Pentoxifylline added to freezing or post-thaw extenders does not improve the survival or in vitro fertilising capacity of boar spermatozoa

Marı́a A Gil, Marta Hernandez, Jordi Roca, Carmen Almiñana, Xiomara Lucas, Cristina Cuello, Juan M Vazquez and Emilio A Martı́nez

Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain

Correspondence should be addressed to M A Gil; Email: mariagil@um.es

Abstract

This study evaluated whether pentoxifylline added to freezing and thawing extenders influenced the function of boar spermatozoa. In Experiment 1, pooled ejaculated sperm-rich fractions were frozen in 0.5 ml straws after dilution in extender supplemented with pentoxifylline to a final concentration of 0, 2, 4, 8, 16 or 32 mM. The addition of 4, 8, 16 and 32 mM pentoxifylline to the freezing extender significantly decreased the progressive and total motility of spermatozoa. The percentage of viable spermatozoa with intact acrosomes as well as the penetration rate and the efficiency of fertilisation were significantly lower in pentoxifylline-treated groups compared with the untreated control. In Experiment 2, a pool of three straws with ‘good’ post-thaw sperm quality parameters and another three straws with ‘poor’ sperm quality were diluted in extender with 0, 1, 2, 4, 8, 16 or 32 mM pentoxifylline. Post-thaw samples with both ‘good’ and ‘poor’ sperm quality with 0, 2, 4, 8 and 16 mM were used to assess IVF parameters. The addition of pentoxifylline to post-thaw extender did not improve the post-thaw motility or viability of spermatozoa compared with the control. The in vitro penetration was higher ($P < 0.05$) than the control for oocytes fertilised with spermatozoa that were thawed and incubated in extender with 4, 8 and 16 mM pentoxifylline. However, no differences were observed in the efficiency of fertilisation. We conclude that pentoxifylline, as a supplement added to the freezing extender, has a deleterious effect and that it does not improve the survival or in vitro fertilising efficiency of frozen–thawed boar spermatozoa when added after thawing.

Reproduction (2010) 139 557–564

Introduction

Fertility is generally low after artificial insemination with frozen–thawed boar spermatozoa, as compared to that obtained with fresh semen (Johnson et al. 2000, Roca et al. 2005a, Grossfeld et al. 2008). A primary reason for this low fertility is a reduction in the motility, viability and fertilising potential of the spermatozoa after the freeze–thaw process. Freezing and thawing cause damage to the acrosome and plasma membranes of boar spermatozoa (Maxwell & Johnson 1999, Eriksson et al. 2001). This damage is exacerbated during the cryopreservation process by a decrease in the lipid content of the membranes that contain a high proportion of polyunsaturated fatty acids. The decrease in lipid content indicates lipid peroxidation in the presence of reactive oxygen species (Cerolini et al. 2001).

Many substances have been tested to determine whether they enhance the resistance of spermatozoa to the stress of freezing and thawing in several species, including the pig (Roca et al. 2004, 2005b, Breininger et al. 2005, Bathgate et al. 2006, Corcuera et al. 2007, De Mercado et al. 2009, Hu et al. 2009). Pentoxifylline, a methylxanthine derivate, is an inhibitor of phosphodiesterase. This substance has also been used to stimulate the motility of fresh and/or frozen–thawed human (Hammitt et al. 1989, Brennan & Holden 1995, Nassar et al. 1999, Huang et al. 2003), equine (Gradil & Ball 2000, Marques et al. 2002), bovine (Numabe et al. 2001), ovine (Maxwell et al. 1995), feline (Stachecki et al. 1995) and canine spermatozoa (Koutsarova et al. 1997). Also, we have observed that pentoxifylline is able to stimulate the motility of fresh boar spermatozoa (MA Gil, J Roca, JM Vasquez & EA Martinez, unpublished data; shown in Fig. 1). Pentoxifylline inhibits cAMP phosphodiesterase, thus increasing the intracellular cAMP concentration (Garbers et al. 1971). A rise in cAMP concentration causes an increase in the cAMP-dependent processes of spermatozoa such as motility, capacitation and acrosome reaction in spermatozoa (Armstrong et al. 1994, Aitken 1997).
function of frozen–thawed boar spermatozoa.

and thawing extenders, influences the survival and evaluate whether pentoxifylline, added to the freezing and thawing. Therefore, the aim of this study was to additive for boar spermatozoa undergoing freezing benefits, pentoxifylline has not been evaluated as an et al

reduces lipid peroxidation (Yovich

Moreover, it has a protective effect on sperm membra-

* P < 0.05; ** P < 0.01.

Figure 1 Percentage (least-square means ± s.e.m.) of total motility of fresh boar semen incubated for 10 and 30 min in the absence (control, 0; black bars) or presence of varying concentrations of pentoxifylline (1, 2, 4, 8, 16 and 32 mM). Differences from the control (0 mM) are indicated by asterisks (* P < 0.05; ** P < 0.01).

In addition, pentoxifylline has been proposed too as a cryoprotectant of human spermatozoa due to its protection of spermatozoa membranes from freezing damage, allowing for better post-thaw motility (Bell et al. 1993) and viability (Wang et al. 1993, Esteves et al. 1998). Moreover, it has a protective effect on sperm membranes as it scavenges reactive oxygen radicals and then reduces lipid peroxidation (Yovich et al. 1994, McKinney et al. 1996, Okada et al. 1997). In spite of these promising benefits, pentoxifylline has not been evaluated as an additive for boar spermatozoa undergoing freezing and thawing. Therefore, the aim of this study was to evaluate whether pentoxifylline, added to the freezing and thawing extenders, influences the survival and function of frozen–thawed boar spermatozoa.

Results

Experiment 1: effect of pentoxifylline added to the freezing extender on the post-thaw quality and IVF rate of spermatozoa

The data on post-thaw motility and viability of boar spermatozoa are summarised in Table 1. Pentoxifylline decreased the percentages of motile spermatozoa and progressive motile spermatozoa at concentrations of 4, 8, 16 and 32 mM (P < 0.05), as compared with the control group (0 pentoxifylline). The percentage of viable spermatozoa with intact acrosomes was significantly lower (P < 0.05) in the pentoxifylline-treated groups, as compared with the control, particularly in the 32 mM pentoxifylline group. Moreover, the number of viable acrosome-reacted spermatozoa was three times higher (P < 0.05) in the 32 mM pentoxifylline group than in the control.

The data from IVF (Table 2) clearly showed that pentoxifylline in the freezing extender reduced (P < 0.05) the fertilisation rate and the efficiency of fertilisation, as compared with the control group. Pentoxifylline had no effect on the monospermic fertilisation rate.

Experiment 2: effect of pentoxifylline added to the post-thaw extender on the survival and IVF rate of spermatozoa

Pentoxifylline, added to the post-thaw extender, did not improve the post-thaw motility or viability of spermatozoa independently of sperm freezability (good versus poor freezers) and incubation times (30, 150 and 300 min). Moreover, 32 mM pentoxifylline significantly (P < 0.05) decreased the total motility of spermatozoa, as compared with the other groups.

There were not any interactions between pentoxifylline concentration, post-thaw evaluation times and ‘good’ and ‘poor’ post-thaw sperm quality for any of the parameters evaluated. Therefore, the data are presented as means pooled (Table 3).

The addition of 16 and 32 mM pentoxifylline increased (P < 0.05) the number of viable acrosome-reacted spermatozoa twofold and threefold respectively.

In relation to IVF parameters, only the fertilisation rate was influenced by the presence of pentoxifylline in the post-thaw extender independently of sperm freezability (good versus poor freezers; Table 4). Fertilisation was higher (P < 0.05) for oocytes fertilised with spermatozoa thawed and incubated in extender supplemented with 4, 8 and 16 mM pentoxifylline. However, no differences were observed in monospermy or in the efficiency of fertilisation. There were no interactions

Table 1 Effect of pentoxifylline (PTX) added to the freezing extender on the post-thaw motility and viability of boar spermatozoa. Data (least-square means ± s.e.m.) are from six replicates.

<table>
<thead>
<tr>
<th>Treatment PTX (mM)</th>
<th>Motility parameters</th>
<th>Viability parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total motile (%)</td>
<td>Rapid progressive (%)</td>
</tr>
<tr>
<td>0</td>
<td>49.7 ± 4.2 *</td>
<td>13.2 ± 1.2 *</td>
</tr>
<tr>
<td>2</td>
<td>38.9 ± 4.2 * *</td>
<td>9.5 ± 1.2 *</td>
</tr>
<tr>
<td>4</td>
<td>26.6 ± 4.2 * * *</td>
<td>4.5 ± 1.2 *</td>
</tr>
<tr>
<td>8</td>
<td>24.5 ± 4.2 * *</td>
<td>4.5 ± 1.2 *</td>
</tr>
<tr>
<td>16</td>
<td>20.5 ± 4.2 *</td>
<td>2.8 ± 1.2 * *</td>
</tr>
<tr>
<td>32</td>
<td>11.4 ± 4.2 * *</td>
<td>0.6 ± 1.2 * *</td>
</tr>
</tbody>
</table>

* † ‡ Within the same column indicates statistical differences P < 0.05,
between pentoxifylline concentration, post-thaw evaluation time (30 and 150 min) and ‘good’ and ‘poor’ post-thaw sperm quality for any of the parameters evaluated. Therefore, the data are presented as means pooled.

Discussion

Pentoxifylline is one of the most effective additives for improving the motility and acrosome reactivity of human spermatozoa. It has been also used to enhance the motility of fresh and frozen spermatozoa from a number of domestic animals (Maxwell et al. 1995, Stachecki et al. 1995, Koutsarova et al. 1997, Gradil & Ball 2000, Numabe et al. 2001, Huang et al. 2003). However, to the best of our knowledge, this is the first report on the effect of pentoxifylline on the quality of frozen–thawed boar spermatozoa and their ability to fertilise *in vitro*-matured porcine oocytes.

Pentoxifylline is thought to act as a cryoprotectant of spermatozoa (Bell et al. 1993, Wang et al. 1993, Esteves et al. 1998), and thus, the first experiment of this study explored the potential effect of pentoxifylline added to the spermatozoa before freezing. Under the present experimental conditions, 4, 8, 16 and 32 mM pentoxifylline added to the freezing extender decreased the post-thaw motility and the viability of spermatozoa. This deleterious effect has also been observed in ovine (Maxwell et al. 1995) and equine (Gradil & Ball 2000) species. Moreover, a detrimental effect of pentoxifylline on human spermatozoa was also observed at a concentration of 10 mM (Tournaye et al. 1994) suggesting a concentration-dependent toxic effect when the substance is added to semen before freezing. It should be noted that the range of pentoxifylline concentrations used in the present study was based on those used in previous reports (Maxwell et al. 1995, Numabe et al. 2001, Glogowski et al. 2002). Maxwell et al. (1995) indicated that the negative effects of pentoxifylline added prior to freezing could be the result of a longer exposure of the spermatozoa to this compound at the time of freezing and thawing. It appears as though elevated cAMP concentrations promote disruption of the activity of cAMP-associated ion channels in the plasma membrane. This disruption during freezing and thawing may alter the movement of ions and water across the sperm membrane and increase membrane damage. In our study, the spermatozoa were diluted with extender supplemented with pentoxifylline before packing into the 0.5 PVC straws (Minitüb, Germany) and freezing by using a controlled-rate freezer from 5 to −80°C at 40°C/min. It means that the spermatozoa were incubated with pentoxifylline for only 10 min, compared with the incubation time of 90–120 min used with ram spermatozoa by Maxwell et al. (1995). However, this short incubation time could be long enough to increase the membrane damage caused by cryopreservation. Therefore, we suggest that the duration of exposure of the spermatozoa to the pentoxifylline may have been responsible for the low post-thaw sperm survival observed in the present study. It is well known that only motile and membrane intact spermatozoa are able to undergo the acrosome reaction.
the total motility and progressive motility in oligoasthenozoospermic samples, but it significantly improved contrast to these studies, we did not find any benefit of treatment of sperm quality in other species. However, in the present study were similar to those used for the enhancement of spermatozoa in the presence of a high concentration (10 mM) of pentoxifylline did not decrease in the quality of human spermatozoa in the presence of pentoxifylline. Brennan & Holden (1995) also reported a decrease in the number of monospermic oocytes/total number of inseminated oocytes. * Within the same column indicates statistical differences P<0.05.

The effect of pentoxifylline added to semen after thawing was examined in the second experiment. Many authors have demonstrated a positive influence of pentoxifylline on cryopreserved spermatozoa when the substance is added after thawing (human: Brennan & Holden 1995, Stanic et al. 2002, Huang et al. 2003; equine: Gradil & Ball 2000, Marques et al. 2002; bovine: Numabe et al. 2001; ovine: Maxwell et al. 1995; feline: Stachecki et al. 1995; canine: Koutsarova et al. 1997). However, this was not confirmed for boar spermatozoa in the present study. The incubation of thawed spermatozoa in the presence of pentoxifylline did not improve the post-thaw survival, regardless of the concentration (from 1 to 32 mM). Moreover, the addition of 32 mM pentoxifylline significantly decreased the total motility. Brennan & Holden (1995) also reported a decrease in the quality of human spermatozoa in the presence of a high concentration (10 mM) of pentoxifylline. The concentrations of pentoxifylline used in the present study were similar to those used for the enhancement of sperm quality in other species. However, in contrast to these studies, we did not find any benefit of pentoxifylline to sperm function.

Pentoxifylline had no effect when added to human normozoospermic samples, but it significantly improved the total motility and progressive motility in oligoasthenozoospermic samples (Yovich et al. 1990, Tesarik et al. 1992, Nassar et al. 1999). Moreover, pentoxifylline appears to be useful for improving the motility of spermatozoa in suboptimal human (Paul et al. 1995) and equine ejaculates (Gradil & Ball 2000). Therefore, in the present study we investigated the effect of pentoxifylline added to the post-thaw extender on the survival and IVF rate of spermatozoa from ejaculates classified as ‘good’ or ‘poor’, according to their freezeability characteristics. However, the treatment of spermatozoa with pentoxifylline did not improve post-thaw survival or function, regardless of freezability.

It has been suggested that pentoxifylline can maintain motility of spermatozoa for an extended period of time (Maxwell et al. 1995, Marques et al. 2002), and thus, we also evaluated the samples at 150 and 300 min after thawing to determine if pentoxifylline was able to maintain initial motility parameters over time. In contrast with previous reports, the motility of spermatozoa was not retained by the pentoxifylline treatment in this study.

The results found with boar semen in the present study conflict with reports of other mammalian species. As has been mentioned, the effect of pentoxifylline on frozen–thawed boar spermatozoa is unknown. Some species-specific differences have been suggested in the effects of methylxanthines on phosphodiesterase (Tash 1976). However, these species differences should be considered cautiously since there are no studies comparing enzyme responses to methylxanthines between species. The only report on the effect of pentoxifylline on boar spermatozoa is that of reported by Glogowski et al. (2002). These authors demonstrated that pentoxifylline can inhibit the alkaline phosphatase activity of boar spermatozoa, which has some similarity to phosphodiesterase. Nevertheless, this study did not investigate the effects of this methylxanthine on the quality of boar spermatozoa. Our results suggest that the inhibition of alkaline phosphatase or phosphodiesterase may not cause a beneficial effect of pentoxifylline on boar spermatozoa as it does in other species.

Pentoxifylline, similar to other methylxanthines, may increase the proportion of acrosome-reacted spermatozoa (McLaughlin et al. 1992). However, in the present study, only the highest concentration of pentoxifylline tested increased the frequency of the acrosome reaction when added to the spermatozoa both before freezing and after thawing. This finding confirms the suggestion that the frequency of spontaneous acrosome reactions after pentoxifylline treatment may be concentration-dependent (Esteves et al. 1998).

While the addition of pentoxifylline to the post-thaw extender did not improve sperm motility or viability, a significant improvement of IVF rates was observed in spermatozoa exposed to 4, 8 and 16 mM pentoxifylline. The improvement of fertilisation may be caused by the antioxidant effect of pentoxifylline, as suggested by Gavella et al. (1991). Moreover, Numabe et al. (2001) found an increase in fertilisation, monospermy, cleavage and blastocyst rates after treating bull spermatozoa with pentoxifylline. However, in our system, pentoxifylline treatment failed to increase either the number of monospermic oocytes or the efficiency of fertilisation. Therefore, we may assume that pentoxifylline is an ineffective treatment for improving the efficiency of IVF of frozen–thawed boar spermatozoa.

Table 4 Effect of pentoxifylline (PTX) added to the post-thaw extender on IVF parameters. Data (least-square means ± S.E.M.) are from four replicates.

<table>
<thead>
<tr>
<th>Treatment (mM)</th>
<th>Total examined (N°)</th>
<th>Fertilised oocytes</th>
<th>Monospermic oocytes</th>
<th>Efficiency of fertilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>403</td>
<td>45.7 ± 3.6*</td>
<td>75.9 ± 3.5</td>
<td>33.9 ± 2.6</td>
</tr>
<tr>
<td>2</td>
<td>387</td>
<td>53.0 ± 3.6†</td>
<td>70.8 ± 3.3</td>
<td>36.9 ± 2.7</td>
</tr>
<tr>
<td>4</td>
<td>360</td>
<td>59.9 ± 3.7†</td>
<td>69.8 ± 3.2</td>
<td>41.2 ± 2.7</td>
</tr>
<tr>
<td>8</td>
<td>367</td>
<td>58.3 ± 3.6†</td>
<td>65.3 ± 3.2</td>
<td>37.4 ± 2.7</td>
</tr>
<tr>
<td>16</td>
<td>381</td>
<td>56.7 ± 3.6†</td>
<td>69.2 ± 3.2</td>
<td>38.8 ± 2.7</td>
</tr>
</tbody>
</table>

The value for monospermic oocytes represents the percentage of the number of monospermic oocytes/total of fertilised oocytes; the efficiency of fertilisation was calculated as the percentage of the number of monospermic oocytes/total number of inseminated oocytes.
Our data demonstrate that pentoxifylline, as a supplement added to the freezing extender, has a deleterious effect and, when added after thawing, does not improve the survival or in vitro fertilizing efficiency of boar spermatozoa.

Materials and Methods

Reagents and culture media

All chemicals used in this study were purchased from Sigma Aldrich Co. unless otherwise stated.

The basic medium used for sperm dilution was Beltsville thawing solution (BTS) composed of 205 mM d-glucose, 20.39 mM NaCl, 5.4 mM KCl, 15.01 mM NaHCO3, and 3.35 mM EDTA (Johnson et al. 1988) containing kanamycin sulphate (50 μg/ml). The basic medium used for sperm cryopreservation was lactose-egg yolk (LEY) extender composed of 80% (v/v) pyruvate, 5.4 mM D-glucose and 70 mM NaCl, 5.4 mM KCl, 15.01 mM NaHCO3 and 3.35 mM EDTA (Johnson et al. 1988) containing kanamycin sulphate (50 μg/ml). The basic medium used for sperm cryopreservation was lactose-egg yolk (LEY) extender composed of 80% (v/v) 310 mM β-lactose solution, 20% (v/v) egg yolk and 100 μg/ml kanamycin sulphate.

The medium used for the collection and washing of oocyte–cumulus complexes was Dulbecco's PBS (DPBS) medium supplemented with 4 mg/ml BSA (fraction V), 0.34 mM sodium pyruvate, 5.4 mM d-glucose and 70 μg/ml kanamycin (mDPBS). The oocyte maturation medium was BSA-free North Carolina State University-23 composed of 108.73 mM NaCl, 4.78 mM KCl, 1.7 mM CaCl2·2H2O, 1.19 mM KH2PO4, 1.19 mM MgSO4·7H2O, 25.07 mM NaHCO3, 5.55 mM d-glucose, 1 mM L-glutamine, 7 mM taurine, 5 mM hypotaurine, 75 μg/ml potassium penicillin G and 50 μg/ml streptomycin sulphate (NCUS-23, Petters & Wells 1993). This medium was supplemented with 10% (v/v) porcine follicular fluid, 0.1 mg/ml cysteine, 10 ng/ml epidermal growth factor, 10 IU/ml eCG (Folligon, Intervet International BV, Boxmeer, The Netherlands) and 10 IU/ml hCG (Veterin Corion, Divasa Netherlands) and 10 IU/ml hCG (Veterin Corion, Divasa Netherlands), 108.73 mM NaCl, 4.78 mM KCl, 1.7 mM CaCl2·2H2O, 1.19 mM KH2PO4, 1.19 mM MgSO4·7H2O, 25.07 mM NaHCO3, 5.55 mM d-glucose, 1 mM L-glutamine, 7 mM taurine, 5 mM hypotaurine, 75 μg/ml potassium penicillin G and 50 μg/ml streptomycin sulphate (NCUS-23, Petters & Wells 1993). This medium was supplemented with 10% (v/v) porcine follicular fluid, 0.1 mg/ml cysteine, 10 ng/ml epidermal growth factor, 10 IU/ml eCG (Folligon, Intervet International BV, Boxmeer, The Netherlands) and 10 IU/ml hCG (Veterin Corion, Divasa Farmavic, S A, Barcelona, Spain). The basic medium used for IVF was the same as that was used by Abeydeera & Day (1997), designated as modified Tris-buffered medium (mTBM), consisting of 113.1 mM NaCl, 3 mM KCl, 7.5 mM CaCl2·2H2O, 20 mM Tris (Trizma Base, Sigma), 11 mM d-glucose and 5 mM sodium pyruvate, supplemented with 2 mM caffeine and 0.2% BSA. The embryo culture medium was NCSU-23 with 0.4% BSA. All the media were buffered with NaOH and HCl to pH 7.3–7.4 at room temperature and had a final appropriate osmolarity (270–295 mOsm).

Stock solutions of pentoxifylline (P1784; 64 mM) were prepared in BTS for each day of the experiment.

Cryopreservation of spermatozoa

Sperm samples were cryopreserved using the straw-freezing procedure described by Westendorf et al. (1975) as modified by Thurston et al. (1999) and Carvajal et al. (2004). Briefly, extended semen (1:1, v/v in BTS) was cooled to 17 °C and held at this temperature for 3 h. After centrifugation at 2400 g for 3 min, the pellets were diluted in LEY (pH 6.2 and 330 ± 5 mOsm/kg) to a concentration of 1.5 × 106 spermatozoa/ml. After further cooling to 5 °C over 120 min, the extended spermatozoa were re-suspended with LEY–Glycerol–Orvus Es Paste (LEYGO) extender (92.5% LEY + 1.5% Equex STM (Nova Chemical Sales Inc., Scituate, MA, USA) and 6% glycerol, v/v; pH 6.2 and 1145 ± 17 mOsm/kg) to a final concentration of 1 × 105/ml. The cooled spermatozoa were packed into 0.5 PVC straws, which were frozen using a controlled-rate freezer (IceCube 1810, Minitub, Germany) from 5 to −80 °C at 40 °C/min, held for 30 s at −80 °C, cooled at 70 °C/min to −150 °C and, finally, plunged into liquid nitrogen (LN2).

Thawing and post-thaw evaluation of spermatozoa

Frozen straws were thawed in a circulating water bath at 37 °C for 20 s. The thawed spermatozoa were re-extended at 37 °C with BTS (1:2, v/v) and kept in the water bath during the evaluation of their motility and viability (plasma membrane and acrosome integrity).

Assessment of sperm motility

Sperm motility was objectively evaluated using a computer-assisted sperm analysis system (Sperm Class Analyzer, Micropptic, Barcelona, Spain). Briefly, thawed spermatozoa were further re-suspended in BTS to a concentration of 30 × 106 spermatozoa/ml. For each evaluation, a 4 μl aliquot of the sperm sample was placed in a pre-warmed (39 °C) Makler counting chamber (Sefi Medical Instruments, Haifa, Israel) at 39 °C, and three fields were analysed, including a minimum of 100 spermatozoa/sample. The proportions of total motile sperm and rapid progressive motile sperm (sperm with a motility of up to 50 μm/s and a straightness of up to 75%) were measured.

Assessment of sperm membrane integrity

The membrane integrity of spermatozoa was evaluated using a triple fluorescence staining procedure. Aliquots (100 μl each or ~3 × 106 cells) were transferred into culture tubes, and dyes were added at a final concentration of 25 nM SYBR-14 (100 mM stock solution B in DMSO; Component A of LIVE/DEAD Sperm Viability Kit, L-C 7011; Molecular Probes, Europe BV, Leiden, The Netherlands), 1 μg/ml of peanut agglutinin conjugated with phycoerythrin (PE)-PNA solution (1 ng/ml stock solution Phycocyan blue R-PE-PNA, P44; Biomedica Corp., Foster City, CA, USA) and 12 μM propidium iodide (PI; 1.5 mM in PBS; Component B of Sperm Viability Kit). Samples were mixed and incubated at room temperature in the dark for 10 min. Prior to analysis on the flow cytometer, 400 μl PBS were added to each sample, and a remixed flow cytometer analysis was performed using a Coulter Epics XLT system (Coulter Corp., Miami, FL, USA). All dyes were excited by an argon ion laser. SYBR-14 fluorescence (particles containing DNA, living cells) was detected by a 585 nm BP filter, while the PI signal (used to indicate non-viable cells) was detected by a 620 nm BP filter, and PE-PNA fluorescence (used to indicate cells with damaged acrosomes) was detected using a 575 nm BP filter. Acquisition and analysis were carried out using Expo 2000 (Coulter Software). Debris was gated out based on scatter properties and double-gated out based on SYBR-14 or PI fluorescence. Subpopulations were divided by quadrants, and the frequency of each subpopulation was
quantified. Acquisition was stopped after recording 10,000 gated events, and event rates were maintained at ~800 cells/s. Only the percentages of live spermatozoa with intact acrosomes (membrane intact spermatozoa) and live spermatozoa with reacted acrosomes were included in the results.

In vitro oocyte maturation, fertilisation and embryo culture

Ovaries were obtained from pre-pubertal gilts at a local slaughterhouse and transported to the laboratory at 35 °C in 0.9% NaCl containing 70 µg/ml kanamycin. Oocytes were aspirated from medium-sized follicles (3–6 mm in diameter) with an 18-gauge needle fixed to a 10 ml disposable syringe. Only oocytes surrounded by a compact cumulus mass that had an evenly granulated cytoplasm were harvested and washed three times in a maturation medium. One hundred oocytes were transferred into each well of a Nunc 4-well multidish containing 500 µl of pre-equilibrated maturation medium previously covered with warm mineral oil. The oocytes were cultured at 39 °C in air containing 5% CO₂ for 22 h with added hormones and for a further 22 h without hormonal additives. Thereafter, cumulus cells were removed with 0.1% hyaluronidase in a maturation medium, and the denuded oocytes were washed three times and placed in 50 µl drops of pre-equilibrated IVF medium covered with warm mineral oil in a 35 × 10 mm Petri dish (30 oocytes/drop). The dishes with the oocytes were kept in an incubator for about 30 min until spermatozoa were added for fertilisation.

For IVF, 100 µl of thawed spermatozoa from each sample was washed three times by centrifugation at 1000 g for 3 min in mDPBS. At the end of the washing procedure, the sperm pellet was re-suspended in the fertilisation medium. After appropriate dilution, 50 µl with 60,000 spermatozoa, of this sperm suspension, were added to the medium that contained the oocytes. Six hours after insemination, the oocytes were washed and transferred (30 oocytes/well) to a Nunc 4-well multidish containing 500 µl of the embryo culture medium and cultured at 39 °C in air containing 5% CO₂ for 16 h to assess fertilisation parameters.

Assessment of fertilisation parameters

To evaluate fertilisation parameters, presumptive zygotes were mounted onto slides, fixed for 48–72 h in 25% (v/v) acetic acid in ethanol at room temperature, stained with 1% lactic acid in 45% (v/v) acetic acid and examined under a phase contrast microscope at 400× magnification. Oocytes were considered to have been fertilised when they had one or more swollen sperm heads and/or when male pronuclei and their corresponding sperm tails were observed in the ooplasm along with two polar bodies. The fertilisation parameters evaluated were fertilisation (percentage of the number of oocytes fertilised/total mature inseminated), monospermy (percentage of the number of oocytes containing only one male pronucleus/total fertilised) and efficiency of fertilisation (percentage of the number of monospermic oocytes/total inseminated). Degenerated oocytes or oocytes with a broken oolemma or an ooplasm with an abnormal appearance were not counted.

Experimental design

Two separate experiments were performed to evaluate the effect of the presence of pentoxifylline on boar sperm undergoing freezing and thawing. The range of pentoxifylline concentrations tested (from 1 to 32 mM) includes those that had been previously used with bovine (Numabe et al. 2001), ovine (Maxwell et al. 1995), equine (Gradil & Ball 2000, Marques et al. 2002), human (Brennan & Holden 1995, Nassar et al. 1999, Huang et al. 2003) and boar (Glogowski et al. 2002) spermatozoa.

Experiment 1: effect of pentoxifylline added to the freezing extender on the post-thaw quality and IVF rate of spermatozoa

Three healthy, mature (2–4 years of age) and fertile hybrid boars housed at a commercial insemination station were used as ejaculate donors. Pooled ejaculated sperm-rich fractions collected from the three boars were frozen in 0.5 ml straws after dilution in LEYGO supplemented with pentoxifylline to a final concentration of 0 (control), 2, 4, 8, 16 or 32 mM and incubated for 10 min. This experiment was repeated six times. To evaluate the post-thaw survival of spermatozoa, a pool of two straws were thawed and analysed 30 min after thawing. Frozen–thawed sperm samples were used to inseminate a total of 1067 in vitro matured oocytes, in three replicates, in order to evaluate IVF parameters.

Experiment 2: effect of pentoxifylline added to the post-thaw extender on the survival and IVF rate of spermatoza

Frozen–thawed ejaculates from six healthy, mature and fertile hybrid boars from our cryopreserved sperm bank were used as ejaculate donors in this experiment. Three of them had ‘good’ post-thaw sperm quality parameters (≥50% motile and viable spermatozoa post thawing), and the other three had ‘poor’ post-thaw sperm quality (≤35% motile and viable spermatozoa post thawing). In each replicate, a pool of three straws (one per boar) of ‘good’ and a pool of three straws (one per boar) of ‘poor’ sperm quality were diluted in BTS supplemented with 0, 1, 2, 4, 8, 16 or 32 mM pentoxifylline and incubated in a water bath for 300 min. Motility and viability data were analysed 30, 150 and 300 min after thawing. This experiment was repeated nine times. Post-thaw samples with both ‘good’ and ‘poor’ sperm quality, incubated for 30 and 150 min in BTS and supplemented with 0, 2, 4, 8 and 16 mM pentoxifylline, were used to inseminate 1898 in vitro matured oocytes, in four replicates, to assess IVF parameters.

Statistical analyses

All data processing and statistical analyses were performed in SPSS, version 14.0 (SPSS Inc., Chicago, IL, USA). Data were analysed using an ANOVA with a MIXED procedure. Percentage data (as the square root of the proportion) of post-thaw sperm quality parameters were arc-sin transformed before the ANOVA. IVF data (percentage penetrated and monospermic oocyte and efficiency of fertilisation) were modelled according to a binomial model of the parameters, as described by Fisz (1980) before analysis. When the ANOVA revealed
a significant effect, means were compared using a Bonferroni test and were considered to be significant when $P<0.05$. The ANOVA models included the fixed effects of pentoxifylline concentration (Experiments 1 and 2), the post-thaw incubation time and sperm quality (Experiment 2) and the random effect of the replicate. Results are presented as least-square means ± S.E.M.

Declaration of interest
The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Funding
This study was supported by CICYT (AGL2005-00760) and the SENASA foundation of Murcia (04543/GERM/07).

Acknowledgements
The authors wish to thank Prof. W M C Maxwell for helpful discussions and for his critical reading of the manuscript.

References

Huang PT, Chen SU, Chao KH, Chen CD, Ho HN & Yang YS 2003 Effects of fertilization promoting peptide, adenosine, and pentoxifylline on thawed human sperm. *Archives of Andrology* 49 145–153.

Yovich JM, Edirisinghe WR & Yovich JM 1994 Use of the acrosome reaction to ionophore challenge (ARIC) test in managing patients in an assisted reproduction program: a prospective, double blind, randomized controlled study. Fertility and Sterility 61 902–910.

Received 2 July 2009
First decision 21 August 2009
Revised manuscript received 10 December 2009
Accepted 22 December 2009