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Abstract

Human embryonic stem (hES) cells are routinely cultured under atmospheric, 20% oxygen tensions but are derived from embryos which

reside in a 3–5% oxygen (hypoxic) environment. Maintenance of oxygen homeostasis is critical to ensure sufficient levels for oxygen-

dependent processes. This study investigates the importance of specific hypoxia inducible factors (HIFs) in regulating the hypoxic

responses of hES cells. We report that culture at 20% oxygen decreased hES cell proliferation and resulted in a significantly reduced

expression of SOX2, NANOG and POU5F1 (OCT4) mRNA as well as POU5F1 protein compared with hypoxic conditions. HIF1A protein

was not expressed at 20% oxygen and displayed only a transient, nuclear localisation at 5% oxygen. HIF2A (EPAS1) and HIF3A displayed

a cytoplasmic localisation during initial hypoxic culture but translocated to the nucleus following long-term culture at 5% oxygen and

were significantly upregulated compared with cells cultured at 20% oxygen. Silencing of HIF2A resulted in a significant decrease in both

hES cell proliferation and POU5F1, SOX2 and NANOG protein expression while the early differentiation marker, SSEA1, was

concomitantly increased. HIF3A upregulated HIF2A and prevented HIF1A expression with the knockdown of HIF3A resulting in the

reappearance of HIF1A protein. In summary, these data demonstrate that a low oxygen tension is preferential for the maintenance of a

highly proliferative, pluripotent population of hES cells. While HIF3A was found to regulate the expression of both HIF1A and HIF2A, it is

HIF2A which regulates hES cell pluripotency as well as proliferation under hypoxic conditions.
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Introduction

Human embryonic stem (hES) cells, typically derived
from the inner cell mass (ICM) of the blastocyst,
proliferate by self renewal and have the potential to
differentiate into all cells of the body (Thomson et al.
1998). Thus, hES cells provide an excellent model to
investigate developmental mechanisms and are a
potentially unlimited source of cells for transplantation
in degenerative disease. However, hES cells are notor-
iously difficult to maintain in culture due to their
propensity for spontaneous differentiation, an effect
likely caused by a suboptimal culture environment.
Clues to improve the culture of hES cells may be gained
by investigating the environment from which these cells
q 2010 Society for Reproduction and Fertility

ISSN 1470–1626 (paper) 1741–7899 (online)

This is an Open Access article distributed under the terms of the Society for Reproducti

distribution, and reproduction in any medium, provided the original work is properly
are derived. In vivo, preimplantation embryos develop in
the secretions of the reproductive tract which are
characterised by low, 1.5–8% oxygen tensions (Fischer
& Bavister 1993), an environment which has been shown
to improve the in vitro embryo development of several
species including human (Dumoulin et al. 1999,
Petersen et al. 2005, Kovacic & Vlaisavljevic 2008),
mouse (Orsi & Leese 2001) and bovine (Thompson et al.
1990, Olson & Seidel 2000). Moreover, mouse embryos
cultured at 5% oxygen rather than 20% oxygen
displayed a global gene expression pattern which more
closely resembled their in vivo counterparts (Rinaudo
et al. 2006). Harvey et al. (2004), also observed that
culture under 2% oxygen rather than atmospheric
oxygen significantly increased the proportion of ICM
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cells compared with trophectoderm cells, findings
consistent with pluripotent cells displaying increased
proliferation when cultured under reduced oxygen
tensions. Thus, mimicking the in vivo, physiological
oxygen concentration may be beneficial for the propa-
gation of hES cells in vitro. This is supported by data from
rat mesenchymal and neural crest stem cells, where
culture under physiological oxygen tensions showed an
increase in the rate of proliferation compared with those
maintained at 20% oxygen (Morrison et al. 2000, Lennon
et al. 2001). These combined data highlight the benefit
that culture under reduced oxygen tension has on the
ability to expand scarce stem/precursor cell populations.

In terms of hES cells, atmospheric oxygen remains
the culture environment of routine use. There is
emerging evidence to suggest that reducing the oxygen
concentration towards physiological levels is beneficial
for the in vitro maintenance of hES cells in terms of
decreasing the amount of spontaneous differentiation,
supporting self-renewal (Ezashi et al. 2005, Ludwig
et al. 2006, Westfall et al. 2008), and reducing spon-
taneous chromosomal aberrations (Forsyth et al. 2006).
Thus, while hES cells can be maintained under
atmospheric oxygen tensions, lowering the oxygen
tension to 2–5% appears beneficial for the propagation
of a highly proliferative, pluripotent population of
cells. However, controversy still remains as a recent
report suggests that there are no significant advantages
of culturing hES cells under reduced oxygen tension
(Chen et al. 2009).

Upon exposure to hypoxic conditions, cells mount a
physiological response to ensure sufficient levels for
oxygen-dependent processes. This response is regulated
by hypoxia inducible factors (HIFs) which regulate
the expression of over 200 genes including those
involved in erythropoiesis, apoptosis and proliferation
(Semenza 2000). HIFs are transcription factors consisting
of three oxygen-dependent a subunits: HIF1A, HIF2A
(also known as EPAS1) and HIF3A, and a constitutively
expressed b subunit, HIF1B (also known as ARNT).
Under atmospheric oxygen tensions, HIF1A protein is
rapidly degraded due to hydroxylation by prolyl
hydroxylase proteins (PHDs). These hydroxylated
proteins are then recognised by the Von Hippel–Lindau
(VHL) protein which targets them for proteosomal
degradation. Under hypoxic conditions, PHDs are
unable to hydroxylate HIF1A which therefore cannot
be targeted for degradation by the VHL protein (Semenza
2003). Stabilised HIF1A subunits translocate from the
cytoplasm to the nucleus where they bind with HIF1B to
activate target genes (Wenger 2002). HIF1A, the first
HIF-a subunit described, is thought to be the global
regulator of the hypoxic response (Semenza & Wang
1992). However, the contribution of HIF2A and HIF3A,
which are believed to be regulated in a similar manner
(Ivan et al. 2001, Masson et al. 2001), remain to be fully
characterised. All three a subunits share many sequence
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similarities (reviewed by Lee et al. (2004)); they all
possess the Per, Arnt/HIF1B and Sim domain essential for
binding to HIF1B and the oxygen-dependent
degradation domain, the target for degradation under
normoxic conditions. HIF3A differs from HIF1A and
HIF2A as it lacks the C-terminal activation domain
required for co-activator binding. Thus, HIF3A is unable
to recruit co-transcriptional regulators and basal tran-
scriptional machinery to gene targets. HIF-a subunits
have been found to activate genes that contain the
hypoxia response element sequence located in the
promoter region of hypoxia responsive genes (Wenger
2002). HIF2A can target this sequence independently of
HIF1A, suggesting that they have functionally diverse
roles. For example, HIF1A, originally thought to be the
main oxygen sensing subunit, predominantly regulates
glycolytic genes (Hu et al. 2003), whereas HIF2A is
the main regulator of hypoxia-induced erythropoietin
in tissues which express both HIF1A and HIF2A
(Warnecke et al. 2004, Rankin et al. 2007). HIF2A has
also been shown to promote cell cycle progression in
hypoxic renal clear cell carcinoma cells (Gordan et al.
2007). To date, little is known about which genes are
targeted by HIF3A.

The functional significance of HIF genes has been
highlighted using targeted gene inactivation. HIF1AK/K

mice are non-viable, displaying developmental arrest by
E9.0 with significant mesenchymal cell death and
impaired vascular development (Kotch et al. 1999).
HIF1B null mice are embryonic lethal by E10.5,
displaying yolk sac and placental deficiencies and
decreased numbers of haematopoietic progenitors
(Nishi et al. 2004). HIF2AK/K mice develop severe
vascular defects and show developmental arrest
between E9.5 and E12.5 with variability depending on
the genetic background (Compernolle et al. 2002, Nishi
et al. 2004).

In mouse ES cells, both HIF1A and HIF2A are
expressed but HIF1A appears to be central to regulating
hypoxic responses, since it targets many oxygen-
dependent genes that are not regulated by HIF2A
(Hu et al. 2006). However, HIF2A has been found to
be a direct upstream regulator of POU5F1 (OCT4) in
mouse ES cells, suggesting that HIF2A is involved in the
regulation of stem cell maintanence (Covello et al.
2006). In hES cells, the mechanism of hypoxic regulation
appears to differ since HIF1A protein is only transiently
expressed for w48 h following exposure to low oxygen
tension (Cameron et al. 2008).

While there has been controversy in the literature, this
study aims to prove that hES cell culture is improved
under physiological oxygen concentrations compared
with ambient, atmospheric oxygen tension. We investi-
gate the effect of oxygen tension on hES cell morphology,
pluripotency and proliferation and determine the
functional significance and potential hierarchy of HIFs
in regulating these hypoxic responses.
www.reproduction-online.org
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Results

Cell morphology

Under hypoxic conditions, morphology was altered
(Fig. 1a); colonies appeared more compact with clearly
defined borders. At 20% oxygen, the cells began to show
peripheral, spontaneous differentiation by day 4 post-
passage, characterised by enlarged, flattened cells with
translucent cytoplasm (Fig. 1aF). As a consequence, hES
cells cultured at 20% oxygen required more frequent
passaging to limit spontaneous differentiation. In con-
trast, hES cells maintained at 5% oxygen were passaged
due to space constraints, rather than to remove
differentiated areas. Thus, colony diameter was w50%
larger at 5% oxygen than those cultured under 20%
oxygen on each day post-passage (P!0.01–P!0.001;
Figure 1 (a) Phase contrast images of Hues 7 hES colonies cultured on MEFs u
3 (C and D) and 4 (E and F) post-passage. Area of differentiation highlighted
diameter at 5 and 20% oxygen on days 2–4 post-passage **P!0.01, ***P!
(c) Average hES cell number at 5% and 20% oxygen on days 1–4 post-passag
of cells under both oxygen tensions. ***P!0.001 significantly different fro
labelling of Hues 7 hES cells at 5% (A–C) and 20% (D–F) oxygen on day 3
antibody only (G). Scale bar, 250 mm.

www.reproduction-online.org
Fig. 1b). In total, hES cells were maintained under both
5% and 20% oxygen for w10–12 months, or 36–40
passages and the same morphological differences were
maintained throughout this period. To further quantify
the increase in colony size, equal numbers of cells were
seeded on Matrigel coated plates on day 0 under both
oxygen tensions and total hES cell number determined
on each subsequent day post-passage. A significant
increase in cell number was apparent by 48 h post-
passage under 5% oxygen compared with 20% oxygen
and was maintained on days 3 and 4 (P!0.001; Fig. 1c).
Using Ki67 labelling of hES cells on Matrigel on day 3
post-passage, there was a dramatic decrease in the
number of proliferating cells at 20% oxygen compared
with 5% oxygen with w50% of hES cells cultured under
20% oxygen being Ki67 positive compared with virtually
nder 5% (A, C and E) and 20% (B, D and F) oxygen on days 2 (A and B),
with arrow. Scale bar, 500 mm. (b) Average maximum hES cell colony
0.001 significantly different from 5% oxygen (nZ6 for each day).

e. Cell numbers were normalised on day 0 by passaging equal numbers
m 5% oxygen (nZ21 for each day). (d) Ki67 (green) and DAPI (blue)
post-passage, phase contrast (C and F). Negative control, secondary
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all cells at 5% oxygen (Fig. 1d). Similar results were
obtained for hES cells cultured on mouse embryonic
fibroblasts (MEFs; data not shown).
Pluripotency marker expression

To investigate the effect of oxygen tension on the
expression of pluripotency markers, hES cells cultured
under either 20% or 5% oxygen were obtained on day 3
post-passage, prior to the onset of any overt differentiation
observed in cells cultured at 20% oxygen. There was a
significant (P!0.05) reduction in POU5F1 (80G20%),
SOX2 (75G18%) and NANOG (60G10%) mRNA
expression in cells maintained at 20% oxygen compared
with those cultured at 5% oxygen (Fig. 2a). Although
immunocytochemistry detected similar immunoreactiv-
ity for POU5F1, SOX2, TRA-1-60 and TRA-1-81 (Fig. 2b),
using western blotting, POU5F1 was significantly
decreased by w40% in hES cells cultured at 20% oxygen
compared with 5% oxygen (P!0.01; Fig. 2c and d).
HIF expression

Real-time RT-PCR was used to investigate the effect
of environmental oxygen tension on the differential
expression of HIF1A, HIF1B, HIF2A and HIF3A
subunits. All HIFs were expressed in hES cells cultured
under both 20% and 5% oxygen, but there was no
Figure 2 (a) mRNA expression of POU5F1, SOX2 and NANOG cultured und
All data have been normalised to UBC and to 1 for 5% oxygen **P!0.01 (n
TRA-1-60 (C and H) and TRA-1-81 (D and G) of hES cells cultured under 5%
western blot of POU5F1 expression in hES cells cultured under 5% and 20
normalised to b-actin and to 1 for 5% oxygen. **P!0.01 significantly diffe
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significant difference in the mRNA expression of the
a subunits with respect to oxygen tension. Surprisingly,
HIF1B was significantly upregulated under hypoxic
conditions (Fig. 3a).

Western blotting was performed on day 3 post-passage
to quantify the level of HIF protein expression in hES
cells (Fig. 3b). HIF1A was not expressed following long-
term culture under 5% or 20% oxygen tension and there
was no significant difference in the expression of HIF1B.
However, HIF2A and HIF3A were significantly upregu-
lated under 5% oxygen compared with 20% oxygen
(P!0.05; Fig. 3c).

Using immunocytochemistry, HIF1A was found to be
only transiently expressed being present in the nucleus of
hES cells cultured under 5% oxygen for 48 h but absent
after long-term culture under hypoxic conditions
(Fig. 3d). HIF1A was also not expressed in hES cells
cultured under 20% oxygen. HIF2A and HIF3A both
displayed a largely cytoplasmic expression following
48 h of culture at 5% oxygen. However, following
long-term hypoxic culture they both displayed a
predominantly nuclear localisation. Under 20% oxygen,
HIF2A and HIF3A remained cytoplasmic. HIF1B, which
is known to be constitutively expressed, was present in
the nuclei of hES cells when cultured under both 20%
and 5% oxygen tensions. It was therefore not necessary
to investigate the localisation of HIF1B in hES cells
cultured in 5% oxygen for 48 h.
er 5% and 20% oxygen using relative quantification real-time RT-PCR.
Z6). (b) Immunocytochemistry of POU5F1 (A and E), SOX2 (B and F),
(A–D) and 20% (E–H) oxygen. Scale barZ100 mm. (c) Representative

% oxygen. (d) Quantification of POU5F1 western blots. Data were
rent to 5% oxygen (nZ3).
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Figure 3 (a) mRNA expression of HIFs in hES cells at 5% and 20% oxygen. All data have been normalised to UBC and to 1 for 20% oxygen. *P!0.05
significantly different to 20% oxygen (nZ3). (b) Representative western blots of HIFs after long-term culture at 5% or 20% oxygen (C) represents
positive control protein. (c) Quantification of HIF western blots. Data were normalised to b-actin and to 1 for 20% oxygen. *P!0.05 significantly
different to 20% oxygen (nZ3). (d) Protein expression of HIFs by immunocytochemistry in hES cells cultured under 5% oxygen for 48 h (5% 48 h;
A and B, G and H, M and N), 5% oxygen for long-term (5% LTZmore than three passages; C and D, I and J, O and P, S and T) and 20% oxygen
(E and F, K and L, Q and R, U and V). HIF1A (green; A–F), HIF2A (green; G–L), HIF3 (red; M–R) and HIF1A (green; S–V). DAPI (blue). Negative
controlsZFITC secondary only (W) and Texas Red secondary only (X). Scale barZ40 mm.
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HIF knockdown

Following siRNA real-time RT-PCR confirmed an 83%,
86% and 90% knockdown of HIF1A, HIF2A and HIF3A
respectively compared with transfection control siRNA
(Fig. 4a, c and e). Initial studies examined the effect of
knocking down individual HIF-a subunits for 48 h.
When HIF2A was silenced HIF1A mRNA expression
was not affected (Fig. 4a). However, the knockdown of
HIF3A significantly upregulated HIF1A mRNA
expression (P!0.05, Fig. 4a). As expected, HIF1A
protein was not expressed in hES cells maintained at
5% oxygen and was not induced by silencing HIF2A.
Interestingly, HIF1A protein was induced when
HIF3A was silenced (Fig. 4b). When both HIF2A and
HIF3A were silenced, HIF1A was expressed but at a
significantly reduced level compared with when HIF3A
alone was knocked down (P!0.001, Fig. 4b).

When HIF1A was silenced, HIF2A mRNA expression
were unaffected. However, there was a significant
reduction of HIF2A mRNA (P!0.01) and protein
(P!0.05) expression observed when HIF3A was
silenced (Fig. 4c and d).

HIF3A mRNA (Fig. 4e) and protein (Fig. 4f) expression
were found to be significantly upregulated when HIF1A
and HIF2A were knocked down independently.
Reproduction (2010) 139 85–97
Effect of HIFs on pluripotency marker expression

Using real-time RT-PCR there was a significant reduction
in POU5F1 (Fig. 5a; P!0.001), SOX2 (Fig 5c; P!0.001,
P!0.05) and NANOG (Fig. 5e; P!0.001) when HIF2A
and HIF3A were silenced independently. As expected,
silencing of HIF1A did not alter the mRNA expression of
POU5F1, SOX2 and NANOG compared with transfection
control siRNA (Fig. 5a, c and e). At the protein level,
POU5F1, SOX2 and NANOG were significantly reduced
when HIF2A (P!0.001) and HIF3A (P!0.05) were
silenced (Fig. 5b, d and f).
Effect of HIF expression on hES cells morphology

Silencing HIF1A or HIF3A did not affect hES cell
morphology (Fig. 6a) and following knockdown these
cells could be maintained in culture, remaining TRA-1-
60 and POU5F1 positive 48 h (Fig. 6b) and two passages
(Fig. 6c) post transfection. Moreover, HIF1A and HIF3A
silenced colonies contained similar levels of SSEA1
expression as the transfection controls (Fig. 6b).
However, when HIF2A expression was knocked down
colonies appeared to have less clearly defined borders
and large areas of differentiation (Fig. 6a). These cells
failed to maintain pluripotency, being SSEA1 positive
Figure 4 mRNA expression levels of (a) HIF1A,
(c) HIF2A and (e) HIF3A when each HIF-a isoform
was silenced in hES cells cultured under 5% oxygen
for 48 h. All data has been normalised to UBC and
to 1 for the transfection control. *P!0.05,
**P!0.01, ***P!0.001 significantly different to
transfection control (nZ3). (b) Representative
HIF1A protein expression and quantification when
HIF2A and HIF3A were silenced separately and
simultaneously. *** P!0.001 significantly different
to HIF3A siRNA. Representative (d) HIF2A and
(f) HIF3A protein expression and quantification
when each HIF-a isoform was silenced *P!0.05,
**P!0.01, *P!0.001 significantly different to
transfection control (nZ3). Protein was collected
for all samples 48 h post-transfection.
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Figure 5 mRNA expression levels of (a) POU5F1,
(c) SOX2 and (e) NANOG when HIF-a subunits
were silenced in hES cells cultured under 5%
oxygen for 48 h. Data normalised to UBC and to 1
for the transfection control. *P!0.05, ***P!0.001
significantly different to transfection control (nZ3).
Representative (b) POU5F1, (d) SOX2 and
(f) NANOG protein expression and quantification
by western blotting when HIF-a subunits were
silenced. *P!0.05, ***P!0.001 significantly
different to transfection control (nZ3). Protein was
collected for all samples 48 h
post-transfection.
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and displaying large areas that were TRA-1-60 and
POU5F1 negative (Fig. 6b) and failed to proliferate
during culture. Consequently, HIF2A silenced hES cells
that were cultured for two passages post transfection
were negative for TRA-1-60 and POU5F1 (Fig. 6c).
Double knockdowns combining HIF1A and either
HIF2A or HIF3A showed significant areas of differen-
tiation and the cells failed to form colonies (Fig. 6a).
When HIF2A and HIF3A were both silenced simul-
taneously, hES cells were capable of forming colonies
but possessed large areas of differentiation. In contrast,
triple HIF-a knockdown hES cells did not form colonies
and did not survive in culture.
Effect of HIF expression on hES cells proliferation

At 48 h post-transfection, hES cell number (Fig. 7a) and
colony size (Fig. 7b) were significantly (P!0.001)
reduced by w30% when HIF2A expression was knocked
down and displayed a further decrease (P!0.01) when
HIF2A and HIF3A were silenced simultaneously. There
was no additional increase in the diameter of HIF2A
silenced cells 72 h post-transfection (data not shown).
Colony size and cell number were unaffected by HIF1A
or HIF3A knockdown. It was not possible to measure the
www.reproduction-online.org
colony size of double knockdown combinations of
HIF1A and HIF2A or HIF1A and HIF3A or the triple
knockdown due to the absence of colony formation
occurring in these populations. Virtually all cells were
positive for Ki67 when either HIF1A or HIF3A expression
was silenced whereas Ki67 expression decreased to
w85% when HIF2A was knocked down (P!0.001,
Fig. 7c and d).
Discussion

There is emerging evidence to suggest that culture under
more physiological oxygen conditions (2–5% oxygen)
decreases the amount of spontaneous hES cell differen-
tiation (Ezashi et al. 2005, Westfall et al. 2008). Similarly,
we found that spontaneous differentiation was apparent
by day 4 post-passage in hES cells cultured under
atmospheric conditions, whereas cells cultured at 5%
oxygen maintained pluripotency. As a result of this, hES
cells cultured under 20% oxygen required more frequent
passaging prior to confluency to remove differentiated
areas, whereas hES cells maintained at 5% oxygen were
only passaged due to space constraints on the plate.
These findings suggest that environmental oxygen
tension has a critical role in the maintenance of hES
Reproduction (2010) 139 85–97
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cell pluripotency. To investigate differences between the
two oxygen concentrations, results were obtained on day
3 post-passage, prior to overt cell differentiation.

Culture at 5% oxygen, whether on MEFs or feeder-free
on Matrigel, increased the rate of cell proliferation which
agrees with data from Ludwig et al. (2006), producing
significantly larger hES cell colonies. This may be due to
the observed increase in NANOG expression levels,
since it has recently been shown that NANOG regulates
S-phase entry in hES cells and that overexpression of
NANOG significantly increases proliferation by binding
to regulatory regions of CDK6 and CDC25A, two
important cell cycle regulators (Neganova et al. 2009,
Zhang et al. 2009). Similar increased rates of prolifer-
ation have also been observed in many other primitive
populations including mesenchymal stem cells and
neural progenitor cells when cultured under low oxygen
Reproduction (2010) 139 85–97
tensions (Grayson et al. 2007, Zhao et al. 2008). Data
from mesenchymal stem cells suggest the involvement of
HIFs, specifically HIF2A (Grayson et al. 2007). This is
supported in hypoxic carcinoma cells where HIF2A has
been shown to promote cell cycle progression (Gordan
et al. 2007).

In agreement with Forsyth et al. (2008) and Westfall
et al. (2008), there was no significant increase in the
mRNA expression of the HIF-a subunits under hypoxia
suggesting that altered protein levels are due to post-
transcriptional regulation as found in other cell types
(Huang et al. 1998, Lang et al. 2002). However, in
contrast to Westfall et al. (2008), HIF1B mRNA
expression was upregulated under hypoxia which may
reflect differences in both the methodology and cell lines
used. To date, most research has focused on the HIF1A
subunit which is thought to be the master regulator of the
Figure 6 (a) Representative phase contrast images
of hES cells cultured under 5% oxygen 48 h after
transfection with HIF-a siRNA. Controls contain
the same volume and concentration of transfection
reagent and AllStars control siRNA as each of the
knockdowns. Scale barZ100 mm. (b) Protein
expression of pluripotency markers TRA-1-60
(A, G, M and S), merged with DAPI (B, H, N and T),
POU5F1 (C, I, O and U), merged with DAPI (D, J, P
and V) and differentiation marker SSEA1 (E, K, Q
and W), merged with DAPI (F, L, R and X) in hES
cells 48 h following siRNA transfection of HIF-a
subunits. Scale barZ100 mm. (c) Phase contrast
and protein expression of POU5F1 and TRA-1-60
in hES cells two passages following HIF-a gene
silencing. Scale barZ100 mm.
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Figure 7 Effect of silencing HIF-a subunits in hES
cells cultured under 5% oxygen 48 h following
siRNA transfection on average cell number (nZ3).
Cell numbers were normalised on day 0 by
passaging an equal number of cells. (b) Effect of
HIF-a silencing 48 h following siRNA transfection
on average maximum colony diameter (nZ6).
***P!0.001 significantly different from
transfection control. Bars with the same superscript
are significantly different; aP!0.01. (c) Ki67
(green) and DAPI (blue) labelling of HIF-a silenced
hES cells and transfection control. Scale
barZ100 mm. (d) Percentage of HIF-a silenced
Ki67 positive hES cells. ***P!0.001 significantly
different from transfection control.
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hypoxic response (Mazure et al. 2004). However, our
data suggests this is not the case, at least in hES cells
since HIF1A was only transiently expressed in the
nucleus for w48 h following exposure to hypoxia.
These findings are in agreement with recent data from
Cameron et al. (2008) using a 2% environmental oxygen
tension, although contrary to those of Westfall et al.
(2008), who found HIF1A protein to be expressed in hES
cells after 10 days of culture under both 5 and 20%
oxygen. The reason for this discrepancy is unknown
although HIF1A would be expected to be rapidly
degraded by PHDs under atmospheric conditions.
Moreover, the HIF1A staining observed by the latter
investigators was cytoplasmic and therefore would not
be expected to regulate the expression of hypoxia
regulated genes. Our study suggests that HIF1A may
play a role in the initial adaptation of hES cells to hypoxia
but some other factor(s) must be responsible for
maintaining the hypoxic response. We propose that
HIF2A or HIF3A, both of which are translocated from the
cytoplasm to the nucleus and are upregulated following
www.reproduction-online.org
culture under hypoxic conditions, may take over the
initial, transient role of HIF1A. This is the first time that
HIF3A and HIF1B have been demonstrated in hES cells.

hES cell colonies cultured at 5% or 20% oxygen were
both positive for pluripotency markers albeit at a
significantly decreased level at 20% oxygen. These
results were not apparent using immunocytochemistry
and highlight the importance of performing quantitative
techniques when assessing pluripotency. The current
results suggest that although hES cells are capable of
being maintained under atmospheric conditions plur-
ipotency is reduced before the appearance of morpho-
logical differentiation. This shows that the manual
removal of differentiated cells at the time of passage, a
method often used during routine culture at 20% oxygen
is not effective in ensuring the maintenance of a highly
pluripotent population. However, culturing hES cells at
5% oxygen does not require the routine removal of
differentiated areas and can therefore be considered a
much more effective method of maintaining pluripo-
tency during long term culture. Interestingly, our data
Reproduction (2010) 139 85–97
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Figure 8 A schematic representation of the HIF-a subunit localisation,
regulation and effect on proliferation in hES cells cultured under
atmospheric and hypoxic oxygen tensions.
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shows that hES cells cultured at 5% oxygen have an
increased expression of SOX2, NANOG and POU5F1
compared with cells cultured under 20% oxygen even
on day 3 post-passage, before these cells appear to be
morphologically differentiated. These data are in agree-
ment with similar POU5F1 results obtained by Ludwig
et al. (2006). However, they are contrary to those of
Forsyth et al. (2008) and Westfall et al. (2008), who both
observed no difference in the expression SOX2, POU5F1
and NANOG between hES cells cultured at 2 and 4%
oxygen respectively compared with atmospheric oxygen
tensions. However, the latter investigators did show that
POU5F1-regulated genes such as left-right determina-
tion factor 2 and fibroblast growth factor receptor 2
(FGFR2) were down-regulated under atmospheric oxy-
gen tensions, suggesting that although mRNA expression
of pluripotency markers was not reduced under 20%
oxygen, their downstream targets display decreased
expression.

Taken together, our data suggest that either low oxygen
tension is beneficial for the maintenance of pluripotency
or that cultures at 5% oxygen contain a greater
proportion of undifferentiated cells (or both). In favour
of the former, an increase in POU5F1 mRNA and protein
has also been observed in mouse ES cells when HIF2A
expression was increased using a genetic knock-in
strategy (Covello et al. 2006). It is tempting to speculate
that HIF2A regulates the long-term response of hES cells
to reduced oxygen but this should be interpreted with
caution as the little studied HIF3A is also differentially
regulated and may also be fundamental to the hypoxic
responses.

Our concept is illustrated in Fig. 8, which summarises
our data on HIF expression and localisation in hES cells.
We suggest that HIF1A and HIF3A are able to regulate
each other’s expression because when HIF1A is knocked
down HIF3A is upregulated and when HIF3A is silenced
HIF1A expression increases. Thus, HIF1A may be key in
the initial adaptation of hES to the hypoxic environment,
but when this expression is lost after w48 h in hypoxic
conditions, HIF3A is upregulated, translocates to the
nucleus where it is transcriptionally active, and takes
over from HIF1A in maintaining the long-term response
to hypoxia. In addition, HIF3A appears to be an
upstream regulator of HIF2A since when HIF3A
expression is lost HIF2A expression significantly
decreases. Thus, it appears that HIF3A regulates the
expression of the other HIF-a isoforms in hES cells. The
precise role of HIF3A has previously been unknown but
data from the human kidney suggests that it may be a
negative regulator of HIF-a gene expression (Hara et al.
2001) and therefore might have a role in the down-
regulation of HIF1A in hES cells exposed to long-term
hypoxia. This is supported by data from mouse ES cells
where hypoxic expression of HIF1A was shown to
suppress LIF–STAT signalling leading to the inhibition
Reproduction (2010) 139 85–97
of self renewal and the promotion of cell differentiation
(Jeong et al. 2007).

HIF3A is also able to regulate downstream targets
through the upregulation of HIF2A in hES cells. Our data
show that HIF2A is an upstream regulator of POU5F1
expression in hES cells, which agrees with data from the
mouse (Covello et al. 2006). Moreover, we believe this is
the first description of HIF2A regulating the expression of
SOX2 and NANOG and highlights the importance of
HIF2A in the maintenance of hES cells under hypoxic
conditions. Since HIF3A positively regulates HIF2A, a
decrease in HIF3A expression results in a decrease in
HIF2A expression. Thus, the decrease in POU5F1, SOX2
and NANOG mRNA and protein expression observed in
HIF3A knockdowns may be a result of loss of HIF2A, not
HIF3A. HIF1A does not appear to affect hES cell
pluripotency or morphology.

As well as maintaining pluripotency, HIF2A was found
to regulate proliferation in hES cells with a significant
decrease in both cell number and colony size occurring
when HIF2A expression was silenced. This may be due
to the reduced NANOG expression observed when
HIF2A was silenced since a decrease in NANOG has
been found to delay entry into S-phase of the cell cycle,
thus decreasing proliferation (Zhang et al. 2009).

Colony morphology was severely affected when two
HIF-a subunits were silenced simultaneously, with a
combination of HIF1A and either HIF2A or HIF3A
being non-viable in culture. This may be due to HIF2A
being instrumental in controlling pluripotency and
HIF3A in regulating the expression of HIF2A. Not
surprisingly, therefore, the simultaneous loss of HIF1A,
HIF2A and HIF3A results in these cells being unable to
survive hypoxia. hES cells in which both HIF2A and
HIF3A were silenced formed viable colonies but
contained large areas of differentiation. The survival
of these cells may be due to compensation by HIF1A,
which was switched back on at the protein level. This
highlights the importance of HIF1A in maintaining the
hypoxic response when the other a subunits are not
www.reproduction-online.org
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active as observed in the initial adaptation of hES cells
to hypoxia.

In conclusion, these studies demonstrate that the
culture of hES cells is preferential under a reduced
oxygen environment. In contrast to other cell types,
HIF1A is only responsible for the initial adaptation of
cells to hypoxia, whereas HIF2A regulates the long-term
hypoxic response by controlling hES cell pluripotency
and proliferation. HIF3A acts to regulate the expression
level of both HIF1A and HIF2A. These data provide a
greater understanding of the mechanisms which regulate
hES cell function and the pluripotent state.
Materials and Methods

Culture of hES cells

Hues-7 hES cells (D Melton, Howard Hughes Medical
Institute/Harvard University) were maintained on g-irradiated
MEFs in knockout (KO) DMEM (Invitrogen) supplemented with
10% KO serum replacement (Invitrogen), 1 mM L-glutamine,
50 mM b-mercaptoethanol, 1% non-essential amino acids,
10 ng/ml basic FGF factor (Peprotech Ltd, London, UK) and
100 mg/ml penicillin/streptomycin before being transferred on
to plates pre-coated with Matrigel (BD Biosciences, San Diego,
CA, USA), in medium that had been cultured over-night on
g-irradiated MEFs. hES cells were initially cultured under
atmospheric (w20%) oxygen before half were transferred into
5% O2, 5% CO2 and balanced nitrogen. Unless stated, cells
were cultured at 5% oxygen for a minimum of three passages
prior to use.
Quantitative real-time RT-PCR

mRNA was isolated from hES cells cultured on Matrigel
on day 3 post-passage using TriReagent (Sigma) and RNA
(2 mg) was reverse transcribed into cDNA using Moloney
murine leukaemia virus reverse transcriptase (Promega). The
standard curve method of relative quantification real-time
PCR was performed using Applied Biosystems reagents
in 20 ml reactions containing 4 mg of cDNA, 10 ml 2!
Taqman Universal PCR Master Mix, 1 ml Probes and Primer
Mix (HIF1A: Hs00936368_m1; HIF1B: Hs00231048_m1;
HIF2A: Hs01026142_m1; HIF3A: Hs00541709_m1; POU5F1:
Hs01895061_u1; NANOG: Hs02387400_g1; SOX2: Hs0060
2736_s1; ubiquitin C (UBC): Hs00824723_m1) using a 7500
Real-Time PCR System. The following conditions were used;
50 8C for 2 min, 95 8C for 10 min, 45 cycles at 95 8C for 15 s
and 60 8C for 1 min. Placental cDNA (0–10 ng) was used to
create a standard curve for each gene of interest as well as
for UBC, used as an endogenous control. All target transcripts
were analysed in duplicate and normalised to UBC.
Western blotting

hES cells cultured on Matrigel were rinsed with ice-cold PBS
and treated with ice-cold radio immunoprecipitation assay
lysis buffer (50 mM Tris–HCl (pH 7.4), 1% nonyl
www.reproduction-online.org
phenoxylpolyethoxylethanol, 0.25% Na-deoxycholate and
complete protease inhibitors (Roche) supplemented with
1 mM phenylmethylsulphonyl fluoride, 1 mM Na3VO4 and
1 mM NaF) for 30 min with gentle agitation. Protein concen-
tration was quantified using the Bradford assay (Bradford 1976)
and lysates (75 mg) were resolved on an 8% SDS bisacrylamide
gel. Positive controls were run for each protein of interest;
hypoxic colorectal carcinoma cell protein for HIF1A, foetal
heart (obtained following ethical approval from the South-
ampton & South West Hampshire Local Research Ethics
Committee, under guidelines issued by the Polkinghorne
Committee) for HIF1B and NT2 cells treated with 130 mM
cobalt chloride for 4 h for HIF2A and HIF3A. The protein was
electro-transferred to a nitrocellulose membrane and blocked
in PBS containing 5% non-fat powdered milk and 0.1% Tween-
20 for 1 h at room temperature. Primary antibodies were
diluted in blocking buffer and incubated with the membrane
overnight at 4 8C; HIF1A (BD Biosciences) 1:250, HIF1B (Santa
Cruz Biotechnology Inc., Santa Cruz, CA, USA) 1:250, HIF2A
(Novus Biologicals, Cambridge, UK) 1:500, HIF3A (Santa Cruz)
1:1000, POU5F1 (Santa Cruz) 1:1000, SOX2 (Millipore,
Billerica, MA, USA) 1:000 and NANOG (Abcam, Cambridge,
UK) 1:1000. Membranes were washed and incubated with
either peroxidase labelled anti-mouse antibody (Amersham)
1:50 000, or anti-goat antibody (Sigma) 1:200 000, in blocking
buffer for 1 h at room temperature. Protein expression was
quantified relative to b-actin expression which was detected
with mouse anti-b-actin peroxidase-conjugated antibody (1:50
000; Sigma). Membranes were developed using ECL advanced
western blotting detection kit (Amersham).
Immunocytochemistry

hES cells cultured on Matrigel were fixed in 4% paraformalde-
hyde for 20 min. Non-specific antibody binding was blocked
with 3% donkey serum and where necessary cells were
permeabilised with 0.1% tritonX-100 for 1 h before the
addition of primary antibodies diluted in PBS and 3% donkey
serum. Primary antibodies used were TRA-1-60 (Santa Cruz)
1:100, TRA-1-81 (gift from P Andrews) 1:50, SSEA1 (Santa
Cruz) 1:100, POU5F1 1:100, SOX2 (Chemicon) 1:150, HIF1A
1:250, HIF1B 1:100, HIF2A 1:100, HIF3A 1:50, Ki67
(Novocastra Laboratories, Newcastle upon Tyne, UK) 1:100
and incubated overnight in a humidified chamber at 4 8C.
Secondary antibody staining was performed with anti-mouse
IgG conjugated-FITC 1:100, anti-mouse IgM conjugated-FITC
1:200 (Sigma) or anti-goat IgG Alexa Fluor 594 1:100 (Sigma)
for 1 h in a humidified chamber. Nuclei were labelled with
DAPI (Vecta Laboratories, Peterborough, UK).
siRNA

siRNA experiments were carried out on hES cells cultured on
Matrigel under 5% oxygen for a minimum of three passages.
hES cells cultured under 5% oxygen were passaged and
incubated overnight. For each transfection 50 nM siRNA
(HIF1A: Hs_HIF1A_5; HIF2A: Hs_EPAS1_5_HP; HIF3A:
HsHIF3A_1_HP; Qiagen) along with 12 ml HiPerfect transfec-
tion reagent (Qiagen) were mixed into 200 ml of KO-DMEM
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and added in a dropwise manner to 1-well of a 6-well plate.
At 48 h after transfection, cells were harvested and extracts
were prepared for mRNA and protein. For HIF3A, siRNA
targeting exon 5 was used which is present in all the major
known HIF3A isoforms (Maynard et al. 2003). AllStars
Negative Control (Transfection control, Qiagen) siRNA that
has no homology to any known mammalian gene was used
as a negative control for each transfection. For double and
triple knockdowns 50 nM siRNA and 12 ml HiPerfect
transfection reagent were added in 600 ml of KO-DMEM.
Twice or three times the volume of Allstars Negative control
was added to controls for double and triple knockdowns
respectively. hES cells were analysed for knockdown using
relative quantification real-time RT-PCR.
Statistical analysis

All data were analysed to determine whether they were
normally distributed, using the Anderson–Darling normality
test. Differences between oxygen tension and maximum
colony diameter and cell number were analysed using a
Student’s t-test. Differences in relative gene and protein
expression between cells cultured at 5 and 20% oxygen were
analysed using a 1-sample t-test. Differences between negative
control and knockdown results were analysed using a Student’s
t-test. All data represent at least three independent experi-
ments. A value of P!0.05 was considered significant. Data are
presented as meanGS.E.M.
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