Intracellular pH regulation in human Sertoli cells: role of membrane transporters

P F Oliveira¹, M Sousa¹,², A Barros³, T Moura⁴ and A Rebelo da Costa¹,⁵

¹UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal, ²Laboratório de Biologia Celular, ICBAS-UP, 4099-003 Porto, Portugal, ³Departamento de Genética, FM-UP, 4200-319 Porto, Portugal, ⁴REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal and ⁵Laboratório de Fisiologia Geral, ICBAS-UP, 4099-003 Porto, Portugal

Correspondence should be addressed to P F Oliveira who is now at Laboratório de Fisiologia dos Gâmetas e Transporte Iônico, ICBAS, LINIV (ala H), Rua dos Lagidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal; Email: transp.bio@mail.icav.up.pt

Abstract

Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Intracellular pH (pHi) is an important parameter in cell physiology regulating namely cell metabolism and differentiation. However, pHi regulation mechanisms in Sertoli cells have not yet been systematically elucidated. In this work, pHi was determined in primary cultures of human Sertoli cells. Sertoli cells were exposed to weak acids, which caused a rapid acidification of the intracellular milieu. pHi then recovered by a mechanism that was shown to be particularly sensitive to the presence of the inhibitor DIDS (4,4’-disothiocyanostilbene disulfonic acid). In the presence of amiloride and PSA (picrylsulfonic acid), pHi recovery was also significantly affected. These results indicate that, in the experimental conditions used, pHi is regulated by the action of an Na⁺-driven HCO₃⁻/Cl⁻ exchanger and an Na⁺/HCO₃⁻ co-transporter and also by the action of the Na⁺/H⁺ exchanger. On the other hand, pHi recovery was only slightly affected by concanamycin A, suggesting that V-Type ATPases do not have a relevant action on pHi regulation in human Sertoli cells, and was independent of the presence of bumetanide, suggesting that the inhibition of the Na⁺/K⁺/Cl⁻ co-transporter does not affect pHi recovery, not even indirectly via the shift of ionic gradients. Finally, pHi was shown to be sensitive to the removal of external Cl⁻, but not of Na⁺ or K⁺, evidencing the presence of a membrane Cl⁻-dependent base extruder, namely the Na⁺-independent HCO₃⁻/Cl⁻ exchanger, and its role on pHi maintenance on these cells.

Introduction

Sertoli cells face the lumen of the seminiferous tubule, providing structural support and creating an immunologically protected space for germ cells. They facilitate the progression of spermatogenesis and are responsible for the phagocytosis of degenerating germ cells and their remains (Griswold 1995, 1998, Buzzard et al. 2002, Mruk & Cheng 2004). Sertoli cells provide germ cells with necessary nutrients, hormones, and growth factors and control the composition of the seminiferous fluid (Griswold 1995, Mruk & Cheng 2004). The effects of testosterone and FSH on the regulation of the above processes in Sertoli cells are mediated by multiple factors/pathways including intracellular calcium level, protein tyrosine kinases such as MAPKs and Src, receptors for androgen and FSH, cyclic nucleotides, and others (Gorczynska & Handelsman 1995, Lyng et al. 2000, Von Ledebrur et al. 2002, McLachlan et al. 2002, Silva et al. 2002, Walker & Cheng 2005). Furthermore, it has been reported that intracellular pH (pHi) regulation is important in cellular response to hormones involved in raising cytosolic Ca²⁺ (Conlin et al. 1993). In addition, as the control of the pHi of the seminiferous fluid is crucial for male fertility, the pHi regulation of Sertoli cells should also play a major role in this process (Tuck et al. 1970, Mruk & Cheng 2004).

This cellular parameter is kept mainly through the net balance between production and elimination of protons and by intracellular buffers (Roos & Boron 1981). Cells possess in their plasmatic membrane a wide range of ion transporters that participate in pHi regulation, among which are the basic and acidic particles membrane transporters (Boron 2004). These transporters directly involved on the movement basic and acidic particles across the membrane are classified as acid extruders (Na⁺–H⁺ exchangers, Na⁺–driven HCO₃⁻/Cl⁻ transporters, Na⁺/HCO₃⁻ co-transporters, and V-ATPases) or acid loaders (Na⁺–independent HCO₃⁻/Cl⁻ transporters and...
Na+/HCO₃⁻ co-transporters), depending on the direction of movement of those particles (Boron 2004).

The goal of this work was to provide a first assessment on the participation of the different membrane transporters (Na⁺-H⁺ exchangers, Na⁺-driven and Na⁺-independent HCO₃⁻/Cl⁻ transporters, Na⁺/HCO₃⁻ co-transporter, Na⁺/K⁺/Cl⁻ co-transporters, and V-ATPases) in the regulation of the pHᵢ of human Sertoli cells. The approach used in this study was to follow pHᵢ of cultured human Sertoli cells in Na⁺, K⁺, or Cl⁻-replete- and free mediums and on pHᵢ recovery in the presence of specific inhibitors (e.g., amiloride, DIDS (4, 4'-diisothiocyanostilbene disulfonic acid), PSA (picryl-sulfonic acid), bumetanide, and concanamycin A) after an intracellular acidosis. The acidosis was achieved by adding sodium propionate to cells. To follow the pHᵢ transients, the pH-sensitive fluorescent probe 2', 7'-bis-(2-carboxyethyl) -5-(and-6)-carboxyfluorescein (BCECF) was used.

Results

PK measurement of BCECF and steady-state average pHᵢ

The determination of the probe’s PK was performed in vivo using a range of solutions of increasing pH (5.5, 6.5, 7.4, 8.0, and 9.0) to which nigericin (10 μM) was added previously. PK had an average value of 7.01 ± 0.21 (n=3). At the conditions used in these experiments (pHe=7.4), the pHᵢ of the Sertoli cells averaged 7.05 ± 0.01 (n=45).

Acidification and recovery

Cells equilibrated in Sertoli Ringer were suddenly exposed to sodium propionate Ringer causing a rapid decrease in pHᵢ, corresponding to an average fall of 0.63 ± 0.01 (n=5) units (Fig. 1; Table 1). The half-time of the acidification process was ~295 s. Following the acidification, pHᵢ slowly recovered to 100% of its initial value with an initial recovery rate of 0.0069 ± 0.0002 pH units/s (Table 1).

Effects of inhibitors on pHᵢ recovery

Acidification of Sertoli cells with sodium propionate was not significantly affected by the presence of specific inhibitors of some membrane ion transport systems (Figs 1 and 2). Recovery of pHᵢ, however, was altered, although in different degrees, by all the inhibitors used, as can be seen in Table 1.

DIDS (0.5 mM), an inhibitor of several bicarbonate membrane transporters usually classified as acid extruders, Na⁺-driven and Na⁺-independent HCO₃⁻/Cl⁻ transporters and Na⁺/HCO₃⁻ co-transporter, used at concentrations from 0.5 to 1 mM (LD₅₀ = not available; IC₅₀ = 20–200 μM; Grassl & Aronson 1986, Helbig et al.

1988, Boron 2001) caused the most significant decrease both on the recovery extension (39% of the initial value) and on the initial recovery rate (Fig. 1; Table 1), supporting the notion that this compound is inhibiting the major transport systems involved in pHᵢ regulation in Sertoli cells.

Addition of amiloride (1 mM), an inhibitor of the Na⁺/H⁺ exchange, used at doses from 0.1 to 1 mM (LD₅₀ (rat/oral) = 36–85 mg/Kg; LD₅₀ (mouse/oral) = 56 mg/Kg; IC₅₀ = 5–25 μM; Delvaux et al. 1990, Otani et al. 1990, Ahearn et al. 1994, Good & George 1995, Ahearn et al. 1999), caused a similar decrease on the initial pHᵢ recovery rates (Table 1). On the other hand, the recovery extension in the presence of amiloride was significantly lower (56% of the initial value) than in the presence of DIDS as can be seen in Fig. 1 and Table 1.

PSA (0.5 mM), a specific inhibitor of the Na⁺-driven HCO₃⁻/Cl⁻ exchanger, used at the concentration 0.5 mM (LD₅₀ = not available; IC₅₀ = not available; Knauf & Rothstein 1971, Madshus & Olsnes 1987, Frelin et al. 1988, Marvao et al. 1994), also affected the pHᵢ recovery. Although to a smaller extent than DIDS,

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>pHᵢ recovery (%)</th>
<th>pHᵢ recovery rate (10⁻³ pH units/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>100</td>
<td>6.9 ± 0.2</td>
</tr>
<tr>
<td>Bumetanide</td>
<td>100</td>
<td>3.6 ± 0.1*</td>
</tr>
<tr>
<td>Amiloride</td>
<td>56*</td>
<td>1.2 ± 0.1*</td>
</tr>
<tr>
<td>DIDS</td>
<td>39*</td>
<td>1.2 ± 0.1*</td>
</tr>
</tbody>
</table>

Values are presented as mean ± S.E.M.; *significantly different from control value if P<0.05; pHᵢ recovery was calculated as the percentage of recovery at steady state after acid load recovery; Initial pHᵢ recovery rate was calculated by linear regression of the data (see Materials and Methods for detail).
Effects of external Na\(^+\), K\(^+\), and Cl\(^-\) on pH\(_i\)

Cytoplasmic pH was also monitored in the presence and absence of external Na\(^+\), K\(^+\), and Cl\(^-\). Isosmotic removal of external Na\(^+\) (by replacement with K\(^+\)) or K\(^+\) (by replacement with Na\(^+\)) did not cause any effects on pH\(_i\) (Fig. 3). On the other hand, isosmotic removal of Cl\(^-\) (by replacement with gluconate) caused a rapid increase in pH\(_i\) of 0.13 ± 0.02 units (Fig. 3). Reperfusing of external Cl\(^-\) caused a recovering of pH\(_i\) to values identical of the control situation.

Discussion

Several membrane transport systems participate in pH\(_i\) regulation mechanisms and have been classified as acid extruders or acid loaders. Acid extruders require energy to move H\(^+\) from the cell or to take up HCO\(_3^-\) (Boron 2004). The V-type H\(^+\)-ATPases (Swallow et al. 1990, Beyenbach & Wieczorek 2006, Breton & Brown 2007), the Na\(^+\)/H\(^+\) exchangers (Oliveira et al. 2002), and the Na\(^+\)/HCO\(_3^-\) co-transporter have been classified as acid extruders (Boron 2001, 2004). The so-called acid loaders mediate the exit of weak bases, usually HCO\(_3^-\), or the entry of H\(^+\). The Na\(^+\)-independent HCO\(_3^-\)/Cl\(^-\) and the electrogenic Na\(^+\)/HCO\(_3^-\) exchangers have been classified as acid loaders (Boron 2001, 2004).

The nature of the ion membrane transporters involved in pH\(_i\) regulation in Sertoli cell is not very clear in the literature. As the ability of the Sertoli cell to regulate pH\(_i\) is an important aspect of its physiology, especially because this cellular parameter may play a major role on the response to hormonal stimulation as well as on the determination of the pH of the seminiferous fluid, the enlightenment of the participation of diverse membrane transporters on the mechanisms of pH\(_i\) regulation in these cells is of great relevance and was the main purpose of this study. For that, cells were loaded with a pH-sensitive fluorescent probe (BCECF) and subjected to an acid load in the presence of specific inhibitors.

Under the experimental conditions used, human Sertoli cells presented a mean value of pH\(_i\) of 7.05 ± 0.01. Amiloride, a high-affinity inhibitor of the Na\(^+\)/H\(^+\) exchanger (Ahearn et al. 1994, 1999) significantly decreased the pH\(_i\) initial recovery rate and extension (Table 1). These results are consistent with the
participation of the Na\(^+\)/H\(^+\) exchanger on pH\(i\) regulation mechanisms.

DIDS is an inhibitor of several bicarbonate transport systems (Boron et al. 1997, Boron 2001), namely the ones that involve base loading at the expense of the Na\(^+\) gradient, such as the Na\(^+\)/HCO\(_3^−\) co-transporters and the Na\(^+\)-driven HCO\(_3^−\)/Cl\(^−\) exchanger. In the presence of this inhibitor, the initial pH\(i\) recovery rate and recovery extension were drastically reduced (to 17% of the control value and 39% of the initial value respectively), therefore we could presuppose that one or both these transporters could be involved in the pH\(i\) regulation after an acid load.

In order to further elucidate the participation of these two bicarbonate transporters on the pH\(i\) recovery we used PSA, a specific inhibitor of the Na\(^+\)-driven HCO\(_3^−\)/Cl\(^−\) exchanger (Knauf & Rothstein 1971, Madshus & Olsnes 1987). This compound significantly reduced the pH\(i\) initial recovery rate and recovery extension after the acid load. Therefore, we could assume the presence of the Na\(^+\)-driven HCO\(_3^−\)/Cl\(^−\) exchangers on the membrane of the human Sertoli cells. Nevertheless, the magnitude of the effect of PSA on the recovery extension was much smaller than that of DIDS, suggesting to us the presence of the Na\(^+\)/HCO\(_3^−\) co-transporters on the plasma membrane of these cells and their participation in pH\(i\) regulation after an acid load.

Although proton pumps have been described in a wide variety of plasma membranes of acid-secreting epithelial cells (Harvey 1992, Martinez-Zaguilan et al. 1993, Ehrenfeld & Klein 1997, Rebelo da Costa et al. 1999, Oliveira et al. 2004), its presence has not yet been confirmed in Sertoli cells (Herak-Kramberger et al. 2001). The present study indicates that the pH\(i\) recovery mechanisms in Sertoli cells involve the action of the H\(^+\) pump, although to a small extent, as a statistically significant difference was observed on initial pH\(i\) recovery rate and extension after the acid load, in the presence of concanamycin A, a specific inhibitor of this kind of pump (Huss et al. 2002).

Bumetanide is a specific inhibitor of the Na\(^+\)–K\(^+\)–Cl\(^−\) co-transporter, expressed in a broad spectrum of tissues and implicated in cell volume regulation and in ion transport by secretory epithelial tissue (O'Grady et al. 1987), namely in the seminiferous epithelium (Pace et al. 2000). The presence of this inhibitor did not affect the recovery extension of the pH\(i\). As one can see, this membrane transporter is not directly implicated on the extrusion or loading of acid particles thus, unless it had a major role on the maintenance of the intracellular ionic gradients in human Sertoli cells, its effect on pH\(i\) recovery should not be very significant, as is the case. Nevertheless, the presence of bumetanide on the external bathing solution causes a decrease on initial pH\(i\) recovery rate, probably due to the referred disturbance of the intracellular ionic gradients.

Finally, ionic replacement experiments were performed in order to further access on the presence of the several membrane transporters discussed. Only the removal of chloride ion caused a shift to basic values of the basal pH\(i\). Neither the removal of external Na\(^+\), nor of K\(^+\), caused any effect. The reasoning of these results could be the following: the removal of external Cl\(^−\) affected the functioning of either the Na\(^+\)-independent HCO\(_3^−\)/Cl\(^−\) exchanger or the Na\(^+\)-driven HCO\(_3^−\)/Cl\(^−\) exchanger that will lead to the intracellular accumulation of bicarbonate and consequent rise of pH\(i\).

In conclusion, human Sertoli cells, in the presence of external Na\(^+\) and bicarbonate, seem to regulate pH\(i\) after an acid load mainly by the action of an Na\(^+\)-driven HCO\(_3^−\)/Cl\(^−\) exchanger and a Na\(^+\)/HCO\(_3^−\) co-transporter and also by the action of the Na\(^+\)/H\(^+\) exchanger (Fig. 4). Also, our work, although it suggests the presence in Sertoli cells of V-type ATPases, points to a minor participation on these mechanisms of the regulation of pH\(i\) after an acid load. In addition, human Sertoli cells seem to also have on their plasma membranes the Na\(^+\)–K\(^+\)–Cl\(^−\) co-transporter, which, as one could expect, does not have a major role on pH\(i\) regulation mechanisms but its absence (inhibition) affects those mechanisms, probably due to ionic gradient alterations.

Materials and Methods

Chemicals

BCECF-AM was purchased from Molecular Probes (Carlsbad, CA, USA). Sodium propionate, potassium propionate, nigericin, collagenase, pancreatin, PSA, DNAse, amiloride, DIDS, and concanamycin A were purchased from Sigma. DMEM and Ham’s F-12 were purchased from Gibco. Stock solutions of BCECF-AM and concanamycin A were prepared in dimethyl sulfoxide (DMSO) and kept at 20°C. Stock solutions of nigericin were prepared in ethanol and kept at 20°C. DMSO and ethanol were always used in concentrations below 0.1% (v/v). All other chemicals were purchased from Sigma.
Ethical issues

Human Sertoli cells were obtained from testicular biopsies of infertile patients under treatment for recovery of male gametes at the IVF Unit of the Department of Genetics, Faculty of Medicine and University of Porto.

Patients with normal spermatogenesis were selected. In accordance with the Guidelines of the Local, National and European Ethical Committees, in the present study only cells left in the tissue culture plates after treatment of the patients by intracytoplasmic sperm–spermatid injection were used. In all cases, Sertoli cells were used only after informed patient consent.

Sertoli cell culture

Each biopsy (0.1 to 0.2 g), once obtained, was transferred to sperm preparation medium (SPM; Medicut, Copenhagen, Denmark) containing penicillin and streptomycin until cell isolation.

Sertoli cells were isolated using an adaptation of the enzymatic procedure adapted from the one described by Welsh & Wiebe (1975), modified by Majumdar et al. (1995) and evaluated by Valdés-González et al. (2005).

Tissue samples were washed twice in cold HBSSf (calcium- and magnesium-free HBSS, containing 50 U/ml of penicillin and 50 µg/ml streptomycin sulfate (pH 7.4)) and minced in HBSSf (2.5 ml per 0.1 g tissue) in a glass-stoppered Erlenmeyer, shaken vigorously during 1 min to disperse tubules. The tissue was left to settle for 5 min on ice, and the supernatant was discarded. This procedure was repeated twice to mechanically remove red blood cells and free Leydig cells. The resulting pellet was digested in 5 ml of HBSS with collagenase type I (200 U; C0130, Sigma) and DNase (100 U; D4263, Sigma) continuously shaken (100 r.p.m.) at 37°C during 25–35 min. The formed aggregate was removed, washed in HBSSf, and discarded. The washing HBSSf was added to the cellular suspension resulting from the digestion.

The resulting suspension was washed twice and left to settle completely at 4°C. The resulting pellet was suspended in 5 ml HBSSf with 1 mg pancreatin (P3292, Sigma) and DNase (100 U; D4263) and digested at 37°C with continuous shaking (100 r.p.m.) during 15–25 min. The new aggregate formed was discarded and 0.1 ml fetal bovine serum (FBS) was added to the cellular suspension, which was left to rest at 4°C for 5 min. The suspension was then centrifuged at 100 g during 5 min. The pellet was gently suspended in 5 ml HBSSf. This procedure was repeated twice and the resulting pellet was suspended in 5 ml HBSSf. This suspension was passed through a glass Pasteur pipette in order to loosen germ cells from the clusters, and then pelleted at 200 g for 5 min. This procedure was repeated twice. The resulting pellet was suspended Sertoli culture medium (DMEM + Ham’s F-12 [HF12]; 1:1, containing 50 U/ml penicillin and 50 µg/ml streptomycin sulfate, 0.5 µg/ml fungizone, and 5% heat inactivated FBS) and forced through a 19 G needle, in order to disaggregate large Sertoli clusters.

For culture of Sertoli cells, the concentration of clusters on the cellular suspension obtained from the procedure described above was adjusted to 1000 clusters/ml plated on 25 cm² culture flasks (Cell +, Sarsted), and incubated at 37°C in an atmosphere of 5% CO₂: 95% O₂. The day of plating was considered day 0 of culture. The cultures were left undisturbed until day 2. Sertoli cell isolation procedures had an average yield of 5 × 10⁴ cell per gram of tissue.

Intracellular pH measurements

Cells were loaded with the fluorescent probe during 15 min at 37°C with 1 ml Sertoli Ringer (NaCl 130 mM; KCl 5 mM; MgCl₂ 1 mM; CaCl₂ 2 mM; NaHCO₃ 10 mM; Glucose 1 mM; HEPES 10 mM (pH 7.4)) containing 1 µM BCECF-AM (Molecular Probes). The cells were transferred to the imaging chamber and washed with Sertoli Ringer using a gravity perfusion system (1 ml/min).

The fluorescence intensities, excited at 490 and 440 nm (emission 515 nm), were continuously measured with an epifluorescence system (DeltaRam, PTI) while the cells were perfused with different solutions.

Background fluorescence was determined at the end of each experiment by removing the cells and perfusing the empty chamber with Sertoli Ringer. The background fluorescence intensity was measured for each wavelength.

The ratios \(\frac{F_{490}}{F_{440}}\) were calculated after subtracting the background fluorescence intensities for each measurement at each wavelength.

The calibration procedures were done using the method described by Thomas (1986). In order to convert the fluorescence signals into pH values, at the end of each protocol a in vivo calibration procedure was performed, using solutions of known pH (5.5 and 9.0), to which nigericin (10 µM) was added.

To convert the measured fluorescence ratio \(\frac{F_{490}}{F_{440}}\) in intracellular pH values, the following equation was used:

\[
\text{pH} = \text{pK} + \log \left(\frac{(R - R_A)}{(R_B - R)} \times \frac{F_{490}}{F_{440}} \right)
\]

Where K is the BCECF \(K_B\), R is the fluorescence ratio \(\frac{F_{490}}{F_{440}}\) of the sample, \(R_A\) is the fluorescence ratio \(\frac{F_{490}}{F_{440}}\) of the (pH 5.5) solution, \(R_B\) is the fluorescence ratio \(\frac{F_{490}}{F_{440}}\) of the (pH 9.0) solution, \(F_{440}^{\text{BCECF}}\) is the fluorescence intensity (440 nm) of the (pH 5.5) solution and \(F_{440}^{\text{BCECF}}\) is the fluorescence intensity (440 nm) of the (pH 9.0) solution.

To determine the BCECF \(K_B\) value, we performed in vivo measurements of the fluorescence intensity signals emitted at 515 nm, for the excitation wavelengths of 490 and 440 nm, in cells loaded with BCECF and perfused with a series of five calibration solutions of increasing pH (5.5, 6.5, 7.4, 8.0, and 9.0) where nigericin (10 µM) was added previously. The pH data were plotted as a function of

\[
\log \left(\frac{(R - R_A)}{(R_B - R)} \times \frac{F_{490}}{F_{440}.} \right)
\]

and the value of pK was estimated from the straight line intercept.
Intracellular buffering capacity

In order to characterize changes in pHi, cells were acidified with sodium propionate Ringer (NaCl 90 mM; KCl 5 mM; MgCl₂ 1 mM; CaCl₂ 2 mM; NaHCO₃ 10 mM; glucose 1 mM; HEPES 10 mM; 40 mM sodium propionate (pH 7.4)) or potassium propionate Ringer (KCl 95 mM; MgCl₂ 1 mM; CaCl₂ 2 mM; KHCO₃ 10 mM; glucose 1 mM; HEPES 10 mM; 40 mM potassium propionate (pH 7.4)). At physiological pH, propionate is in equilibrium with its non-ionized form propionic acid that rapidly diffuses into the cell and promptly ionizes causing an intracellular acidosis. The response to this intracellular acid load was followed in time.

The cells were initially perfused with Sertoli Ringer and, after a steady-state period of 180 s, the propionate was added. The subsequent alkalinization (pHi recovery) of the cells was followed in the presence or absence of specific inhibitors (amiloride 1 mM, bumetanide 100 μM, DIDS 0.5 mM, PSA 0.5 mM, and concanamycin A 10 μM).

Effect of external ion removal on pHi

The cells were initially perfused with Sertoli Ringer and, after a steady-state period of 180 s, Na⁺, K⁺, or Cl⁻ were removed from the external medium and replaced isomotically by K⁺, Na⁺, or gluconate respectively. Sodium-free medium was composed by KCl 135 mM, MgCl₂ 1 mM, CaCl₂ 2 mM, KHCO₃ 10 mM, glucose 1 mM, HEPES 10 mM (pH 7.4). Potassium free-medium was composed by NaCl 135 mM, MgCl₂ 1 mM, CaCl₂ 2 mM, NaHCO₃ 10 mM, glucose 1 mM, HEPES 10 mM (pH 7.4). Chloride free-medium was composed by sodium gluconate 130 mM, potassium gluconate 135 mM, magnesium gluconate 1 mM, calcium gluconate 2 mM, NaHCO₃ 10 mM, glucose 1 mM, HEPES 10 mM (pH 7.4). The pHi of the cells was followed in the presence or absence of the specific ions.

Analysis of results

All data are presented as arithmetic means ± S.E.M. of five replicates of five different biopsies. The initial pH recovery rate was determined by linear regression of the data.

For statistical analysis a one-way ANOVA was performed followed by a Dunn’s multiple comparison test. Results were considered significantly different from control value if P < 0.05.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

P F Oliveira was supported by Fundação para a Ciência e a Tecnologia (SFRH/BPD/20965/2004).

References

Received 24 August 2008
First decision 8 October 2008
Revised manuscript received 18 November 2008
Accepted 21 November 2008