Prevention of embryo loss in non-obese diabetic mice using adoptive ITGA2⁺ISG20⁺ natural killer-cell transfer

Yi Lin¹,², Huiqi Wang², Wenjing Wang², Shan Zeng², Yanmin Zhong² and Da-Jin Li³

¹Department of Obstetrics and Gynecology, School of Medicine, Institute of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University, Shanghai 200001, People’s Republic of China, ²College of Life Science and Technology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, People’s Republic of China and ³Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, People’s Republic of China

Correspondence should be addressed to Y Lin; Email: yilinonline@gmail.com
D-J Li; Email: djli@shmu.edu.cn

Abstract

Both regulatory T cells and regulatory natural killer (NK) cells may play essential roles in the maintenance of pregnancy. In this study, we show that a significantly high percentage of spontaneous embryo loss was observed in both allogeneic and syngeneic pregnant non-obese diabetic (NOD) mice. The percentage of embryo loss in allogeneic pregnant mice was further increased by the administration of anti-asialo ganglio-N-tetraosylceramide to deplete NK cells, but was decreased by the adoptive transfer of ITGA2⁺ISG20⁺ (CD49b⁺CD25⁺) NK cells from normal mice. No such trend was observed in syngeneic pregnant NOD mice. The pattern of CXCR4 (specific receptor for CXCL12) expression on NK cells was analyzed and NK-cell migration was confirmed by in vitro and in vivo migratory assays. Since CXCL12 production by murine trophoblast cells was confirmed previously, our findings suggest that the recruitment of peripheral CXCR4-expressing ITGA2⁺ISG20⁺ NK cells into pregnant uteri may be important in the regulation of feto-maternal tolerance.

Reproduction (2009) 137 943–955

Introduction

The mechanisms by which the allogeneic feto-placental unit is not rejected by the maternal immune system are being intensively investigated, and it is now becoming clear that decidual lymphocytes have unique functions in local cytokine production, endovascular invasion, and placental development. Recent research has also shown that both regulatory T (Treg) cells and regulatory natural killer (NK) cells may play essential roles in pregnancy maintenance (Saito et al. 2007). Under physiological conditions, NK cells are the dominant cell population until mid-gestation in the pregnant uterus of both humans and mice. Since ITGA2 (CD49b) antigen (its mAb is specific for ITGA2) is extensively expressed by NK cells but generally not expressed by other kinds of cells, it is commonly used as a pan-NK-cell marker (Arase et al. 2001).

It is widely believed that some NK-cell subsets play critical roles in the establishment and maintenance of pregnancy (Croy et al. 2002, Lin et al. 2006). Based on NK-cell deficiency models, previous studies found that an absence of NK cells during pregnancy is associated with reproductive deficits (Guimond et al. 1997, 1998, Lin et al. 2006). Additionally, depletion of residual NK cells in non-obese diabetic (NOD)/severe combined immunodeficiency mice enhances the percentage of embryo loss (Shultz et al. 2003, Lin et al. 2005).

NK cells can be classified into four subsets by their cytokine profiles: NK1 cells produce IFNG and TNF; NK2 cells produce IL4, IL5, or IL13; NK3 cells produce TGFB; and NKr1 cells produce IL10. All four of these subsets of NK cells were previously found in uterine cells derived from both humans (Higuma-Myojo et al. 2005) and mice (Lin et al. 2009b), and are believed to play their unique roles during pregnancy. However, the roles that these NK subsets play in allo-pregnancy tolerance remain to be clarified.

Additionally, the mechanisms by which peripheral NK cells migrate into pregnant uteri have yet to be determined. The chemokine receptor CXCR4 was first identified as an orphan receptor (Loetscher et al. 1994) whose ligand is stromal cell-derived factor-1 (SDF1, systematic name CXCL12; Zlotnik & Yoshie 2000). CXCL12 was originally isolated from murine bone marrow stromal cells and characterized as a pre-B-cell stimulatory factor (Nagasawa et al. 1994). Although most chemokines are pleiotropic and activate multiple receptors, CXCL12 actions are mediated exclusively via binding to CXCR4 (Jaleel et al. 2004). CXCL12 is a potent...
chemotactic factor for NCAM1

bright

CD16

−

NOD mice are characterized by a NK-cell deficiency and suffer from a high level of embryo loss. NOD mice litters are 50% smaller than non-immunodeficient controls (Formby et al. 1987), which implies that ~50% of NOD embryos are rejected by the maternal immune system during pregnancy. This level is significantly higher than the frequency of rejections observed in non-immunodeficient murine strains due to murine chromosome abnormalities (4–5%; Clark et al. 1998). Additionally, a recent study has found that uterine NK-cell numbers were reduced in the decidua basalis of diabetic NOD females, whereas IFNG production was elevated. This suggests that peripheral NK cells in these mice have aberrant homing functions (Burke et al. 2007).

In this study, the percentage of spontaneous embryo loss was detected in allogeneic pregnant NOD \times C57BL/6 mice (NOD females mated with C57BL/6 males) and syngeneic pregnant NOD \times NOD mice. Additionally, inherent NK cells were depleted in these mice. In some cases, exogenous ITGA2

+ ISG20

+ (CD49b

+ CD25

+) NK cells or ITGA2

+ ISG20

− NK cells were adoptively transferred into these mice to investigate the effects of NK cells on pregnancy tolerance. Expression of CXCL12 by trophoblast cells from NOD mice was confirmed in a recent report (Lin et al. 2009a). In the present study, the expression pattern of CXCR4 on NK-cell subsets was detected. Both in vitro and in vivo migratory assays were performed to examine the homing function of peripheral NK cells into the pregnant uterus. If NK-cell depletion results in the failure of pregnancy and exogenous NK-cell transfer can prevent embryo loss, the notion that NK-cell subsets are a prerequisite for pregnancy success will be supported.

Results

Effects of NK-cell depletion on embryo loss

As shown in Fig. 1, the resorption rate of embryos in NOD \times C57BL/6 mice in solvent control groups was 29.7 ± 7.7% (i.p. injection with RPMI1640 medium) and 34.7 ± 8.9% (i.v. injection with RPMI1640 medium), which was significantly higher than the rates from the corresponding BALB/c \times C57BL/6 solvent control groups (3.5 ± 2.4 and 4.8 ± 3.1% respectively; \(P < 0.01 \) for both). NK-cell depletion with anti-ASGM1 increased embryo loss in both the BALB/c (22.2 ± 5.5%; \(P < 0.05 \)) and NOD mice (59.1 ± 6.4%; \(P < 0.01 \)).

In syngeneic pregnant mice, the resorption rate in all BALB/c groups was significantly lower than the corresponding NOD groups. However, no substantial influence on embryo resorption was detected after NK-cell depletion. Following the depletion of NK cells with anti-ASGM1, the resorption rate was 7.8 ± 3.5% for BALB/c and 46.9 ± 8.3% for NOD mice. These percentages were not significantly different from those in the corresponding control groups i.p. injected with solvent (4.5 ± 1.7% for BALB/c and 37.5 ± 3.7% for NOD mice; Fig. 1).

As highlighted in the regions R1 and R2 of Fig. 1, the \(P \) values in R1 (all values are \(P < 0.05 \) or \(P < 0.01 \)) and R2 (empty, indicating no statistically supported difference) indicated the difference of the resorption rate between the syngeneic and allogeneic BALB/c breedings as well as the syngeneic and allogeneic NOD breedings. Depletion of NK cells increased the resorption rate in allogeneic BALB/c breedings (3.5 ± 2.4 and 22.2 ± 5.5%; \(P < 0.05 \)), but had no effect on the syngeneic BALB/c breedings (4.5 ± 1.7 and 7.8 ± 3.5%; \(P > 0.05 \)).

None of the mice used in our experiments were diabetic over the course of observation.

Figure 1 Effects of NK-cell depletion or transfer on embryo resorption. \(n = 8 \) for each group. \(P \) values are indicated. i.p. injection, i.v. injection. ITGA2

+ ISG20

+ and ITGA2

+ ISG20

− cells transferred. ITGA2

− ISG20

− and ITGA2

+ ISG20

− cells transferred. Anti-ASGM1 and anti-ASGM1 was injected to deplete NK cells in vivo. R1 and R2: in general, \(P \) values in R1 indicate that NK-cell depletion or transfer influenced the percentage of embryo resorption in allogeneic pregnant models. By contrast, the corresponding R2 is empty, which means that there is no statistically supported difference before and after NK-cell depletion or after transfer in syngeneic pregnant models. These results indicate that NK cells may play specific roles in allogeneic pregnancy tolerance.

Effects of ITGA2⁺ ISG20⁺ or ITGA2⁺ ISG20⁻ cell transfer on embryo loss

Adoptive transfer of ITGA2⁺ ISG20⁺ cells into allogeneic pregnant NOD mice significantly decreased the percentage of embryo loss (34.7 ± 8.9 vs 11.0 ± 3.4%; P < 0.01), but not in syngeneic NOD breedings (28.9 ± 9.9 and 42.1 ± 11.0%; P > 0.05). Conversely, no change in embryo loss was observed when ITGA2⁺ ISG20⁻ cells were transferred (29.1 ± 6.6%; Fig. 1). Furthermore, the percentage of embryo loss in allogeneic pregnant BALB/c mice was not significantly changed after ITGA2⁺ ISG20⁺ or ITGA2⁺ ISG20⁻ cell transfer (resorption rates 6.3 ± 3.2 and 5.0 ± 3.3% respectively).

In syngeneic pregnant models, the resorption rate in all BALB/c groups was significantly lower than corresponding NOD groups (Fig. 1). However, no substantial influence on embryo resorption was detected for ITGA2⁺ ISG20⁺ NK-cell adoptive transplantations (7.9 ± 3.4% in transferred group versus 7.7 ± 3.3% in control BALB/c mice; 42.1 ± 11.0% in transferred group versus 28.9 ± 9.9% in control NOD mice) or ITGA2⁺ ISG20⁻ NK-cell adoptive transplantations (11.0 ± 4.5% for BALB/c and 47.9 ± 7.7% for NOD mice; Fig. 1).

Comparison of placental NK-cell subset composition between BALB/c and NOD mice

In the present study, IFNG, IL4, TGFB, and IL10 were used as the representative cytokines for NK1, NK2, NK3, and NKr1 subsets respectively (Lin et al. 2009b). As shown in Fig. 2A, the percentage of NK1 cells present in the placental ITGA2⁺ cell population of allogeneic pregnant NOD mice was significantly higher than in BALB/c mice (P < 0.01). By contrast, the percentages of NK3 and NKr1 cells were significantly lower in NOD mice than in BALB/c mice (P < 0.01 for both). No significant difference was observed in the percentage of the NK2 subset between allogeneic pregnant BALB/c and NOD mice.

In syngeneic pregnant models, the percentage of NK1 cells was significantly higher in NOD mice than in BALB/c mice (41.2 ± 4.5 vs 5.3 ± 0.7%; P < 0.05). Additionally, the percentage of NK3 cells (2.3 ± 0.7% in NOD versus 10.4 ± 1.3% in BALB/c; P < 0.05) and NKr1 cells (12.0 ± 1.5% in NOD versus 23.7 ± 1.2% in BALB/c; P < 0.01; Fig. 2A) was lower.

The absolute number of ITGA2⁺ cells purified from virgin BALB/c and C57BL/6 spleens was significantly higher than from virgin NOD mice (P < 0.01 for both). On the other hand, this absolute number was significantly higher in the placentas from both allogeneic ((5.5 ± 0.6) × 10⁶) and syngeneic pregnant ((5.8 ± 0.6) × 10⁵) BALB/c mice than from virgin BALB/c ((2.7 ± 0.4) × 10⁶), C57BL/6 ((2.5 ± 0.3) × 10⁵) and NOD ((1.1 ± 0.1) × 10⁵) mice. Additionally, the absolute number of ITGA2⁺ cells purified from the placentas of each allogeneic pregnant BALB/c mouse was significantly higher than from virgin BALB/c ((2.7 ± 0.4) × 10⁶) and syngeneic pregnant ((1.1 ± 0.1) × 10⁵) mice (P < 0.01). Similar results were obtained in syngeneic pregnant models (P < 0.01; Fig. 2B).

Identification of placental FOXP3⁺ cells

As shown in Fig. 3A, a fraction of placental PTPRC⁺ cells were positive for FOXP3 in both allogeneic pregnant BALB/c and NOD mice, although the percentage was significantly higher in BALB/c mice (P < 0.01). More importantly, FOXP3 was expressed in both placental CD3⁺ cells and ITGA2⁺ cells in BALB/c mice (2.4 ± 0.2 and 11.0 ± 0.5% respectively) and NOD mice (1.2 ± 0.1 and 5.5 ± 1.2% respectively). The percentage of FOXP3⁺ cells in both the CD3⁻ population and the ITGA2⁺ population of BALB/c mice was significantly higher than that of NOD mice (P < 0.01 and P < 0.05 respectively). Additionally, the percentage of FOXP3⁺ cells in the ITGA2⁺ population was significantly higher than that found in the CD3⁻ population of both mouse strains (P < 0.01 in BALB/c and P < 0.05 in NOD mice). These results suggest that more uterine NK cells express FOXP3 than mature uterine T cells.

In syngeneic pregnant models, similar results were observed (Fig. 3A). A small fraction of FOXP3⁺ cells were positive for FOXP3 in both syngeneic pregnant BALB/c and NOD mice (P < 0.01).
were detected in uterine PTPRC$^+$ cells (6.0 ± 0.6% in BALB/c versus 2.8 ± 0.9% in NOD mice; $P>0.05$), CD3$^+$ cells (3.5 ± 1.0% in BALB/c versus 1.5 ± 0.4% in NOD mice; $P>0.05$), and ITGA2$^+$ cells (9.1 ± 1.2% in BALB/c versus 4.5 ± 0.4% in NOD mice; $P<0.05$).

The absolute number of purified uterine PTPRC$^+$ cells and ITGA2$^+$ cells was significantly higher in both allogeneic and syngeneic pregnant BALB/c mice than corresponding allogeneic and syngeneic pregnant NOD mice ($P<0.01$ for all). However, the absolute number of CD3$^+$ cells in allogeneic pregnant BALB/c mice was significantly lower than that in allogeneic pregnant NOD mice ($P<0.05$; Fig. 3B), suggesting that more CD3$^+$ cells infiltrate the pregnant uterus of allogeneic pregnant NOD mice than the corresponding control BALB/c mice.

In addition, more PTPRC$^+$FOXP3$^+$ cells, CD3$^+$FOXP3$^+$ cells, and ITGA2$^+$FOXP3$^+$ cells were detected in both allogeneic and syngeneic pregnant BALB/c mice than corresponding NOD mice (Fig. 3B).

Confirmation of the existence of CD3$^-$ITGA2$^+$ FOXP3$^+$ cells

As shown in Fig. 4, we confirmed the existence of uterine CD3$^-$ITGA2$^+$FOXP3$^+$ cells by using magnetic-affinity cell sorting (MACS)-purified uterine CD3$^-$ITGA2$^+$ cells and tri-color flow cytometry. Since CD3$^+$ cells have been excluded by negative MACS, including any CD3$^+$FOXP3$^+$ Treg cells, these CD3$^-$ITGA2$^+$FOXP3$^+$ cells are considered a novel cell subset.

The percentage of CD3$^-$ITGA2$^+$FOXP3$^+$ cells in CD3$^-$ITGA2$^+$ population was 11.5 ± 1.2 and 6.4 ± 0.8% ($P<0.01$) in allogeneic pregnant BALB/c and NOD mice respectively, and 6.4 ± 2.2 and 2.8 ± 1.5% in syngeneic pregnant BALB/c and NOD mice respectively (Fig. 4E1). The percentage of CD3$^-$ITGA2$^+$ cells in ITGA2$^+$ cell population was 99.9 ± 0.1 and 99.8 ± 0.2% in allogeneic pregnant BALB/c and NOD mice respectively, and 99.9 ± 0.1 and 99.8 ± 0.2% in syngeneic pregnant BALB/c and NOD mice respectively (Fig. 4E2). This suggests that most of the CD3$^+$ cells have been excluded by negative MACS purification. In addition, the percentage of CD3$^+$FOXP3$^+$ cells in FOXP3$^+$ cell population was merely 0.2 ± 0.1 and 0.1 ± 0.1% in allogeneic pregnant BALB/c and NOD mice respectively, and 0.1 ± 0.0 and 0.2 ± 0.1% in syngeneic pregnant BALB/c and NOD mice respectively (Fig. 4E3). This further confirms that most CD3$^+$FOXP3$^+$ cells have been excluded from FOXP3$^+$ cells by negative MACS purification.

Status of CXCR4 expression on NK cells

As shown in Fig. 5A, the percentage of CXCR4$^+$ cells was significantly higher among placental ITGA2$^+$ ISG20$^+$ population than in ITGA2$^+$ISG20$^-$ population isolated from both allogeneic pregnant BALB/c (76.9 ± 1.3 vs 14.6 ± 1.1%) and NOD mice (81.4 ± 2.4 vs 6.0 ± 1.6%; $P<0.01$ for both). However, the percentage of CXCR4$^+$ splenic ITGA2$^+$ISG20$^+$ cells isolated from virgin NOD mice was significantly lower than both...
Additionally, splenic ITGA2+ISG20+ cells from virgin BALB/c mice (P<0.01) and C57BL/6 mice (P<0.01). Additionally, splenic ITGA2+ISG20+ cells from virgin BALB/c expressed a higher percentage of CXCR4 than splenic ITGA2+ISG20+ cells from the same mice (P<0.01). Similarly, the percentage of CXCR4+ splenic ITGA2+ISG20+ cells from virgin C57BL/6 mice was also significantly higher than found in splenic ITGA2+ISG20− cells from the same mice (P<0.01).

No such trends were detected in virgin NOD mice. These results suggest that the chemokine CXCL12 expressed by placental trophoblast cells is more likely to attract CXCR4+ cells to migrate into the pregnant uterus (Wu et al. 2004, 2005, Lin et al. 2006). Therefore, the splenic CXCR4+ITGA2+ISG20+ cells in BALB/c or C57BL/6 mice may be one of the candidate sources in the recruitment of uterine NK cells during allogeneic pregnancy.

By contrast, only a low level of CXCR4 expression was detected among the splenic ITGA2+ISG20+ and ITGA2+ISG20− cells from NOD mice (4.8±0.3 and 4.0±0.1% respectively). This may contribute to the reduction in uterine NK cells present in the decidua basalis of allogeneic pregnant NOD mice. Most specifically, the insufficiency of CXCR4 expression among splenic ITGA2+ISG20− NK cells may be related to the aberrant homing function of peripheral NK cells migrating to the pregnant uterus of allogeneic pregnant NOD mice.

CXCR4 expression in syngeneic pregnant models was also examined (Fig. 5A). The percentage of CXCR4+ cells in uterine ITGA2+ISG20+ groups was significantly higher in both allogeneic and syngeneic pregnant BALB/c (76.9±1.3 vs 14.6±1.1% for allogeneic pregnant and 94.6±2.2 vs 3.5±0.7% for syngeneic pregnant mice; P<0.01 for both) and NOD mice (81.4±2.4 vs 6.0±1.6% for allogeneic pregnant and 97.4±2.0 vs 2.5±0.4% for syngeneic pregnant mice; P<0.01 for both) than in ITGA2+ISG20− groups (Fig. 5A).

The absolute number of ITGA2+ISG20+ cells and ITGA2+ISG20− cells was also compared (Fig. 5B1). The absolute number of ITGA2+ISG20+CXCR4+ cells and ITGA2+ISG20−CXCR4+ cells is shown in Fig. 5B2.

More ITGA2+ISG20+ cells and more ITGA2+ISG20− cells were detected in BALB/c and C57BL/6 mice than corresponding NOD mice, both in virgin mouse spleens (P<0.01 for both for ITGA2+ISG20+ cell population; P<0.05 for both for ITGA2−ISG20− cell population) and placentas (in allogeneic pregnant mice, (3.5±1.1)×106 in BALB/c versus (1.0±0.3)×106 in NOD mice for ITGA2+ISG20+ cells; and (2.0±0.6)×106 vs (0.8±0.3)×106 for ITGA2+ISG20− cells; P<0.01 for both; in syngeneic pregnant mice, (3.2±1.2)×106 in BALB/c versus (0.6±0.2)×106 in NOD mice for ITGA2+ISG20+ cells; and (2.2±0.6)×106 vs (1.0±0.5)×106 for ITGA2+ISG20− cells; P<0.01 for both; Fig. 5B1).

On the other hand, the absolute number of uterine ITGA2+ISG20+ cells was significantly higher than ITGA2+ISG20− cells in both allogeneic pregnant (P<0.01) and syngeneic pregnant (P<0.05) BALB/c mice. By contrast, more uterine ITGA2+ISG20− cells were detected in syngeneic pregnant NOD mice than ITGA2+ISG20− cells (P<0.01; Fig. 5B1). Notably, most of the CXCR4+ cells were ITGA2+ISG20+ in all of these groups, whereas only a small fraction of ITGA2+ISG20− cells were CXCR4+ (P<0.01 for all groups; Fig. 5B2).

CXCL12-modulated in vitro migration of ITGA2+CXCR4+ cells

As detected in a transwell system, CXCL12 added to the lower chamber was more likely to preferentially attract splenic CXCR4+ cells from both strains of mice, whereas the CXCR4− cells remained in the upper chamber (Fig. 6A). The percentage of ITGA2+CXCR4+ cells that migrated to the lower chamber was significantly higher than that found in the upper chamber. No significant difference was observed for this percentage between BALB/c mice and NOD mice.

However, the absolute number of BALB/c splenic cells that migrated into the lower chamber was significantly higher than the absolute number of NOD cells, even though the same number of ITGA2− cells was plated in the upper chamber and the same amount of CXCL12 was added to the lower chamber (Fig. 6B). This result suggests that CXCL12 more likely to attract splenocytes from BALB/c mice than those from NOD mice, and this may be attributed to the significantly higher percentage of CXCR4 expressing cells among BALB/c mice splenocytes (Fig. 5).

In vivo migration assay of 5,6-carboxyfluorescein diacetate succinimidyl ester-labeled ITGA2+ISG20+ and ITGA2+ISG20− NK cells

5,6-Carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled cells were i.v. injected on gestational day 2.5 into NOD×C57BL/6 mice, and placental mononuclear cells were harvested 10 days later. More CFSE-labeled cells were found in the ITGA2+ISG20− cell transfer group than in the ITGA2+ISG20+ cell transfer group (6.7±0.8 vs 0.4±0.1%, P<0.01; n=3/group). No CFSE signal was detected in the two solvent control groups (0.1±0.0% for both, P<0.01 versus the ITGA2+ISG20+ cell transfer group and P<0.05 versus the ITGA2+ISG20+ cell transfer group; Fig. 7). This may be attributed to the significantly higher percentage of CXCR4-expressing cells found among the splenic ITGA2+ISG20+ cells than among ITGA2+ISG20− cells (Fig. 5B2).

Effects of ITGA2+ISG20+ cell transfer on placental NK-cell composition

As shown in Fig. 8, the placental NK-cell composition was 14.6, 7.3, 16.1, and 25.8% for INFγ+NK1, IL4+NK2,
Figure 4 (legend continued)
TGFB+NK3, and IL10+NKr1 subsets in control NOD×C57BL/6 mice respectively. In comparison, the composition after ITGA2+ISG20+ cell transfer was 14.6, 6.6, 46.5, and 35.8% for NK1, NK2, NK3, and NKr1 respectively. The percentage of NK1 and NK2 subsets did not significantly change, but the constitutional ratio for NK3 (P<0.01) and NKr1 (P<0.05) subsets increased markedly.

Effects of NK-cell transfer on the percentage of FOXP3+ placental NK cells

As shown in Fig. 9, the percentage of FOXP3+ cells in placental NK cells increased markedly after ITGA2+ISG20+ cell transfer, compared with both the solvent control and ITGA2+ISG20− transfer groups (P<0.01 for both). By contrast, no significant difference was observed between the latter two groups.

Discussion

Under physiological conditions, more than 70% of placental lymphocytes are NK cells until mid-gestation. They are characterized by the NCAM1brightCD16− phenotype in humans and the ITGA2+ phenotype in mice (Wu et al. 2005, Trowsdale & Betz 2006). Placental NK cells, especially those accumulated in the decidual basalis, are believed to be involved in mechanisms that influence reproduction. Most specifically, they are thought to mediate a mucosal immunological balancing function that prevents over-invasion of trophoblast cells into the maternal blood supply while still allowing a degree of placental access. A compromise is reached between maternal and fetal gene systems, including NK-cell-expressed genes and NK-cell receptor genes, that might affect this compromise (Moffett-King 2002).

Researchers increasingly believe that Treg cells are involved in the maintenance of feto-maternal immune tolerance, as well as other kinds of alloimmune tolerance in both humans and mice (Aluvihare et al. 2004, Saito et al. 2005, Sakaguchi et al. 2006). Naturally occurring Treg cells are characterized by surface expression of CD4 and ISG20 and the intracellular expression of the fork head box p3 gene (FOXP3; Sakaguchi et al. 2006). In humans, primary unexplained infertility was found to be associated with reduced expression of FOXP3 in endometrial tissue (Jasper et al. 2006). In our present study, FOXP3 and ISG20 molecules were found to be expressed by both CD3+T-cell subsets and ITGA2+ NK-cell subsets, suggesting that CD3−ITGA2+FOXP3+ cells and ITGA2+ISG20+ NK cells may play a role similar to CD3−ISG20+FOXP3+ cells in the maintenance of allogeneic murine pregnancy. It was difficult, if not impossible for previous studies, to find these cell subsets without the assistance of MACS. We confirmed the existence of CD3−ITGA2+FOXP3+ NK cells using tri-color flow cytometry to analyze MACS negatively separated CD3− cells and MACS-purified CD3−ITGA2+ cells. With the assistance of MACS technique, we can further investigate the biological functions of these cells.

According to previous reports, a significantly higher percentage of embryo loss was observed in NK-cell-deficient NOD mice (Formby et al. 1987, Burke et al. 2007), which is in agreement in our results. In the present study, the proportion of the placental IFNG+NK1 subset in ITGA2+ NK cells was significantly higher in NOD×C57BL/6 mice than in wild-type (WT) BALB/c×C57BL/6 mice. By contrast, the proportions of the TGFB+NK3 subset and IL10+NKr1 subset were markedly lower. The proportion of the IL4+NK2 subset was similar to the level in WT mice. These results suggest that, although NOD mice suffer from NK-cell deficiencies, these mice maintain remnant NK-cell functions. Additionally, depletion of NK cells with anti-ASGM1 significantly enhanced the percentage of embryo loss in...
both WT and NOD mice (approximately sixfold more resorption in WT mice and twofold more resorption in NOD mice). These results support the assumption that placental NK cells are essential for a success pregnancy.

Furthermore, the percentage of embryo loss was significantly decreased by the adoptive transfer of splenic ITGA2\(^+\)ISG20\(^+\) cells that were freshly purified from normal mice. In comparison, no such effect was observed when ITGA2\(^+\)ISG20\(^-\) cells were transferred. These results suggest that the increased spontaneous embryo loss observed in NOD mice may be partially attributed to an insufficiency of ITGA2\(^+\)ISG20\(^+\) cells in the pregnant uterus.

One of the most important results obtained in our current study is that depletion of NK cells by the injection of ASGM1 markedly increased the embryo resorption rate in the allogeneic pregnant BALB/c×C57BL/6 model, while no such effect was observed in the syngeneic pregnant BALB/c×BALB/c model. Additionally, adoptive transfer of NK cells, especially ISG20\(^+\) NK cells, significantly decreased embryo loss in allogeneic pregnant NOD×C57BL/6 model, while no such trend was observed in the syngeneic pregnant NOD×NOD model. These results suggest that NK cells, especially ISG20\(^+\) NK cells, may play an important role...
although there was essentially no difference in the percentage of CXCR4+ cells among the migrated cells, the absolute number of migrated cells was significantly lower in NOD mice than in WT mice. This implies that fewer ITGA2+ NK cells were positive for CXCR4 in NOD mice than in WT mice. Data presented in Fig. 5B2 further confirm this observation.

During in vitro NK-cell migration assay, the transferred ISG20+ NK cells were more readily detected in the uterus than were ISG20− cells. This could be attributed to the higher percentage of CXCR4 expression on ISG20+ NK cells than on ISG20− NK cells. Additionally, we show that more ISG20+ NK cells were sensitive to CXCL12-producing trophoblast cells than ISG20− NK cells. The CXCL12–CXCR4 pathway may be involved in the homing function of ITGA2+ISG20+ cells into the pregnant uterus. In allogeneic pregnant NOD mice, the percentage of CXCR4+ cells in splenic ITGA2+ISG20+ cell population was significantly lower than in WT mice. This may contribute to the decreased NK-cell number in the decidual basalis of NOD mice (Burke et al. 2007). Furthermore, the decreased embryo loss was not observed in syngeneic pregnant models after ITGA2+ ISG20+ cell transfer. These observations suggest that these NK cells play a role specifically in allogeneic pregnant NOD mice, rather than the syngeneic pregnant NOD mice.

In previous work, CXCL12 expression was confirmed in murine trophoblast cells (Lin et al. 2009a). In the present study, CXCR4 expression on splenic ITGA2+ NK cells was determined. Both the percentage of CXCR4+ cells and the absolute number of CXCR4+ cells were significantly higher in the ISG20+ subset than in the ISG20− subset. This implies that CXCL12-expressing trophoblast cells may preferentially attract ISG20+ NK cells to migrate into the pregnant uterus. Therefore, aberrant NK-cell homing functions in NOD mice may be partially due to a disorder in the CXCL12–CXCR4 axis.

The effects of transferred ITGA2+ ISG20+ NK cells on the composition of NK-cell subsets at the feto-maternal interface were also evaluated. The baseline level of cytokine expression in the solvent control group was different from that in the untreated group in the detected samples (Figs 2 and 8). The reason for this is not clear, although we speculate that this difference may be due to the process of injection or the difference among individual samples. After transfer, essentially no change was observed in the percentage of IFNG+NK1 or IL4+NK2 subsets, but the percentage of TGFB+NK3 and IL10+NKr1 subsets were significantly increased. These results suggest that adoptive transfer of ISG20+ NK cells from normal mice is unable to reduce the high level of uterine NK1 subset proportion in NOD mice. However, it is able to enlarge the pool of NK3 and NKr1 cells, which subsequently shift the NK1/(NK3 plus NKr1) balance from an NK1-dominant state to an NK3- and NKr1-dominant status (Saito et al. 2007). In such an
environment, the allogeneic fetus could be tolerated by the maternal immune system. Hence, this shift in NK subsets may be the mechanism that caused the decrease in embryo loss after the adoptive transfer of ITGA2$^+$ ISG20$^+$ cells.

Interestingly, the percentage of FOXP3-expressing cells in uterine NK-cell population was significantly higher after ITGA2$^+$ ISG20$^+$ cell transfer than after ITGA2$^+$ ISG20$^-$ cell and solvent transfers. This percentage essentially did not change after ITGA2$^+$ ISG20$^-$ cell transfer, compared with the solvent control group. It is likely that these novel FOXP3$^+$ NK cells are derived from the transferred exogenous ITGA2$^+$ ISG20$^+$ cells. Since these cells express functional molecules including ISG20 and FOXP3, and are therefore similar to CD4$^+$ ISG20$^+$ FOXP3$^+$ Treg cells, they may have similar functions in the induction of maternal tolerance to allogeneic fetuses (Sakaguchi et al. 2006). The detailed mechanisms remain to be clarified. Additionally, since the relationship between NK cells and reproductive failure remains unclear, corresponding research results should be explained cautiously (Rai et al. 2005).

In the future, it will be necessary to further investigate uterine NK-cell functions. For example, it is necessary to determine whether the different subsets of NK cells have overlapping cytokine profiles (i.e. do IFNG$^+$ cells also produce IL4, TGFB, or IL10). These results will be more valuable in clarifying uterine NK-cell function. Also, it is not clear whether FOXP3 expression within the ITGA2$^+$ ISG20$^+$ population can be linked to the production of a particular cytokine. Multi-colored flow cytometry should be able to show which of the four NK-cell subsets are FOXP3 positive. It is possible that TGFB and/or IL10 expression could be linked to the ITGA2$^+$ ISG20$^+$ FOXP3$^+$ NK-cell population, just as TGFB and IL10 are linked to populations of CD4$^+$ ISG20$^+$ FOXP3$^+$ T-regulatory cells (Masuyama et al. 2002, Green et al. 2003). However, this assumption requires further investigation.

It is not completely determined whether the precursors of uNK cells self-renew in the uterus or are recruited from other sites. Chantakru et al. (2002) suggest that NK cells do not self-renew in uterus, whereas cells from secondary lymphoid tissues of a pregnant donor produced a high level of uNK cell reconstitution in NK-cell-deficient mice. By contrast, King et al. (1999) implied that NK cells proliferate in peripheral blood, bone marrow, and decidua. The present study suggests that some NK cells immigrate into the pregnant uterus under the modulation of chemokines, and may play essential role in the maintenance of pregnancy.

Materials and Methods

Murine mating combinations

BALB/c, NOD, and C57BL/6 mice (8–12 weeks old) were purchased from the Experimental Animal Center of Zhongshan University (Guangzhou City, China), and kept under specific...
The absolute number of MACS-purified cells, including ITGA2⁺, ITGA2⁺ISG20⁺, and ITGA2⁺ISG20⁻ cells, was calculated using a hematocytometer. The absolute number of other cell subsets, such as FOXP3⁺ cells and CXCR4⁺ cells in PTPRC⁺, CD3⁺, ITGA2⁺, ITGA2⁺ISG20⁺, and ITGA2⁺ISG20⁻ subsets, was analyzed and calculated using FACS Calibur flow cytometer (n=6 for each group) because microbead-conjugated anti-mouse FOXP3 and anti-mouse CXCR4 antibodies were not available.

NK-cell depletion and ITGA2⁺ ISG20⁺ or ITGA2⁺ ISG20⁻ NK-cell transfer

Randomization of sampling was performed as follows: in the ten groups of 80 allogeneic pregnant mice, each mouse was nominated by the serial number to become pregnant. The number 1–80 was randomly selected, and the mouse corresponding to the first selected number was put into group 1, the mouse corresponding to the second selected number was put into group 2, and so on. Thus, ten mice were put into ten groups. In the second cycle, the mouse corresponding to the 11th selected number was put into group 1, the mouse corresponding to the 12th selected number was put into group 2, and so on. Thus, the second ten mice were put into ten groups. In this way, 80 mice were randomly put into ten groups, 8 mice per group. Random sampling was performed using the same method in syngeneic pregnant mice and any other groups in the present study.

Pregnant mice were randomized and either injected i.p. with 50 μl rabbit anti-mouse asialo ganglio-N-tetraosylceramide stock solution (ASGM1; Wako Pure Chemical Inc., Osaka, Japan) to deplete NK cells (Clark et al. 1998, Lin et al. 2005) or injected i.v. with either MACS-purified ITGA2⁺ISG20⁺ cells or ITGA2⁺ISG20⁻ cells (2×10⁵ cells/case; n=8 for each group). Solvent control groups were injected with RPMI1640 medium (Gibco-BRL) via the same route. All injections were made at gestational day 2.5 (Zenclussen et al. 2006), and the females were killed on day 12.5 to remove the uterus and calculate the implantation sites. Abortion (resorption) sites were identified by their small size and a necrotic, hemorrhagic appearance when compared with normal embryos and placentas. The percentage of resorption was calculated as the ratio of resorption sites to total implantation sites (resorption plus normal implantation sites), as described previously (Lin et al. 2004, Zenclussen et al. 2006).

Detection of intracellular cytokines in placental ITGA2⁺ NK cells

MACS-purified placental NK cells were incubated with permeabilization buffer (eBioscience) for 10 min, washed once with PBS, and stained with phycoerythrin (PE)-conjugated anti-mouse ITGA2 and FITC-conjugated anti-mouse IFNG, IL4, or IL10 (eBioscience Inc). For TGFB staining, cells were stained with PE-conjugated anti-mouse ITGA2 and mouse anti-human/mouse TGFB (US Biological, Swampscott, MA, USA).
followed by staining with FITC-conjugated rat anti-mouse immunoglobulin (Caltag Laboratories, Burlingame, CA, USA). Finally, the stained cells were assayed on a FACS Calibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Isotype control antibodies were used to establish isotype controls and single positive controls to exclude false-positive cells (eBioscience and R&D Systems, Minneapolis, MN, USA). All experiments in this study were performed in triplicate unless otherwise stated (Lin et al. 2008, 2009b).

Identification of placental FOXP3⁺ cells

Indicated cells were incubated with permeabilization buffer (eBioscience) for 10 min, washed once with PBS, stained with FITC-conjugated anti-mouse PTPRC, ITGA2, or CD3, together with PE-conjugated anti-mouse FOXP3, and analyzed on a FACS Calibur flow cytometer.

Confirmation of the existence of CD3⁻ITGA2⁺FOXP3⁺ cells

MACS-purified uterine ITGA2⁺ cells were further incubated with microbead-conjugated anti-CD3 (Miltenyi Biotec) to negatively isolate ITGA2⁺CD3⁻ cells by using Mini-MACS (Miltenyi Biotec). To confirm the existence of CD3⁻ITGA2⁺ FOXP3⁺ cells, purified ITGA2⁺CD3⁻ cells were stained with FITC anti-mouse ITGA2, PE anti-mouse FOXP3, allophycocyanin (APC) anti-mouse CD3 (eBioscience), and then detected using tri-color flow cytometry. FITC-, PE-, and APC-conjugated isotype antibodies (eBioscience) were used to establish isotype controls.

Detection of CXCR4 expression on NK cells from spleen and placenta

MACS-purified cells were stained with FITC-conjugated rat anti-mouse ITGA2 (eBioscience) and rat anti-CXCR4 monoclonal antibodies (R&D Systems) for 10 min. The cells were subsequently stained with PE-conjugated goat anti-rat immunoglobulin (Caltag Laboratories) and analyzed using flow cytometry.

In vitro migration assay of ITGA2⁺ cells

A total of 600 μl RPMI1640 culture medium (Gibco-BRL) supplemented with 10% fetal bovine serum (Sigma–Aldrich) in the presence or absence of 100 ng/ml recombinant mouse CXCL12 (R&D Systems) was added into the lower chamber of a 24-well transwell plate with an 8 μm pore size (Corning Costar, Cambridge, MA, USA). Plates were precoated with type 1 collagen (20 ng/ml; Sigma–Aldrich) overnight at 4 °C. The filters were subsequently blocked with 3% BSA in PBS to prevent non-specific migration. A total of 1×10⁶ MACS-purified splenic ITGA2⁺ cells obtained from virgin BALB/c (WT) or NOD mice were added to the upper chamber and were allowed to migrate for 6 h at 37 °C. Both the migrated and non-migrated cells were collected and counted using a hemocytometer. The percentage of CXCR4⁺ cells among the harvested ITGA2⁺ cells was detected by flow cytometry, stained with PE-conjugated anti-mouse ITGA2 and rat anti-CXCR4 monoclonal antibodies (R&D Systems) followed by the staining with FITC-conjugated goat anti-rat immunoglobulin (Caltag Laboratories), and analyzed using flow cytometry.

In vivo migration assay of CFSE-labeled ITGA2⁺ ISG20⁺ and ITGA2⁺ ISG20⁻ NK cells

Splenic ITGA2⁺ISG20⁺ and ITGA2⁺ISG20⁻ cells from virgin C57BL/6 mice were purified by MACS and labeled with CFSE (Promega). For CFSE staining, a CFSE stock (10 mM in DMSO) stored at −20 °C was thawed, filtered with a 0.22 μm filter unit (Millipore, Carrighwohill, Co., Cork, Ireland) to obtain a germ-free solution, and diluted in PBS until the desired working concentration was attained. Cells were suspended in PBS to 10⁶ cells/ml and incubated for 10 min at 37 °C with CFSE at a final concentration of 1 μM. Cells were then washed and resuspended in culture medium for 15 min to stabilize CFSE staining. After the final wash, 2×10⁵ CFSE-labeled cells were i.v. injected into allogeneic pregnant BALB/c and NOD mice on gestational day 2.5. The pregnant mice were killed on day 12.5 for the collection of placental mononuclear cells. To determine whether the CFSE-labeled cells migrated into the pregnant uterus, the CFSE signal in these cells was analyzed by flow cytometry without further staining. Fifty thousand cells were analyzed in each case (Lin et al. 2009a).

Effects of ITGA2⁺ ISG20⁺ cell transfer on uterine NK-cell composition

Splenic ITGA2⁺ISG20⁺ cells were purified by MACS from virgin C57BL/6 mice and i.v. transferred into NOD×C57BL/6 mice on gestational day 2.5. The status of intracellular cytokine production, including IFNG, IL4, TGFB, and IL10, in placental NK cells. To determine whether the CFSE-labeled cells migrated into the pregnant uterus, the CFSE signal in these cells was analyzed by flow cytometry, without further staining. Fifty thousand cells were analyzed in each case (Lin et al. 2009a).

Effects of NK-cell transfer on the percentage of FOXP3⁺ cells in placental NK cells

MACS-purified splenic ITGA2⁺ISG20⁺ and ITGA2⁺ISG20⁻ cells from virgin C57BL/6 mice were transferred into allogeneic pregnant NOD mice on gestational day 2.5, and the percentage of FOXP3⁺ cells in placental ITGA2⁺ population was detected on day 12.5 using flow cytometry.

Statistical analysis

Flow cytometry data were analyzed using Quad statistics (Lin et al. 2006). The resorption rate and cell percentages were compared using independent sample t-tests. Results were expressed as means ± S.E.M. (Lin et al. 2006).

Declaration of interest

The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.
Funding
This study was supported by grants from the National Basic Research Program of China (2006CB944007) (to D-J Li), the Key Project of National Natural Science Foundation of China (30730087) (to D-J Li), and the National Natural Science Foundation of China (30672231 and 30872761) (to Y Lin).

References
Arase H, Saito T, Phillips JH & Lanier LL 2001 The mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). Journal of Immunology 167 1141–1144.

Received 27 September 2008
First decision 4 December 2008
Revised manuscript received 14 March 2009
Accepted 25 March 2009