td>
</tr>
<tr>
<td></td>
<td>(~16)</td>
<td>Single</td>
<td>SubF (~9–17)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~16)</td>
<td>Single</td>
<td>Atretic (~9–12.5)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~8.5)</td>
<td>Multiple</td>
<td>SubF (~7–8)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~11–14)</td>
<td>Single</td>
<td>SubF (~4–8)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~17–19)</td>
<td>Multiple</td>
<td>SubF (~7–8.5)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~12)</td>
<td>Multiple</td>
<td>SubF (~6–8)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>Co-DFb</td>
<td>(~17)</td>
<td>Multiple</td>
<td>SubF (~<13.5)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~10.5–12)</td>
<td>Single</td>
<td>SubF (~9)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td></td>
<td>(~9)</td>
<td>Single</td>
<td>SubF (~7–8)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>Healthyc</td>
<td>(3–5)</td>
<td>Single</td>
<td>Atretic (4–5)</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
</tbody>
</table>

Notes:
- FF, follicular fluid; ?, not reported; S-DF, single dominant follicle; Co-DF, co-dominant follicle; SubF, subordinate follicle; ↑, levels increase; ↓, levels decrease; ⏞, levels remain relatively constant; –, not analyzed or not clearly identified.
- *Makes reference to the category of ovarian follicle(s) used for comparison in the experiment. **Co-dominant follicles were induced with FSH treatment. ***Follicles with an intact membrana granulosa with a few pyknotic nuclei.

www.reproduction-online.org

Reproduction (2009) 137 161–180
carrier of IGF1 and is predominantly present in dominant follicles (Gradela et al. 1998, Nicholas et al. 2002). The complexity of the IGF system is further illustrated by specific IGFBP proteases described in several species including cattle (Spicer et al. 2004), which enhance the amount of free IGF1 within a follicle despite synthesis of IGFBPs (Mihm & Austin 2002).

The enhanced oestradiol production following exogenous treatment of IGF1 illustrates the importance of endocrine IGF1 for ovarian function in domestic ruminants. The endocrine function of IGF1 is supported by experiments where immunization against GH releasing factor significantly reduced serum and intrafollicular concentrations of IGF1 in both cows (Kirby et al. 1993) and heifers (Cohick et al. 1996). However, the major IGF ligand produced in bovine ovaries is IGF2. It is expressed mainly in theca cells from the time of antrum development up to ovulatory-sized follicles (Armstrong et al. 2000). Expression in granulosa cells is either low (Schams et al. 2002) or absent (Armstrong et al. 2000), and its effects on bovine theca and granulosa cell steroidogenesis are mediated via the IGF1 receptor (Spicer et al. 2004, Spicer & Aad 2007). Bovine IGF1 of extra-ovarian origin also has an important role in the transition from 2 to 5 mm diameter follicles to the FSH-dependent development (>5 mm; Monget & Bondy 2000). Indeed, treatment with recombinant bovine somatomotrophin (bST) increased the number of follicles 2−5 mm in diameter, with a parallel increment in somatotrophin (bST) increased the number of follicles 2000). Indeed, treatment with recombinant bovine IGF1 (Mihm & Austin 2002). Hence, during the pre-implantation period, endocrine and/or paracrine IGF1 may act directly on the embryo or indirectly via modulation of the oviductal and uterine secretions (Wathes et al. 1998, 2003, Velazquez et al. 2008a).

Direct effects of IGF1 on in vivo embryo viability in non-superovulated cattle have not yet been demonstrated. A positive effect of IGF1 on embryogenesis has been proposed by the studies in which improved bovine embryo production in vitro was found after IGF1 supplementation in the concentrations ranging from 10 to 200 ng/ml (Herrler et al. 1992, Matsui et al. 1997, Palma et al. 1997, Pelle et al. 2001, Byrne et al. 2002a, Makarevich & Markkula 2002, Moreira et al. 2002a, Sirisathien & Brackett 2003, Sirisathien et al. 2003, Lima et al. 2006, Stefanello et al. 2006, Velazquez et al. 2008b). The beneficial effects of IGF1 were visible as decreased apoptosis and increased total cell number in preimplantation embryos (Byrne et al. 2002b, Makarevich & Markkula 2002). In bovine preimplantation embryos IGF1 stimulates cell proliferation through the mitogen-activated protein kinase signalling cascade, while the anti-apoptotic actions are mediated via the phosphatidylinositol 3-kinase (PI3K)/Akt1 (also known as protein kinase B) pathway (Jousan & Hansen 2007, Jousan et al. 2008). IGF1 blocked the induction of apoptosis in bovine embryos exposed to heat shock in vitro, suggesting a protective role against embryonic stressors (Jousan & Hansen 2004, 2007, Jousan et al. 2008). Similarly, IGF1 improved embryo development, cell proliferation and embryo diameter in rabbit embryos exposed to UV radiation (Herrler et al. 1998). In mouse embryos, the detrimental effects of oxidative stress induced by hydrogen peroxide could be alleviated by the addition of IGF1 to the culture medium (Kurzawa et al. 2002, 2004). Rodent embryos were protected against specific apoptosis inducing factors such as tumour necrosis factor-α, camptothecin or actinomycin D by supplementation of the culture media with IGF1 (Byrne et al. 2002b, Fabian et al. 2004, Glabowski et al. 2005). Pregnancy rates were increased after transfer of in vitro-produced cattle embryos treated with IGF1, showing a substantial improvement of the embryonic developmental capacity (Block et al. 2003, Block 2007, Block & Hansen 2007). However, IGF1 cannot overcome the negative effects following cryopreservation (Willemsen et al. 1995, Hernandez-Fonseca et al. 2002). It should also be noted that some authors did not find the beneficial effects of IGF1 treatment during in vitro production of bovine embryos (Flood et al. 1993, Lee & Fukui 1995, Quetglas et al. 2001, Hernandez-Fonseca et al. 2002, Block et al. 2008). Differences in culture media, protein supplementation and the concentrations of IGF1 utilised might explain these contrasting results.

Effects of IGF1 in bovine preimplantation embryo development

The effects of IGF1 on early bovine embryos are mediated by its own receptor (Matsui et al. 1997). Several studies have found IGF1 mRNA in the bovine uterus (Geisert et al. 1991, Robinson et al. 2000, Meikle et al. 2001, Pershing et al. 2002), but not in the oviducts (Viviani et al. 1995, Xie et al. 1996, Pershing et al. 2002). However, other studies have reported that bovine oviductal cells produce IGF1 (Schmidt et al. 1994, Makarevich & Sirotnik 1997, Winger et al. 1997, Pushpakumara et al. 2002). Hence, during the pre-implantation period, endocrine and/or paracrine IGF1 may act directly on the embryo or indirectly via modulation of the oviductal and uterine secretions (Wathes et al. 1998, 2003, Velazquez et al. 2008a).
Recent data indicate that IGF1 affects the physiology of the bovine embryo by altering the relative abundance of developmentally important mRNA transcripts, including desmocollin II, Na/K-ATPase, BAX, IGF1 receptor, IGFBP3 and heat shock protein 70. Furthermore, these gene expression changes may occur without detectable changes in cell number, apoptosis and the ratio between inner cell mass and trophectoderm cells (Block et al. 2008).

Effects of IGF1 in bovine superovulatory treatments

IGF1 concentrations during superovulation

Endocrine IGF1 production

Most of the IGF1 detected in bovine antral follicles is derived from the peripheral circulation (Wathes et al. 2003, Sudo et al. 2007), but granulosa cells from superovulated cattle can produce IGF1 (Spicer et al. 1993). A positive correlation between IGF1 concentrations in blood and follicular fluid has been found in superovulated cattle (Herrler et al. 1994). Some investigations have observed that circulating IGF1 concentrations remained relatively constant during superovulatory treatments (Herrler et al. 1994, Cushman et al. 2001), suggesting that peripheral IGF1 levels of superovulated cows may be more related to nutritional intake rather than to the gonadotrophin treatment per se. However, other studies have indicated that both plasma (Kuehner et al. 1993) and follicular (O’Callaghan et al. 2000) concentrations of IGF1 increase during superovulatory treatments. During a 5-day superovulatory treatment regime, increased concentrations of IGF1 in the plasma were observed in days 4 and 5 in comparison with days 1 and 2, and a positive correlation between IGF1 in the plasma and follicular fluid was found only on day 4 (Simpson et al. 1994). Increased follicular IGF1 concentrations were also found in gilts and goats treated with equine chorionic gonadotrophin (eCG) and FSH respectively, while the plasma levels were not altered (Khamsi et al. 2001a, Yu et al. 2003), indicating that intrafollicular IGF1 concentrations are affected more by the superovulatory treatment regime than peripheral concentrations. Whether this holds true for the oviducts and uterine horns of superovulated cows is unknown at present. In non-superovulated cattle, IGF1 concentrations in uterine luminal fluid and plasma were not correlated (Bilby et al. 2004, 2006). Therefore, circulating IGF1 might not always reflect the IGF1 milieu to which oocytes and embryos are exposed to during superovulation. Accordingly, IGF1 plasma concentrations cannot be used to predict the number of viable embryos in superovulated cattle, even though a positive correlation exists between these two variables (Velazquez et al. 2004). A similar situation has been reported in humans, where the serum concentrations of IGF1 did not allow the prediction of the ovarian response with regard to the numbers of oocytes retrieved after superovulation (Keay et al. 2003).

During superovulation, IGF1 changes in plasma are also mediated primarily through oestradiol (Kuehner et al. 1993). Oestradiol stimulates IGF1 secretion in the liver (Richards et al. 1991), via an increase in the number of GH receptors (Enright et al. 1994). Changes in IGF1 concentrations might depend on the magnitude of the increment in oestradiol, which in turn will depend on the superovulatory response, i.e. the number of gonadotrophin-active follicles responding to the superstimulatory treatment. Indeed, a higher number of corpora lutea was observed when peripheral IGF1 concentrations were affected by superovulation (Kuehner et al. 1993) compared with unchanged IGF1 concentrations (Herrler et al. 1994, Cushman et al. 2001).

Paracrine IGF1 production

Studies on IGF1 production in bovine oviducts and uterus during superovulation have not been reported. Analysis of gene expression and determination of concentrations in oviductal and uterine fluids would be critical for understanding embryonic–hormonal milieu interactions. This information will be valuable for the development of improved culture conditions during in vitro embryo production, especially for humans undergoing superovulation during in vitro fertilization–embryo transfer (IVF-ET) cycles, where the same individual acts as donor and recipient.

Effect of IGF1 during superovulation on follicular development and oocyte quality

The variability within and between animals in both the number of follicles that are stimulated and the number that ovulate is the limiting factor for the success of ET programmes (Adams 1994, Kanitz et al. 2002, Mapletoft et al. 2002, 2006). The number of gonadotrophin-responsive follicles present in both ovaries at the start of a superovulatory treatment is important to achieve a satisfactory superstimulatory response (González-Bulnes et al. 2003). In superstimulated animals the preovulatory LH surge occurs earlier, which is associated with a lack of time for the follicles to acquire adequate maturation and thus to ovulate (D’Occhio et al. 1999). This indicates that oocytes with a proper maturation period during superovulation could yield more viable embryos. IGF1 accelerates the meiotic progress of bovine oocytes in small (≤3 mm) follicles (Sakaguchi et al. 2000, 2002) and more viable embryos can be obtained in sheep (Veiga-Lopez et al. 2005) and cattle (Ireland et al. 2007) when a greater population of follicles around 3 mm in size is present at the time of stimulation. Accordingly, increments in blood IGF1 concentrations induced by bST treatment have been associated with increased numbers of follicles between 2 and 5 mm in diameter.
Dairy cows (Gong et al. 1991, 1993a, 1997, De la Sota et al. 1993). This treatment was also effective in increasing the superovulatory response in cattle (Gong et al. 1993b, 1996, Herrler et al. 1994). Statistically significant increases in ovulation rate in terms of numbers of corpora lutea and embryo viability due to bST treatment have been found in some, but not all studies (Table 3). Variability between experiments could be related to several factors including the dose of bST, method of ovarian examination, type and dose of gonadotrophin, and both number and body condition of animals used in such studies. The effect of bST has been suggested to be mediated through GH, IGF1 and insulin acting either separately or in synergy (Gong et al. 1993b).

The effect of exogenous IGF1 on ovulation rate in cattle undergoing superovulatory treatments has not yet been tested. Studies in rats found that superovulated animals treated subcutaneously with Long R3 IGF1, which has negligible affinity for IGFBPs, had more ova than control animals (Khamisi et al. 2001b). In peripubertal cattle, intraovarian injections of IGF1 (6 μg) improved oocyte developmental competence in vitro in such a way that oocytes from superstimulated calves yielded a blastocyst rate similar to adult cattle (Oropeza et al. 1994). Oocytes from prepubertal calves showed a deficient mRNA expression pattern of facilitative glucose transporters and insufficient protein translation as compared to their adult counterparts (Oropeza et al. 2004). Hence, intraovarian IGF1 treatment may correct this ‘deficient oocyte machinery’ resulting in improved blastocyst formation. However, the developmental potential of blastocysts produced using this treatment needs to be analysed after transfer to recipients.

It has been hypothesized that elevated intraovarian IGF1 levels are associated with enhanced follicular growth, but that these could be detrimental to oocyte maturation in growing follicles (Armstrong et al. 2003). Indeed, higher levels of follicular IGF1 in superovulated ruminants have been associated with abnormal oocyte morphology (O’Callaghan et al. 2000). Likewise, in vitro treatment with high IGF1 concentrations did increase follicular size (Walters et al. 2006), but higher IGF1 exposure induced smaller oocytes in treated follicles (McCaffery et al. 2000). Development to the morula and blastocyst stages is positively associated with oocyte diameter (Arletto et al. 1996). Failure of the oocyte to reach a proper size coincides with the inability to undergo meiotic maturation and increased frequency of polyspermic fertilization (Fair et al. 1995, Otoi et al. 1997). The potentially deleterious action of high IGF1 levels on oocyte competence has been demonstrated in women, where low concentrations of IGF1 in the

<table>
<thead>
<tr>
<th>Type of animal</th>
<th>Period of treatment</th>
<th>Amount of BST (mg)</th>
<th>ORE</th>
<th>Number of CL</th>
<th>Number of O/E</th>
<th>Number of VP</th>
<th>Percentage of TE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy heifers (n=31)</td>
<td>During SOV (4 days)</td>
<td>160</td>
<td>PPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rieger et al. (1991)</td>
</tr>
<tr>
<td>Beef×dairy heifers (n=24)</td>
<td>Day 7, before SOV</td>
<td>320</td>
<td>LAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gong et al. (1993b)</td>
</tr>
<tr>
<td>Dairy heifers (n=24)</td>
<td>Day 7, before SOV</td>
<td>320</td>
<td>LAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gray et al. (1993)</td>
</tr>
<tr>
<td>Lactating beef cows (n=10)</td>
<td>For 41 days before SOV</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gray et al. (1993)</td>
</tr>
<tr>
<td>Non-lactating beef cows (n=10)</td>
<td>For 37 days before SOV</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gray et al. (1993)</td>
</tr>
<tr>
<td>Dairy heifers (n=17)</td>
<td>Day 4, before SOV</td>
<td>500</td>
<td>ULT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kuehner et al. (1993)</td>
</tr>
<tr>
<td>Dairy heifers (n=18)</td>
<td>Day 11, first day of SOV</td>
<td>500</td>
<td>ULT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kuehner et al. (1993)</td>
</tr>
<tr>
<td>Dairy heifers (n=17)</td>
<td>Day 15, after SOV</td>
<td>500</td>
<td>ULT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kuehner et al. (1993)</td>
</tr>
<tr>
<td>Dairy cows (n=22)</td>
<td>Day 4, before SOV</td>
<td>640</td>
<td>SLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herri et al. (1994)</td>
</tr>
<tr>
<td>Dairy cows (n=38)</td>
<td>Day 4, before SOV</td>
<td>640</td>
<td>SLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herri et al. (1994)</td>
</tr>
<tr>
<td>Dairy cows (n=21)</td>
<td>Day 13, after SOV</td>
<td>640</td>
<td>SLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herri et al. (1994)</td>
</tr>
<tr>
<td>Beef×dairy heifers (n=16)</td>
<td>Day 7, before SOV</td>
<td>320</td>
<td>LAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gong et al. (1996)</td>
</tr>
<tr>
<td>Beef×dairy heifers (n=16)</td>
<td>Day 7, before SOV</td>
<td>320</td>
<td>LAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gong et al. (1996)</td>
</tr>
<tr>
<td>Beef×dairy heifers (n=12)</td>
<td>Day 7, before SOV</td>
<td>320</td>
<td>LAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gong et al. (1996)</td>
</tr>
<tr>
<td>Dairy cows (n=27)</td>
<td>4 to 5 doses, every 14 days, before SOV</td>
<td>500</td>
<td>SLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cushman et al. (2001)</td>
</tr>
<tr>
<td>Beef cattle (n=35)</td>
<td>5 to 6 doses, every 14 days, before SOV</td>
<td>500</td>
<td>SLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cushman et al. (2001)</td>
</tr>
<tr>
<td>Dairy cows (n=12)</td>
<td>At the time of first AI</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moreira et al. (2002b)</td>
</tr>
<tr>
<td>Beef cows (n=57)</td>
<td>One dose every 14 days for up to 4 SOV</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hasler et al. (2003)</td>
</tr>
<tr>
<td>Beef cows (n=37)</td>
<td>One dose every 14 days for 1 SOV</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hasler et al. (2003)</td>
</tr>
</tbody>
</table>

*Statistically significant (P≤0.05); ORE, ovulation rate examination; CL, corpora lutea; O/E, ova+embryos; VE, viable embryos; TE, transferable embryos; SOV, superovulation; PPR, palpation per rectum; LAP, laparoscopy; ULT, ultrasonography; SLA, slaughter; ?, not reported; †, increase; ‡, decrease; ††, no difference.

Table 3 Effect of bovine somatotrophin (bST) on the superovulatory response in cattle.

References

follicular fluid of patients undergoing superovulation were correlated with successful early embryo development (Wang et al. 2006). Albeit speculative, this inverse relationship between oocyte competence and high intrafollicular IGF1 concentrations might be related to the fact that when more ovulations occur during superovulation less viable embryos are produced (Driancourt 2001, Ireland et al. 2007). In this regard, it is worthy to mention that higher levels of intrafollicular IGF1 were observed after the use of FSH when compared with human menopausal gonadotrophin (hMG; Fried et al. 1998, Hammadah et al. 2000), indicating that the intrafollicular concentrations of IGF1 can be affected by the type of hormone used for superstimulation. Bovine superovulation has been induced with FSH extracted from either porcine, ovine or equine pituitaries (Staigmiller et al. 1992, Kanuya et al. 1997), eCG (Gonzalez et al. 1994), hMG (Lauria et al. 1982), recombinant bovine FSH (Wilson et al. 1993) or recombinant human FSH (Takagi et al. 2001). Notwithstanding, the effect of different gonadotrophin preparations upon intrafollicular IGF1 concentrations has not yet been studied in cattle.

The other ligand of the IGF system, IGF2, is also increased in the follicular fluid by superovulation, and has been associated with decreased oocyte quality (O’Callaghan et al. 2000). In superstimulated women, high follicular concentrations of IGF2 were positively related to oocyte maturation and early embryo development (Wang et al. 2006). By contrast, the intrafollicular microenvironment of IGF2 was not associated with clinical outcome in the patients subjected to IVF-ET cycles (Choi et al. 2006). However, studies on the role of IGF2 during bovine superovulation are lacking.

Oocyte maturation has been positively associated with follicular fluid levels of IGF1 in women undergoing ovarian superstimulation (Nardo et al. 2001). IGF1 levels in follicular fluid compatible with bovine oocyte competence are modulated to a great extent by IGFBPs (Nicholas et al. 2005). It has been observed that the amount of IGFBP2, 4 and 5 in the follicular fluid of follicles >8 mm from cows superstimulated with eCG was less compared with that of medium-sized follicles, and that IGFBP3 was present in all follicles (van de Leemput et al. 1997). FSH-stimulated cows had less IGFBP2 and relatively constant levels of IGFBP3 in large oestrogen-active follicles (~17 mm or greater) compared with large oestrogen-inactive (~12–14 mm), medium (5–7 mm) and small follicles (~4 mm; Echtenkamp et al. 1994). Superovulated ewes had lower concentrations of IGFBP2, 4 and 5 than non-superovulated controls in follicular fluid from follicles ~3 mm (O’Callaghan et al. 2000). In a model of follicular co-dominance induction, treatment with 2–6 mg recombinant bovine FSH for 36–48 h decreased the amounts of IGFBP2, 4 and 5, and increased levels of IGFBP3 and IGFBP proteases 4 and 5 in the follicular fluid of co-dominant follicles (~9–12 mm) compared with subordinate follicles (~7–9 mm; Rivera & Fortune 2001, 2003). Although these findings partially suggest that the action of the IGFBP system during superovulation operates in a manner similar to non-superovulated conditions, more work is required to further elucidate the role of IGFBPs in follicular development during bovine superovulatory treatments.

Effects of IGF1 during superovulation on preimplantation embryo development

The main objective of a superstimulatory treatment is to obtain the maximum number of viable embryos with a high probability of producing pregnancies. Although the best indicator of the success of an ET programme is the number of live calves born per donor over a given period of time (Armstrong 1993), the number of viable embryos produced per donor is frequently used as an indicator of MOET success (Peixoto et al. 2002). Embryo viability in the MOET programmes is not only affected by the ovulation rate but also depends critically on whether normal fertilization occurs (Armstrong 1993) and the oviductal and uterine milieu in which the embryo develops prior to embryo recovery (Barnes 2000).

The IGF1 receptor mediates the effects of IGF1 during the preimplantation period (Matsui et al. 1997). Day 7 bovine embryos collected from superovulated animals express the IGF1 receptor (Bertolini et al. 2002, Moore et al. 2007). Receptors for IGF1 are also observed in embryos produced either partially (Lazzari et al. 2002, Lonergan et al. 2003) or totally by standard in vitro procedures (Watson et al. 1992, Yoshida et al. 1998, Yaseen et al. 2001, Lazzari et al. 2002, Moore et al. 2007) or by somatic cell nuclear transfer (Sawai et al. 2005, 2007, Moore et al. 2007). In vitro procedures can alter the relative abundance of IGF1 receptor transcripts in bovine embryos (Bertolini et al. 2002, Lazzari et al. 2002, Sawai et al. 2005, 2007, Warzych et al. 2007). Preimplantation embryos collected from superovulated cows have shown either high (Bertolini et al. 2002), low (Lazzari et al. 2002, Sawai et al. 2007) or similar (Moore et al. 2007) transcript abundance when compared with in vitro-produced embryos. It is unknown whether or not differences exist between embryos derived from single spontaneous ovulations and stimulated multiple ovulations, with regard to the expression of the IGF1 receptor.

Convincing evidence has demonstrated that IGF1 can affect positively embryos from superovulated cattle. Improvements in embryo production have been achieved by treating superovulated donors with bST (Gong et al. 1993b, 1996, Herrler et al. 1994, Cushman et al. 2001, Moreira et al. 2002b, Neves et al. 2005), which was associated with increments in IGF1 concentrations in follicular fluid and peripheral plasma (Herrler et al. 1994, Cushman et al. 2001). Since bST also exerts direct effects on several reproductive events, including
embryogenesis (Kaiser et al. 2001, Sirotkin 2005), a complementary effect of bST and IGF1 cannot be ruled out. Support for a beneficial action of IGF1 on embryonic development during superovulation can be derived from the positive correlation found between the plasma concentrations of IGF1 and the number of viable embryos produced by superovulated mature cows (Velazquez et al. 2005). Insulin is closely linked with IGF1 during superovulation as shown by the greater diameter of large follicles and increased levels of IGF1 in the follicular fluid induced with exogenous application of insulin during the period of gonadotrophin treatment (Simpson et al. 1994). Both hormones were found to be closely related with body condition score (BCS) and embryo production in superovulated cows (Velazquez et al. 2005; Table 4).

Diet-induced increases in circulating insulin were associated with the recruitment of small ovarian follicles that resulted in an enhanced superovulatory response in terms of both the number of preovulatory follicles and ovulations (Gong et al. 2002). However, it remains to be determined whether such an approach will also improve oocyte competence in vivo. Ovum pick-up/IVF models found that increased dietary intake over maintenance requirements in superovulated donors increased circulating concentrations of insulin and IGF1. However, this treatment started to have a negative impact on in vitro embryo production after 6 weeks of overfeeding (Ferret et al. 2006). Reduced blastocyst yields were reported in cattle with moderately high BCS fed twice maintenance requirements. The increased dietary intake in heifers with moderately high BCS resulted in hyperinsulinaemia (Adamiak et al. 2005), similar to the values reported in women with the polycystic ovary syndrome (PCOS; Dunaif 1997). By contrast, higher dietary intake positively affected blastocyst production in animals with low BCS (Adamiak et al. 2005). The inverse relationship between overfeeding and embryo production has also been observed during in vivo embryo production (Yaakub et al. 1999, Siddiqui et al. 2002, Stroud & Hasler 2006, Garcia Guerra et al. 2007, Kadokawa et al. 2008). These findings are in agreement with the hypothesis that a ‘quiet’ metabolism during early mammalian embryo development is positively associated with embryo viability (Leese 2002, 2003, Bauman et al. 2007, Leese et al. 2007). Although plasma IGF1 was not associated with impaired oocyte competence during over-nutrition (Adamiak et al. 2005), it cannot be completely ruled out, as a direct effect of liver-produced IGF1 on ovarian activity will depend on how much circulating bioactive IGF1 impacts on the ovaries. IGF1 in follicular fluid has been found to be either lower (Echternkamp et al. 1990, Spicer et al. 1991), equal (Spicer et al. 1992) or greater than peripheral IGF1 (Spicer et al. 1992, Ortega et al. 2008). This emphasizes the importance of measuring both IGF1 and IGFBPs concentrations in reproductive tracts in experimental trials.

Experiments in rodents found that locally enhanced IGF1 production in the uterus during a superovulatory treatment can be detrimental to early embryo development. This increase in IGF1 production is thought to be due to the hyperoestrogenaemia caused by superovulation, as uterine IGF1 production is primarily regulated by oestrogens (Murphy et al. 1987, Simmen et al. 1990, Sahlin et al. 1994, van Lier et al. 2006, Suzuki et al. 2007). Katagiri et al. (1996) reported a decrease in both the rate of blastocyst formation and blastocyst cell number, and an increased proportion of degenerated blastocysts after culturing eight-cell embryos with uterine luminal fluids isolated from rat uteri infused with IGF1, thus mimicking IGF1 concentrations caused during superovulation. The same results were obtained with uterine luminal fluid from superovulated animals, and even more interesting, a reversed trend was observed in both models (superovulation and IGF1 infusion) when the uterine fluids were treated with anti-IGF1 antibody (Katagiri et al. 1996). The same rat model was applied in a study in which an altered uterine electrolyte environment, especially cations, was suggested to be partially responsible for the detrimental effects of IGF1 on embryonic development after superovulatory treatment (Katagiri et al. 1997a). Recent studies have reported that exposure of mice embryos at the two- or four-cell stage to high IGF1 concentrations (950 ng/ml) triggered apoptosis in blastocysts via

Table 4 In vivo embryo production and insulin and insulin-like growth factor1 (IGF1) concentrations (mean ± s.e.m.) in superovulated dairy cows associated with body condition score (BCS).

<table>
<thead>
<tr>
<th>BCS (5 points scale)</th>
<th><2.5</th>
<th>>2.5</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ova + embryos (n)</td>
<td>7.0±1.4</td>
<td>14.1±2.3</td>
<td>0.042</td>
</tr>
<tr>
<td>Viable embryos (n)</td>
<td>3.7±1.1</td>
<td>8.9±1.8</td>
<td>0.047</td>
</tr>
<tr>
<td>Quality 1 embryos (n)</td>
<td>2.2±1.0</td>
<td>5.8±1.5</td>
<td>0.062<sup>b</sup></td>
</tr>
<tr>
<td>Insulin (μU/ml)</td>
<td>10.0±2.4</td>
<td>20.3±4.2</td>
<td>0.031</td>
</tr>
<tr>
<td>IGF1 (ng/ml)</td>
<td>128.6±16.8</td>
<td>207.5±28.0</td>
<td>0.035</td>
</tr>
</tbody>
</table>

ⁿ, total number. Based on data from Velazquez et al. (2005).
^aMann–Whitney test. ^bConsidered as a value towards significance.
downregulation of the IGF1 receptor (Chi et al. 2000), which in turn increased embryo resorption rates (Pinto et al. 2002, Eng et al. 2007). It has been suggested that this high IGF1 induced apoptosis in embryos associated with reduced IGF1 receptor signalling requires activation of the TP53 pathway (Moley et al. 2005). However, extrapolation of the results from rodents to cattle needs to be done with caution. The downregulation of the IGF1 receptor found in bovine embryos treated with IGF1 concentrations considered beneficial for embryogenesis (100 ng/ml; Prelle et al. 2001) highlights the importance of species-specific differences on the detrimental effects of IGF1 upon embryonic development.

Partial evidence for an adverse effect of IGF1 in vivo was found in superovulated maiden heifers in which a negative correlation between embryonic viability and plasma concentrations of IGF1 was observed (Velazquez et al. 2005). The concentrations of IGF1 in blood are higher in heifers than in cows (Wathes et al. 2001, Velazquez et al. 2004). Therefore, both high endogenous concentrations and the superovulatory gonadotrophins might elevate IGF1 concentrations in both oviduct and uterus to a level that is suboptimal for embryonic development (Figs 1 and 2). The potential deleterious effects of high concentrations of IGF1 on embryo viability are also partially supported by studies in non-superovulated cows in which a decrease in pregnancy rates was attributed to the hyperstimulation of IGF1 production induced by bST treatment (Bilby et al. 2004).

Modulation of the IGF system to improve results of superovulation in cattle

IGF1 is able to cross the blood–brain barrier (Reinhardt & Bondy 1994) and may act in either the hypothalamus and/or pituitary gland to modulate gonadotrophin secretion (Monget & Martin 1997). Studies in rodents have found that IGF1 is produced in several regions of the nervous system, including the arcuate nucleus and median eminence of the brain, where GnRH regulates the ovarian production of gonadotrophins (Daftary & Gore 2005). Accordingly, bovine IGF1 has been found to be involved in the regulation of LH release (Hashizume et al. 2002). No information is available regarding brain production of IGF1 in superovulated cattle. This may be especially relevant since it is known that nuclear and cytoplasmic maturation of bovine oocytes is critically dependent on precise patterns of LH secretion (Lindsey et al. 2002). Alteration in LH production associated with impaired oocyte maturation is one of the main problems caused by superovulation (D’Occhio et al. 1999).

The use of exogenous IGF1 to enhance in vivo embryo production in superovulated cows has not yet been tested. This approach could be useful to improve embryo yields in animals with reduced superovulatory response. Reliable methods for the prediction of embryo production in donor animals would be helpful in improving the outcome in the MOET programmes. Total plasma IGF1 concentrations have been found to be of limited value for the prediction of the number of viable embryos (Velazquez et al. 2005). Measuring the concentrations of

Figure 1 Possible effects of IGF1 on oocyte and preimplantation embryo development during superovulation in cattle. IGF1 milieu during gonadotrophic stimulation in follicles, oviduct and uterus will depend primarily on the dose and type of superstimulatory hormone (SH) used, the number of FSH-responding follicles at the time of treatment and the endocrine and paracrine production of IGF1 in the individual (inherent and nutritional induced). The stimulatory treatment will induce high oestradiol (E2) production, which in turn will increase IGF1 production in reproductive tissues (paracrine) and possibly peripheral plasma (endocrine effect). The IGF1 increase in plasma could contribute even more to the paracrine effect of IGF1 during superovulation. This hyperstimulation of IGF1 is associated with the enhanced follicle growth occurring during superovulation. In the follicles destined to reach preovulatory size, the amount of IGFBP2, 4 and 5 will be decreased, allowing the increment of intrafollicular IGF1 concentrations. Positive effects on oocyte competence and embryo development are exerted by IGF1 when the concentrations remain within the normal physiological range (green arrows). If the superstimulatory response is too high, IGF1 concentrations are increased to supraphysiological levels, which could result in the ovulation of low-quality oocytes. The decrease in oocyte quality and the altered IGF1 environment present in the oviduct and uterus could interfere with the fertilization process and/or preimplantation embryo development (red arrows).
circulating IGF1 and IGFBPs in combination could improve the prediction of the number of viable embryos. This is supported by the fact that mouse embryos cultured in medium supplemented with dephosphorylated IGFBP1 in the form of an IGF1/IGFBP1 complex showed a higher increase in the rate of blastocyst formation compared with supplementation with IGF1 alone (Lin et al. 2003). The ratio of IGF1 and IGFBP1 in serum and follicular fluid has been suggested to reflect oocyte quality, which in turn influences embryo viability (Fried et al. 2003).

Stimulatory gonadotrophin treatments can also affect gamete transport in the oviductal–uterine tract and the fertilization process (Greve & Callesen 2001). IGF1 has been found in bovine seminal plasma and its receptor was present in ejaculated bovine sperm, indicating that it might play an important role during fertilization (Henricks et al. 1998, Hoelfich et al. 1999). In vitro studies have shown that treatment with IGF1 increased important characteristics of bovine spermatozoa, including the percentage of motile sperm and straight-line velocity (Henricks et al. 1998, Lackey et al. 1998). Significant fluctuations in the oviductal IGF1 concentrations have been found in superovulated ruminants (Kakar et al. 2005). However, the effects of different IGF1 concentrations in oviducts during superovulatory treatments on sperm viability and fertilization success have not yet been studied.

Although IGF1 ligand expression in the preimplantation stage has been proposed as a potential marker for embryo quality in humans and mice (Liu et al. 1997, Kowalik et al. 1999), the autocrine role of IGF1 in bovine embryogenesis has not been fully elucidated. Some studies have reported expression of the IGF1 ligand in bovine embryos during the preimplantation period (Schultz et al. 1992, Yoshida et al. 1998, Lonergan et al. 2000), while others did not find the molecule (Yaseen et al. 2001, Bertolini et al. 2002, Moore et al. 2007, Warzych et al. 2007). Nevertheless, it would be useful to determine whether oestriadiol concentrations, associated with the superovulatory response, do induce expression of the IGF1 ligand in embryos, as has been observed in some types of brain cells (Shingo & Kito 2003).

It has been speculated that the high rates of embryonic mortality observed in dairy cows with severe negative energy balance could be due to impaired embryo development caused by increased signalling of IGF2 in the oviduct (Fenwick et al. 2008). Since IGF2 is produced in oviducts and uterus and both the ligand and the receptor are expressed from the zygote to the blastocyst stage (Yaseen et al. 2001), the interaction between IGF2 and preimplantation embryo development in superovulated cattle warrant future research.

Figure 2 The oviductal–uterus milieu can exert negative and positive effects on preimplantation embryos during superovulation. The embryos will be affected mainly by the endocrine and/or paracrine production of IGF1 as autocrine production has still to be elucidated. When IGF1 production within the normal physiological range is maintained in the oviducts and uterus, it is suggested that there will be an increase in the number of cells and a decrease in the level of apoptosis in the preimplantation embryo (+, positive effect, green arrows). However, when this positive threshold is altered (higher IGF1 concentrations) due mainly to an over-response during gonadotrophin stimulatory treatment, the level of apoptosis increases. This negative effect would be associated with the downregulation of the IGF1 receptor (−, negative effect, red arrows).

The superovulated bovine female as an alternative model to investigate reproductive endocrinological disorders associated with IGF1 in humans

Female cattle and women share significant similarities regarding the final stages of oocyte maturation and the biochemical and intrinsic paternal and maternal regulatory processes in preimplantation embryos (Ménézo & Hérubel 2002). Thus, domestic cattle could be a suitable experimental model to study the mechanisms controlling folliculogenesis (Campbell et al. 2003) and preimplantation embryo development in humans (Niemann & Wrenzycki 2000, Wrenzycki et al. 2005, 2007, Bauman et al. 2007, Velazquez 2008). This approach could be extended to study reproductive endocrinological disorders associated with alterations of the IGF axis, such as the PCOS in humans. PCOS is a complex multifactorial disorder that accounts for more than 75% of the cases of anovulatory infertility (Gorry et al. 2006), and is responsible for up to 40% of human female sterility (Krysiak et al. 2006). The IGF system plays an important role in the pathogenesis of PCOS (Giudice 1992, Homburg et al. 1992, Druckman & Rohr 2002). Patients with this disorder have significantly higher IGF1 concentrations in blood (Berker et al. 2004, Abd El Aal et al. 2005, Hahn et al. 2006) and ovarian
follicular fluid (Eden et al. 1990) compared with women without PCOS. Recent data suggested that oocyte quality critically depends on the bioavailability of IGF1 in PCOS patients undergoing IVF-ET cycles (Schoyer et al. 2007).

As discussed above, high IGF1 concentrations associated with high superovulatory response may exert detrimental effects on oocyte and early embryo development in stimulated cattle. This raises the interesting possibility of producing high superovulatory profiles in domestic cattle, aiming at mimicking a polycystic-like ovarian milieu. This could be useful to develop strategies to enhance oocyte competence in order to improve the outcome of IVF-ET cycles in women with PCOS. Alternatively, this bovine model could be used to test the efficacy and/or to determine the method of action of drugs used for the treatment of PCOS, both in vivo and in vitro. Support for this hypothesis comes from in vitro studies recently carried out to investigate the effect of metformin on bovine ovarian steroidogenesis in response to IGF1 and FSH (Tosca et al. 2007). This drug is used for fertility treatment in women with PCOS (Palomba et al. 2008). Moreover, the use of artificial insemination in this bovine PCOS model could also be a valuable approach to study the fertilization success and preimplantation embryo development in vivo, with the goal of designing therapies to increase the chance of pregnancy in PCOS women.

Patients with PCOS that are stimulated in assisted reproduction cycles have an increased risk of developing the ovarian hyperstimulation syndrome (OHSS; Mikkelsen 2005, Tummon et al. 2005). Treatments leading to reduced IGF1 levels in blood of PCOS patients are associated with a decrease in ovarian stromal blood flow, which in turn is related to a lower likelihood of developing the OHSS (Amin et al. 2003). OHSS could also be investigated in the superovulated bovine model. For instance, after inducing a PCOS-like status by superovulation, animals developing multiple ovarian cysts (Todoroki et al. 2004) could be retreated with gonadotrophins in an attempt to mimic the conditions observed in humans. Another condition possibly associated with IGF1 is the low ovarian response after stimulation with gonadotrophins. Women with a poor response to ovarian stimulation have shown either similar (Hammadeh et al. 2003) or reduced levels of IGF1 in the follicular fluid (Bahceci et al. 2007) compared with good responders. Superovulated cattle could prove to be a superior approach to unravelling the underlying cause of this condition, as shown recently by Ireland et al. (2007). The feasibility of inducing these two contrasting superovulatory responses observed in women (OHSS and low ovarian response) is further supported by the fact that similar superovulatory profiles have been found in cattle, ranging from low to high responders (De Roover et al. 2005, Durocher et al. 2006).

Human polycystic ovaries have been shown to have a significantly reduced proportion of primordial follicles and an increased proportion of primary follicles compared with normal ovaries (Webber et al. 2003). It has been proposed that abnormal preantral folliculogenesis observed in polycystic ovaries is at least partially due to an excessive androgen exposure during the prenatal period (Forsdike et al. 2007). In primates, this androgen-induced ovarian follicular growth is thought to be mediated by an enhanced local IGF1 effect (Vendola et al. 1999). The accelerated progression of primordial follicles into the primary stages of development found in a prenatally androgenized sheep model is strikingly similar to the situation observed in women with PCOS (Forsdike et al. 2007). This model could be easily applied to cattle as both species have similar reproductive patterns (Campbell et al. 2003) and androgenization of cows is a well-established procedure in the cattle industry (Nix et al. 1998). Moreover, prenatally androgenized heifers used in a model to increase beef production showed higher body fat accumulation, higher serum IGF1 concentrations and a tendency for increased insulin levels compared with controls (Aldrich et al. 1995, 1996, Reiling et al. 1997). These features are largely similar to some characteristics of PCOS such as obesity and altered components of the IGF system (Chang 2007, Cocksedge 2008, Franks et al. 2008). Refinement of the bovine prenatal PCOS-like model will primarily relate androgen doses and timing of application during pregnancy. The assessment of the developmental competence of oocytes, both in vivo and in vitro, from adult superovulated cattle exposed to high androgens during foetal development may be relevant to the study of in utero programming of PCOS aetiology. The preantral stage last approximately 3 months in cattle (Webb & Campbell 2007), and the environment to which preantral oocytes are exposed during this period could potentially affect future oocyte competence. This has been shown by Adamiak et al. (2005) in a non-superovulated cattle model, in which nutritional-induced hyperinsulinaemia, similar to the high insulin concentrations present in PCOS, during three consecutive oestrous cycles induced a detrimental effect on oocyte developmental competence in vitro. It would be interesting to analyse the IGF system in the reproductive tract using this hyperinsulinaemic model, in conjunction with superovulation, to further explore embryo–maternal interactions under PCOS-like conditions.

Creation of a ‘universal’ PCOS animal model is unlikely, as the induction of all pathological conditions observed in PCOS women is not possible (Szukiewicz & Uilenbroek 1998, Singh 2005). Common clinical features of PCOS include polycystic ovaries, anovulation, hyperinsulinaemia, hyperandrogenism and hypersecretion of LH (Chang 2007, Cocksedge 2008, Franks et al. 2008). Still, the ultimate diagnostic criterion for PCOS is controversial and several phenotypes have been
Reproduction of viable embryos during superovulatory treatments. This finding has been directly correlated with the production in non-superovulated cattle. Similarly, IGF1 has been found to be directly correlated with oocyte quality and embryo development is well documented with IGF1. The IGF1 milieu during superovulation in follicles, oviducts and uteri will depend on the inherent endocrine and paracrine secretion and on the nutritional- and gonadotrophin-induced production of IGF1. IGF2 acting via the IGF1 receptor could also affect the oocyte quality during superstimulatory protocols. There is an undetermined threshold in which IGF1 concentrations are detrimental for embryogenesis during superovulation. This negative effect is associated with high superovulatory responses that cause increments in oestrogen production and consequently increased IGF1 concentrations in the reproductive tract. These high IGF1 concentrations can affect embryo viability indirectly via oocyte quality during follicular development, and/or directly during the preimplantation period. Alterations in oocyte morphology and oocyte size are among the observed changes caused by high IGF1 concentrations in ruminants. Detrimental effects of high IGF1 levels on embryos have been suggested to be via induction of apoptosis, associated with a downregulation of the IGF1 receptor. The latter, however, still needs to be investigated in bovine embryos. There are still a number of unexplored aspects of the IGF system that needs to be elucidated to improve further responses following superovulatory treatments. As well as improvements in animal production, human-assisted reproduction could also benefit. Furthermore, superovulated cattle could serve as an excellent alternative animal model for investigating reproductive endocrinological disorders associated with variable IGF1 concentrations in women.

Declarations of interest
The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Funding
This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Acknowledgements
M A Velazquez is in the PhD programme of the University of Veterinary Medicine, Hannover, Germany, and is supported by the German Academic Exchange Service (DAAD).

References

D’Occhio MJ, Jillella D & Lindsey BR 1999 Factors that influence follicle recruitment, growth and ovulation during ovarian superstimulation in heifers: opportunities to increase ovulation rate and embryo recovery by delaying the exposure of follicles to LH. *Theriogenology* 51 9–35.

Driancourt MA 2001 Regulation of ovarian follicular dynamics in farm animals. Implications for manipulation of reproduction. *Theriogenology* 52 1211–1239.

Fried G, Wrambsy H & Tally M 1998 Transforming growth factor-β1, insulin-like growth factors, and insulin-like growth factor binding proteins in ovarian follicular fluid are differentially regulated by the type of ovarian hyperstimulation used for in vitro fertilization. *Fertility and Sterility* 70 129–134.

Katarig I, Moon YS & Yuen BH 2001 Effects of growth hormone on the ovarian response to gonadotrophin stimulation prior to IVF. Human Reproduction 12 671–676.

Keao SD, Liveredinge NH, Akanva VA, Mathur RS & Jenkins JM 2003 Serum IGF-1 concentrations following pituitary desensitization do not predict the ovarian response to gonadotrophin stimulation prior to IVF. Human Reproduction 18 1797–1801.

Longo PN, Rizos D, Gutierrez-Adan A, Moreira PM, Binda B, de la Fuente J & Boland AP 2003 Temporal divergence in the pattern of

Pinto AB, Schlein AL & Moley KH 2002 Preimplantation exposure to high insulin-like growth factor I concentrations results in increased resorption rates in vivo. Canadian Veterinary Journal 33 563–572.

Schoyor KD, Liu HC, Witkin S, Rosenwaks Z & Spandorfer SD 2007 Serum insulin-like growth factor I (IGF-II) and IGF-binding protein 3 (IGFBP-3) in IVF patients with polycystic ovary syndrome: correlations with outcome. Fertility and Sterility 88 139–144.

Singh BK 2005 Persistent estrus rat models of polycystic ovary disease: an update. Fertility and Sterility 84 (Supplement 2) 1228–1234.

Singh BK 2005 Persistent estrus rat models of polycystic ovary disease: an update. Fertility and Sterility 84 (Supplement 2) 1228–1234.

