Toll-like receptor signaling in hen ovarian granulosa cells is dependent on stage of follicle maturation

Dori C. Woods¹,², Jeffrey S. Schorey¹ and A. L. Johnson¹

¹Department of Biological Sciences and the Walther Cancer Research Center, The University of Notre Dame, PO Box 369, Notre Dame, Indiana 46556, USA and ²Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA

Correspondence should be addressed to D. C. Woods at Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School; Email: dwoods2@partners.org

Abstract

The recent identification of toll-like receptor (TLR) signaling within ovarian granulosa cells has broad implications for ovarian physiology. Functions of TLRs within granulosa cells of the laying hen are of particular interest due to the method of transovarian transmission of Salmonella enteritidis, which results in egg contamination. This study utilized hen granulosa cells to evaluate the expression and function of Gallus TLR-signaling at distinct stages of follicular maturity. Data presented herein demonstrate the presence of TLR2, TLR4, and TLR15 mRNAs in undifferentiated granulosa cells from prehierarchal follicles and differentiated granulosa cells from preovulatory follicles, together with mRNAs encoding adaptor proteins and signaling components required for TLR signaling gene. Treatment with lipopolysaccharide (LPS) or LH, in vitro, led to the differential regulation of TLRs based on the stage of follicle maturation, with the largest (F1) follicle granulosa cells having the most rapid response. Furthermore, treatment with LPS resulted in attenuation of agonist-induced progesterone synthesis in undifferentiated, but not differentiated, granulosa cells. Additionally, undifferentiated granulosa cells were significantly more sensitive to LPS-induced apoptosis than differentiated granulosa cells from the F1 follicle. Together, these data provide evidence for a complete and functional TLR signaling pathway in hen granulosa cells, with effects on steroidogenesis and cell viability dependent upon stage of maturation. These differences may reflect the susceptibility of granulosa cells at early stages of maturation to undergo apoptosis in response to select pathogenic stimuli, thus attenuating transovarian transmission, whereas granulosa cells from preovulatory follicles are comparably resistant to LPS-mediated apoptosis.

Reproduction (2009) 137 987–996

Introduction

Toll-like receptor (TLR) pattern recognition receptors (PRRs) in vertebrate species are a key component in the distinction of self from non-self, and are indispensable for the innate immune response. Activation of TLR signaling occurs following recognition and interaction with specific conserved small molecular sequences found on the surface of invading pathogens, termed pathogen-associated molecular patterns (PAMPs). PAMPs include lipopolysaccharide (LPS) associated with the cell wall of gram-negative bacteria (including Salmonella enteritidis), lipoteichoic acid associated with the surface adhesion amphiphile from gram-positive bacteria, bacterial flagellin, peptidoglycan, and components associated with viruses such as double-stranded RNA. In addition to the recognition of pathogenic stimuli, TLRs (particularly TLR2 and -4) recognize endogenous ligands. Most notably, these include extracellular matrix components, such as hyaluronan fragments, heparan sulfate, fibrinogen, fibronectin, lung surfactant protein A, and high-mobility group box 1 proteins (Zhang & Schluesener 2006). Following ligand binding, TLR signaling can result in up-regulation of pro-inflammatory cytokines (e.g. interleukin (IL)-1β, tumor necrosis factor (TNF)), up-regulation, and facilitation of scavenger receptors, which result in the phagocytosis of pathogens, and presentation of antigen to naive T-cells, providing a critical link to the acquired (i.e. adaptive) immune response (Medzhitov et al. 1997, Takeda & Akira 2005). Moreover, multiple reports of TLRs in non-immune tissues have begun to surface, bringing to light non-immune-related functions of these PRRs (Liu et al. 2008).

Specifically, recent reports have implied a role for TLR signaling in the regulation of vertebrate ovarian function (Shimada et al. 2006, 2008, Herath et al. 2007, Subdei et al. 2007, Liu et al. 2008). TLRs have been identified in ovarian cells from multiple species (murine, bovine, chicken), and have been shown in bovine and murine granulosa cells to functionally mediate steroidogenesis and pathogen phagocytosis respectively.
Importantly, in bovine granulosa cells, TLR signaling has been shown to perturb steroidogenesis, a potential mechanism to curb ovarian follicle growth during bacterial infection (Herath et al. 2007).

Understanding the immune response in the ovary is of importance in the laying hen, as egg contamination by *S. enteritidis* represents a serious human health concern. Over 75% of *S. enteritidis* outbreaks are attributable to eggs or egg-based products (Braden 2006). The method of transmission to eggs occurs in the intra-ovarian environment through selective infection of the granulosa cell layer (Gast & Beard 1990, Thiagarajan et al. 1994). Subsequent transovarian transmission to offspring results in the spread of *S. enteritidis*, through the production of contaminated eggs and fecal matter. Given the pivotal role of the granulosa layer in maintaining follicle viability and promoting maturation, as well as in propagating transovarian *S. enteritidis* transmission in the hen, identification of key signaling pathways that can contribute to ovarian function, or curb infected follicle development, are of significant interest.

While much remains to be learned about the role for TLR signaling in the ovary, it is becoming clear that TLRs expressed on granulosa cells can and do respond to both exogenous (i.e. pathogenic) and endogenous (e.g. extracellular matrix components) stimuli (Liu et al. 2008). Additional evidence from mammals suggests a role for TLR signaling in granulosa or cumulus cells both pre- and post-ovulation (Herath et al. 2007, Shimada et al. 2007, 2008). Although the significance for TLR signaling during both of these distinct phases remains to be fully elucidated, hen granulosa cells from preovulatory follicles remain within the follicle after ovulation. Thus, the mechanisms by which TLR signaling may participate in reproduction or confer immunity to the ovulated oocyte are likely to differ between avian and mammalian species.

The studies presented herein utilize both differentiated and undifferentiated hen granulosa cells as a model system to evaluate the effects of TLR signaling on granulosa cell function and viability. Accordingly, we provide evidence for 1) expression of TLRs and related downstream signaling component mRNAs in both undifferentiated and differentiated granulosa cells; 2) differential regulation of TLRs in granulosa cells based upon stage of maturation; and 3) a role for TLR signaling in regulation of granulosa cell steroidogenesis and viability.

Results

PCR amplification of TLRs and signaling components in granulosa cells

PCR amplification revealed expression of *Gallus* orthologs to the mammalian TLR2 (type 2), TLR4, and TLR15, in granulosa cells from prehierarchical (3–8 mm diameter) and preovulatory (F1) follicles, plus bone marrow. Additionally, critical downstream signaling components and adaptor proteins are expressed in both prehierarchical and preovulatory granulosa cells, with the notable exception of MAP3K7IP1, which was amplified only in bone marrow (Fig. 1). While IL-1 receptor-associated kinase (IRAK) 2 and 4 were amplified, a Gallus homolog to IRAK1 has not yet been identified experimentally or in silico.

TLR2 and TLR4 mRNA expression is increased following treatment with LH or LPS

Treatment with LPS or LH for 4 h led to an increase in TLR2 and TLR4 mRNAs in granulosa cells from the largest preovulatory (F1) follicle (Fig. 2A), while the same culture conditions in granulosa cells from the second largest F2 follicle failed to induce a significant increase (Fig. 2B). However, TLR2 and TLR4 mRNA levels were elevated in granulosa cells from F2 follicles following treatment with LPS for 20 h. Neither TLR2 nor TLR4 mRNA was increased in granulosa cells isolated from prehierarchical (3–8 mm diameter) follicles, although there was a significant decrease in TLR4 mRNA following treatment with LPS for 20 h (Fig. 2C).

Effects of LPS on granulosa cell steroidogenesis are stage of development dependent

To investigate whether TLR signaling modulates steroidogenesis based on stage of development, progesterone production from cultured granulosa cells was measured following a 4- or 20-h culture in the presence or absence of gonadotropin or 8-bromoadenosine 3', 5'-cyclic monophosphate (8-br-cAMP), with or without LPS (10 μg/ml). Treatment with LPS attenuated FSH-induced progesterone in granulosa cells from prehierarchical (3–8 mm) follicles following 20 h in culture (Fig. 3A). The attenuation was reversed following co-culture with U0126, a pharmacologic inhibitor of the MAPK signaling pathway, and an additive effect of FSH + LPS with U0126 was observed. Notably, treatment with LPS had no measurable effect on LH-induced progesterone synthesis in granulosa cells from preovulatory (F2 and F1) follicles following 4-h incubation (Fig. 3B and C).

Sensitivity to LPS-induced cell death is dependent on stage of development

Treatment with LPS resulted in a significant decrease in cell density following 20 h in culture in granulosa cells from prehierarchical (3–8 mm diameter) and preovulatory (F1) follicles. This was mediated in part by LPS-induced apoptosis, and indicated qualitatively by the presence of low molecular weight oligonucleosome formation (Fig. 4A and B). The effect of LPS was related to follicle size.
In prehierarchical follicle granulosa cells, a significant loss of viable cells was detected following treatment with 5 μg/ml LPS (Fig. 4A). However, in fully differentiated granulosa cells from F1 follicles, a significant reduction in granulosa cell viability occurred following treatment with 10 μg/ml LPS (Fig. 4B).

LPS-induced cell death is caspase-8 dependent

Following pre-treatment with the caspase-8 inhibitor, Z-IETD-FMK (10 μM), the decrease in cell viability promoted by LPS was significantly reduced in granulosa cells from prehierarchical follicles, and completely reversed in granulosa cells from preovulatory (F1) follicles (Fig. 5A and B). These data indicate the activation of an extrinsic mechanism for induction of cell death, as caspase-8 activation is death-receptor mediated. This is likely due to an increase in cytokine production by granulosa cells following treatment with LPS. To investigate potential cytokines known to be responsive to LPS or to increase cell death in granulosa cells, gene expression analysis was used to monitor the levels of TNF apoptosis-inducing ligand (TNFSF10), tumor necrosis factor super-family member 15 (TNFSF15), and ILIB mRNA following stimulation with LPS for 4 h (F1 granulosa) or 20 h (3–8 mm granulosa). Both TNFSF10 and TNFSF15 belong to the TNF ligand superfamily, and have previously been shown to have cytotoxic effects on chicken granulosa cells, *in vitro* (Takimoto et al. 2005, Johnson et al. 2007). While levels of ILIB were significantly increased in granulosa cells from F1 follicles following a 4-h challenge with LPS, levels...
were unchanged in granulosa cells from prehierarchal follicles (Fig. 6A and B). By comparison, TNFSF10 and TNFSF15 mRNA levels in granulosa cells were not altered by LPS treatment at either stage of differentiation (data not shown).

Discussion

Thus far, 10 Gallus TLRs have been identified, including: TLR1 and TLR2 (types 1 and 2), TLR3, TLR4, TLR5, TLR7, TLR15, and TLR21. With the exception of TLR 1 and 15, each Gallus TLR has a mammalian ortholog, with TLR1 sharing significant homology to mammalian TLR1, -6, and -10 (Lynn et al. 2003). Genes for the two types of chicken TLR1 are on chromosome 1, while the genes for the two types of TLR2 are located on chromosome 4, and are thought to be the products of gene duplication (Fukui et al. 2001, Temperly et al. 2008). Additionally, in silico analysis has revealed Gallus homologs to downstream adaptor and signaling molecules, including myeloid differentiation primary-response protein 88 (MyD88), TIR-domain-containing adaptor protein (TIRAP, or MAL), toll-interacting protein (TOLLIP), IRAK4, transforming growth factor-β activated kinase (MAP3K7), the Tak-1 binding proteins (MAP3K7IP1 and MAP3K7IP2), TNF receptor-associated factor 6 (TRAF6), and NFκB inducing kinase (MAP3K14; Lynn et al. 2003). Functional

Figure 2 Regulation of TLR mRNA in differentiated (F1 and F2) and undifferentiated (3–8 mm) follicles. (A) Treatment with LPS (10 μg/ml) or LH (100 ng/ml) in F1 granulosa for 4 h, n=3. (B) Treatment with LPS or LH in F2 granulosa cells for 4 or 20 h, n=4. (C) Treatment with LPS in undifferentiated granulosa cells for 20 h, n=3. * Indicates significance (\(P<0.05\)), not significant (ns; \(P>0.05\)) by independent t-tests, for the treatment group compared with control cultured cells.

Figure 3 LPS inhibits agonist-induced progesterone (P4) from undifferentiated, but not differentiated, granulosa cells via MAPK signaling. (A) RIA targeting progesterone production by undifferentiated granulosa cells. Treatment with LPS (10 μg/ml) attenuates FSH (100 ng/ml)-induced progesterone production. Pre-treatment with the MAP3K2/MAPK inhibitor, U0126 (U0; 10 μM) for 1 h reverses the effect of LPS treatment, n=4, \(P<0.05\), a, b and c indicate significant differences by ANOVA. (B and C) RIA targeting progesterone production from differentiated granulosa cells from the F2 (B) and F1 (C) follicle. LPS does not effect progesterone production induced by LH (100 ng/ml) or 8-br-cAMP (8-br; 100 nM). \(n=3, P<0.05\), a and b indicate significance. Note difference in magnitude of P4 for each stage of development.
studies on chicken TLRs demonstrate that the pathways and ligand specificity for each TLR are conserved in the hen (Fukui et al. 2001, Leveque et al. 2003, Iqbal et al. 2005, Philbin et al. 2005). Results reported herein demonstrate the expression of mRNA encoding TLRs and key signaling components in both undifferentiated and differentiated granulosa cells from hen ovarian follicles. Multiple TLRs have been recently described in hen follicles (including the granulosa layer (Subdei et al. 2007)), and it has been postulated that TLR-mediated immune responses may participate in the protection of ovarian tissues from invasive pathogens (Shimada et al. 2006, Herath et al. 2007). Unlike a previous report that indicates the presence of only TLR4 and TLR5 in hen granulosa cells (Subdei et al. 2007), TLR4, TLR2, and TLR15 mRNAs were detected in both undifferentiated and differentiated granulosa cells from hen follicles. This finding is significant, because TLR4 and TLR2 (type 2) have been shown to recognize bacterial LPS (Fukui et al. 2001, Spiller et al. 2007). Additionally, while genes encoding key chicken TLR-signaling components have been identified in silico, this is the first study to verify their presence in granulosa cells. These data, in combination with the ability of LPS to modulate granulosa cell function, establish a functional TLR signaling pathway in hen granulosa cells.

Not surprising was the ability of LPS to modulate TLR2 and TLR4 mRNA expression levels in vitro. Similar to the results obtained from F3 (third largest preovulatory follicle), granulosa layers extracted from hens treated intravenously with LPS (Subdei et al. 2007), both TLR2 and TLR4 mRNA expressions were increased following treatment with LPS for 20 h, but not at the earlier time point of 4 h. The timing of up-regulation, however, differed for the largest (F1) preovulatory follicle, in which treatment with LPS elicited a significant increase in TLR2 and TLR4 mRNA levels after only 4 h. These data suggest a differential sensitivity to LPS-induced TLR mRNA based on stage of maturation, whereby an accelerated response is elicited in the follicle next to be ovulated.

This differential sensitivity also occurred following treatment with LH. Treatment with LH led to a rapid (within 4 h) increase in TLR2 mRNA in granulosa cells from the largest preovulatory follicle, in contrast to granulosa cells from the second largest preovulatory follicle in which the increase in TLR2 mRNA occurred later (within 20 h). This finding is not entirely unexpected, due to the significant increase in LH responsiveness in the F1 follicle as compared with all other stages of maturation.

Figure 4 LPS induces granulosa cell apoptosis. (A) Cell viability assay following 20 h of treatment with LPS in undifferentiated granulosa cells. n=3, * indicates significance (P<0.05). The presence of cleaved DNA fragments after a 6 h culture confirms activation of apoptosis. (B) Cell viability assay following 20 h of treatment with LPS in differentiated granulosa cells (F1 follicle). n=3, * indicates significance (P<0.05 by ANOVA).

Figure 5 Inhibition of caspase-8 cleavage inhibits LPS-induced apoptosis. Cell viability assay in undifferentiated (A) or differentiated (B; from F1 follicle) granulosa cells. Cells were treated with or without Z-IETD-FMK (IETD; 20 μM) for 1 h followed by treatment with or without LPS (10 μg/ml) for an additional 20 h. n=3, A, B and C indicate significance (P<0.05 by ANOVA).
maturation (Calvo et al. 1981, Johnson et al. 1996). It is also consistent with a recent report demonstrating gonadotropin stimulated TLRs in murine granulosa cells (Shimada et al. 2006). Significantly, this differential sensitivity suggests that TLR-signaling may modulate ovarian function specifically at the preovulatory stage, while providing protective mechanism against infection in follicles prior to selection. Notably, in undifferentiated granulosa cells from 3 to 8 mm follicles, treatment with LPS did not up-regulate TLR2 mRNA and resulted in the down-regulation of TLR4 mRNA.

The ability of LPS to modulate steroid production in hen granulosa cells is also stage dependent. In undifferentiated granulosa cells, treatment with LPS for 20 h abrogated FSH-induced progesterone production. Furthermore, pre-treatment with U0126 prevented this decrease in progesterone, indicating that the actions of LPS on progesterone production are dependent upon downstream MAPK signaling. However, under similar conditions, LPS did not modulate the level of progesterone produced in response to LH or 8-br-cAMP in differentiated granulosa cells from F2 or F1 follicles. Together, these findings are congruous with previously reported data revealing that the effects of MAPK on progesterone production in the hen are stage dependent (Woods et al. 2007). Moreover, accruing evidence from both mammalian and avian ovarian models indicate that the actions of LH are dependent upon MAPK signaling (Su et al. 2002, Park et al. 2004, Jammongjit et al. 2005, Woods et al. 2007). Thus, while TLR-induced MAPK signaling may be inhibitory in undifferentiated granulosa cells, there is precedence that it may transition to facilitatory at the preovulatory stage. Concomitantly, the abrogation of gonadotropin-induced progesterone production in hen granulosa cells may represent an inherent mechanism to potentially block a follicle from being selected into the preovulatory hierarchy. Such a mechanism could contribute to the prevention of transovarian transmission of S. enteritidis spp. This mechanism may be of importance, as S. enteritidis has been demonstrated to preferentially invade prehierarchical follicles (Howard et al. 2005).

In addition to the differentiation-dependent effects of LPS-induced MAPK activity, LPS-induced cell death is also varied based upon stage of maturation. Whereas a significant decrease in cell viability was measured following treatment with 10 μg/ml LPS in differentiated granulosa cells, undifferentiated granulosa cells are more sensitive, undergoing apoptosis following 5 μg/ml LPS. Additionally, pre-treatment with the caspase-8 inhibitor, Z-IETD-FMK, only partially reversed LPS-induced cell death in undifferentiated granulosa cells while fully reversing the effects of LPS on cell death in differentiated granulosa cells. These data are consistent with numerous studies demonstrating that undifferentiated granulosa cells are inherently more sensitive to death than their differentiated counterparts (reviewed in Johnson 2000). This sensitivity has been attributed to elevated levels of pro-apoptotic proteins and reduced levels of anti-apoptotic proteins (reviewed in Johnson 2000), reduced levels of the anti-apoptotic AKT (Johnson et al. 2001), and relatively rapid rate of proliferation (Woods et al. 2005). Moreover, these data further support a role for a TLR-mediated immune response in attenuation of transovarian transmission of S. enteritidis at the pre-selection stage of follicle maturation, whereas latter stages of development appear much less affected.

The ability of the caspase-8 inhibitor to prevent the effects of LPS on viability in differentiated follicles indicates a requirement for the extrinsic cell death pathway, likely involving the up-regulation of one or more cytokines, or alterations in intracellular adaptor and executioner genes. Many of the chicken intracellular adaptor and executioner genes required for extrinsic cell death have recently been identified (Johnson et al. 2007), along with orthologous chicken death-inducing cytokine genes, including TNFSF10, TNFSF15, and ILIB. To date, the chicken ortholog to mammalian TNF has not been identified, and it has been proposed that TNFSF15 fulfills this role in the chicken (Takimoto et al. 2005). Notably, ILIB mRNA was increased following treatment with LPS in undifferentiated granulosa, while levels of TNFSF10 and TNFSF15 mRNAs remained unchanged (data not shown). This is consistent with a recent report in which i.v. LPS increased ILIB mRNA in granulosa layers from hen preovulatory follicles (Subdei et al. 2007). While ILIB was the only cytokine found to be transcriptionally regulated following stimulation with LPS in either study, these data do not preclude additional mediators of LPS-induced cell death. Rather, these data are indicative of a complete and fully functional TLR-signaling pathway in hen granulosa cells, with ILIB as an indicator of downstream transcriptional activation.

The reported decrease in TLR4 mRNA expression together with the impediment of gonadotropin-induced progesterone production and viability in undifferentiated granulosa cells is consistent with immune cell function.
Down-regulation of TLR4 expression following LPS stimulation represents a critical component of LPS tolerance. Functionally, this process serves to prevent excessive inflammation (Ziegler-Heitbrock 1995). This prevention of inflammation may mechanistically lead to the destruction of only infected follicles without excessive cytokine production that could potentially target neighboring healthy follicles. While not entirely effective at preventing transovarian transmission of S. enteritidis, this mechanism may assist in the prevention of debilitating infertility in the face of infection.

Alternatively, given the up-regulation of TLRs in preovulatory follicle granulosa cells in response to LPS or gonadotropin, coupled with a lack of attenuation of steroidogenesis, it is possible that TLR signaling may mediate physiological processes at or around the time of ovulation. In fact, multiple endogenous ligands for TLRs have been reported (Zhang & Schluesener 2006), many of which are present in hen ovarian follicles. These include hyaluronan fragments, fibronectin, and heparan sulfate. Of these, hyaluronan fragments and fibronectin are most highly expressed in the F1 follicle (Jackson et al. 1991, Asem & Novero 1994), thus have the potential to activate TLRs at or around the time of ovulation. Notably, fibronectin is produced by hen granulosa cells in response to LH and epidermal growth factor (EGF; Asem & Novero 1994, Asem & Conkright 1995), which are requisite for ovulation and steroid production in preovulatory follicles (Bahr & Johnson 1984, Woods et al. 2007). In murine granulosa cells, TLRs have been shown to bind hyaluronan fragments (Shimada et al. 2006). Hylauronan is endogenously synthesized, forming part of the matrix required for cumulus expansion in preovulatory murine follicles (Eppig 1979). Interestingly, hyaluronan production has been shown to significantly increase in cultured rat ovarian cells following treatment with ILIB (Kokia et al. 1993), which shown herein is significantly up-regulated in preovulatory follicles in response to TLR-signaling.

In summary, these data demonstrate a functional TLR signaling cascade within hen ovarian granulosa cells. Activation of TLR signaling results in stage of maturation-dependent effects on steroidogenesis, granulosa cell apoptosis, and cytokine production. In particular, these findings support a putative mechanism by which TLR signaling could modulate ovarian function, independently from pathogenic stimuli, in the latter stages of follicle maturation. The inflammatory-like response associated with ovulation includes extensive tissue remodeling occurring at and around the time of follicle rupture. TLRs may play a role in tissue remodeling (Zhang & Schluesener 2006), thus contributing to structural changes occurring in the ovary due to ovulation (Girling & Hedger 2007). While additional studies are required to determine what, if any, effects impacting follicle development are mediated through TLR signaling in granulosa cells in vivo, effects of both microorganisms as well as endogenously produced ligands have the potential to mediate ovarian function through TLRs expressed on granulosa cells.

Materials and Methods

Animals and reagents

Single-comb white leghorn hens (Creighton Bros., Warsaw, IN, USA), 25–40 weeks of age and laying regular sequences of, at minimum, six eggs, were used in all studies described. Birds were housed in individual laying batteries, with free access to feed (Purina Layena Mash, Purina Mills, St Louis, MO, USA) and water, and were exposed to a photoperiod of 15 h light:9 h darkness. Individual laying cycles were monitored by the daily timing of oviposition. Hens were euthanized by cervical dislocation. All procedures described herein were reviewed and approved by the University of Notre Dame Institutional Animal Care and Use Committee, and were performed in accordance with the Guiding Principles for the Care and Use of Laboratory Animals.

Tissues collected for cell culture and isolation of total RNA included bone marrow and ovarian granulosa cells from the largest (F1) preovulatory follicle, second largest (F2) preovulatory follicle, and granulosa cells from prehierarchal (prior to selection into the preovulatory hierarchy) follicles 3–8 mm in diameter. For cell culture experiments, granulosa cells were collected and dispersed as described previously (Tilly et al. 1991, Johnson & Bridgham 2001). Cells were incubated for up to 6 h at 40 °C in 12 × 75 mm polypropylene tubes at a density of 5 × 10^5, or for 20 h in 6- or 96-well polystyrene culture dishes (Thermo Fisher Scientific, Rockford, IL, USA) at a density of 1 × 10^6 and 1.5 × 10^4 respectively in DMEM (Invitrogen), containing 2.5% FBS (Invitrogen), 0.1 mM non-essential amino acids, and 1% antibiotic–antimycotic mixture (Invitrogen). All time points were evaluated based on previously established endpoints for granulosa cell function and viability (Tilly & Johnson 1988, Johnson & Bridgham 2001). Recombinant human FSH and ovine LH were provided by the National Hormone and Pituitary Program (HUMC, Torrance, CA, USA). The cAMP agonist, 8-br-cAMP, and the purified S. enteritidis LPS were from Sigma–Aldrich. U0126 (a selective MAPK extracellular signaling-regulated kinase (MAPK) kinase (MAPK)2 inhibitor) was purchased from BioMol (Plymouth Meeting, PA, USA), while the caspase-8 inhibitor, Z-IETD-FMK, was from R&D Systems (Minneapolis, MN, USA).

PCR amplification of TLR adaptor and signaling components

In an initial effort to verify a functional TLR signaling pathway in granulosa cells, Gallus orthologs of mammalian TLR2 (type 2), TLR4, and TLR15 were amplified from RT RNA (RT system, Promega) isolated from freshly collected granulosa cells (3–8 mm diameter or F1 follicles), as well as bone marrow. Additionally, intracellular signaling components and cytokines were amplified to verify the presence or absence in ovarian granulosa cells. Accession numbers and PCR primer pairs
specific for *Gallus* TLRs and signaling components are listed in Table 1. While PCR conditions were specific for primer pairs, amplification conditions included an initial denaturing for 3 min at 94 °C, followed by 40 cycles of denaturing at 94 °C (45 s), annealing at 51–62 °C (45 s), followed by an extension step at 72 °C (60 s) using Taq DNA polymerase (Invitrogen). All PCR products were subsequently sequenced to verify nucleic acid identity.

Progesterone analysis

Progesterone in cell culture medium samples was measured by RIA as previously described (Tilly & Johnson 1988). The replicate experiments were combined, and the mean (± S.E.M.) values are expressed as fold difference versus control (untreated) cells.

Quantitative (real-time) PCR

Forward and reverse primers encoding type 2 TLR2, TLR4, ILIB and 18S rRNA (used for standardization) were generated using MacVector software (Table 1), and were subsequently validated for use with real-time PCR by determining the optimal amplification efficiency and primer conditions as described by the system manufacturer (Applied Biosystems, Foster city, CA, USA). Random-primed, RT cDNA synthesis reactions were performed using the Promega Reverse Transcription System (Promega), according to conditions described by the manufacturer. Template dilutions were performed to verify that amplification efficiency of TLR2, TLR4, ILIB was the same as that of the 18S rRNA housekeeping gene. For real-time PCR, primers were added to 25 μl total reaction volume using reagents provided in the ABgene Absolute QPCR Sybr Green Mix (ABgene, Epsom, UK). Reactions were completed on the ABI 7700 Thermocycler (Applied Biosystems). Amplification conditions included an initial denaturing for 15 min at 95 °C followed by 15-s denaturing at 95 °C, 1 min annealing at 60 °C and 1 min extension at 72 °C for 40 cycles. The Ct (defined as the cycle number at which the fluorescence exceeds a threshold level) was determined for each reaction (run in triplicate) using the Sequence Detection software (v.1.6.3), while quantification was accomplished using the ΔΔCt method (Livak & Schmittgen 2001).

Cell density assays

Immediately following collection, 1.5×10⁴ cells/well were seeded into a 96-well plate. Cells were treated in the presence or absence of LPS (1–10 μg) for 24 h. All treatments in each replicate experiment were performed in triplicate. Cell density

Table 1 PCR primer pairs for TLRs and related signaling components and downstream transcriptional targets.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Accession no.</th>
<th>Primers</th>
<th>Size</th>
<th>Annealing temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAF6</td>
<td>XP_421089</td>
<td>GCAAAGATGGAGACGCAAAACACTC ATTACACCCCTGCAGCTGG</td>
<td>264</td>
<td>56.5</td>
</tr>
<tr>
<td>TOLLIP</td>
<td>NP_001006471</td>
<td>ACCCCCAGAAGGAAAGGAGC</td>
<td>233</td>
<td>56</td>
</tr>
<tr>
<td>MAP3K7</td>
<td>XP_001233504</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>203</td>
<td>54.2</td>
</tr>
<tr>
<td>MAP3K7IP1</td>
<td>XP_416787</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>248</td>
<td>56.7</td>
</tr>
<tr>
<td>MAP3K7IP2</td>
<td>XP_419660</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>253</td>
<td>57</td>
</tr>
<tr>
<td>MAP3K14</td>
<td>NP_001026098</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>281</td>
<td>59.3</td>
</tr>
<tr>
<td>LY96</td>
<td>XP_001232093</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>215</td>
<td>53.6</td>
</tr>
<tr>
<td>CD14</td>
<td>XP_001232016</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>152</td>
<td>57.2</td>
</tr>
<tr>
<td>MAL/TIRAP</td>
<td>NP_001020000</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>422</td>
<td>60.2</td>
</tr>
<tr>
<td>IRAK4</td>
<td>NP_001025909</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>236</td>
<td>54.2</td>
</tr>
<tr>
<td>IRAK2</td>
<td>NP_001025776</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>251</td>
<td>55.7</td>
</tr>
<tr>
<td>TLR4</td>
<td>NM_001030693</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>287</td>
<td>56.7</td>
</tr>
<tr>
<td>TLR2</td>
<td>NM_204278</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>294</td>
<td>55.4</td>
</tr>
<tr>
<td>TLR15</td>
<td>NM_001037835</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>262</td>
<td>55.1</td>
</tr>
<tr>
<td>TNFSF15</td>
<td>NM_001024578</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>292</td>
<td>55.9</td>
</tr>
<tr>
<td>TNFSF10</td>
<td>AB114678</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>417</td>
<td>58.1</td>
</tr>
<tr>
<td>ILIB</td>
<td>NM_204524</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>293</td>
<td>56.8</td>
</tr>
<tr>
<td>MYD88</td>
<td>NM_0001030962</td>
<td>TACCTCTCTCTTCTGGACGAG</td>
<td>458</td>
<td>56.4</td>
</tr>
</tbody>
</table>
was monitored using the colorimetric CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega), as a measure of metabolic activity and viability. The indicator solution was added directly to the plate after 24 h culture, incubated for an additional 1–4 h, and the absorbance values were read at 490 nm. Where applicable, the caspase-8 inhibitor, Z-IETD-FMK, was added 1 h prior to the addition of LPS. Apoptosis was verified through the qualitative analysis of oligonucleosome formation as described previously (Johnson et al. 1998).

Data analysis
Experiments were independently replicated a minimum of three times unless otherwise specified. Standardized values for the combined replicated experiments were expressed as a fold difference (mean±s.e.m.) versus control cultured cells. Data were analyzed by one-way ANOVA without including data from the control group (arbitrarily set to 1.0), followed by Fisher’s protected least significant multiple range test from the control group (arbitrarily set to 1.0), followed by the t-test was used to compare two related treatments, individual comparisons were made using original, non-transformed, data.

Declaration of interest
The authors D C W, J S S, and A L J have nothing to declare related to the material being published.

Funding
This work was supported by National Research Initiative Competitive Grant no. 2007-35203-18085 from the USDA Cooperative State Research, Education, and Extension Service.

Acknowledgements
We thank Martin Vonau and Morgan J Haugen for their excellent technical assistance.

References

Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE & Sheldon IM 2007 Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction 134 683–693.
Johnson AL & Bridgham JT 2001 Regulation of steroid acute regulatory protein and luteinizing hormone receptor messenger ribonucleic acid in hen granulosa cells. Endocrinology 142 3116–3124.
Lynn DJ, Lloyd AT & O’Farrelly C 2003 In silico identification of components of the toll-like receptor (TLR) signaling pathway in clustered chicken expressed sequence tags (ESTs). Veterinary Immunology and Immunopathology 93 177–184.

Zhang Z & Schluesener HJ 2006 Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cellular and Molecular Life Sciences 63 2901–2907.

Received 29 July 2008
First decision 18 September 2008
Revised manuscript received 18 February 2009
Accepted 30 March 2009