PHOSPHOLIPIDS OF BOVINE SPERMATOZOA AND SEMINAL PLASMA*

V. G. PURSEL† AND E. F. GRAHAM

Department of Animal Science, University of Minnesota,
St Paul, Minnesota, U.S.A.

(Received 27th May 1966, revised 20th February 1967)

Summary. Spermatozoal and seminal plasma lipids of fourteen individual bulls were separated by column chromatography into neutral lipid and several phospholipid fractions. Elution progress was monitored by thin-layer chromatography. Each phospholipid constituent was determined by phosphorus analysis. Total lipid, cholesterol and plasmalogen contents were determined. The fatty acids and aldehydes of the choline and ethanolamine phosphatide fractions were analysed by gas-liquid chromatography.

The spermatozoal phospholipid comprised 35.6% phosphatidyl choline, 28% phosphatidal choline, 20% phosphatidyl ethanolamine, 7.2% phosphatidal ethanolamine and 9.1% sphingomyelin.

The seminal plasma phospholipid comprised 30% phosphatidyl choline, 23.6% phosphatidal choline, 10.5% phosphatidyl ethanolamine, 16.3% phosphatidal ethanolamine, 14.1% sphingomyelin and 5.4% polyglycerol phosphatide.

Myristaldehyde and palmitaldehyde were the only aldehydes identified in the choline and ethanolamine phosphatide fractions. Docosahexaenoic acid constituted a large portion of the fatty acids of spermatozoal choline phosphatide.

INTRODUCTION

Even though the lipids of bull spermatozoa have been the object of numerous investigations since the initial lipid extractions of Kölliker (1856), knowledge of the qualitative and quantitative nature of the various lipid constituents remains severely limited.

Lovern, Olley, Hartree & Mann (1957), Hartree & Mann (1959) and Gray (1960a, b) have partially succeeded in elucidating the chemical nature of the lipids of ram spermatozoa and drew attention to the presence of a high percentage of plasmalogen in the spermatozoal lipids. Hartree & Mann (1961) presented evidence that the fatty acid moiety of the plasmalogen may be metabolized.

* Scientific Journal Series Paper No. 5959, Minnesota Agricultural Experiment Station.
† Present address: West Central Experiment Station, University of Minnesota, Morris, Minnesota, U.S.A.
More recently Komarek, Pickett, Lanz & Jensen (1964), Komarek, Pickett, Gibson & Jensen (1965) and Komarek, Pickett, Gibson & Lanz (1965) separated the lipids of bull, boar and stallion spermatozoa and seminal plasma into five lipid classes and determined the concentration of each class using gravimetric procedures.

The purpose of our study was to investigate the lipids of spermatozoa and seminal plasma from individual bulls and to separate and determine their phospholipid components.

MATERIALS AND METHODS

Semen processing

Semen was collected from fourteen mature bulls in routine service at two artificial breeding centres. One to three ejaculates were collected so that the total volume of semen exceeded 10 ml/bull. Sperm cell concentration for each ejaculate was determined by the photometer technique. After gradual cooling to room temperature semen was centrifuged at 20,000 g for 15 min, the spermatozoa were washed once with 'sperm Ringer' solution and re-centrifuged. The washed spermatozoa and re-centrifuged seminal plasma were stored in liquid nitrogen until analysed.

Lipid extraction

Lipids were extracted by boiling with 20 vol. chloroform–methanol (2:1, v/v) for 60 min, followed by purification of the extracts by the procedure of Folch, Lees & Sloane-Stanley (1957) using distilled water for washing. The phases were allowed to separate overnight in a separatory funnel, and the lower phase removed and dried over anhydrous sodium sulphite.

Column chromatography

Lipids were fractionated on columns of silicic acid (silicic acid, 100 mesh, suitable for chromatographic analysis by the method of Ramsey and Patterson, Analytical Reagent, Mallinckrodt Chemical Works, St Louis, Mo.) and silicate-silicic acid (80 to 120 mesh). Silicic acid columns, prepared according to Rouser, Bauman, Kritchevsky, Heller & O’Brien (1961), separated the spermatozoal lipids into the neutral lipid fraction, the ethanolamine phosphatide fraction and the choline phosphatide and sphingomyelin fraction (throughout the text ethanolamine phosphatide and choline phosphatide are used to include both phosphatidal and phosphatidyl ethanolamine and choline, respectively). Seminal plasma lipids were separated on silicic acid columns into fractions containing neutral lipid and polyglycerol phosphatide, ethanolamine phosphatide and cerebroside, and choline phosphatide and sphingomyelin.

Silicate-silicic acid columns, prepared according to Massaro (1962), subfractionated the choline phosphatide from sphingomyelin.

Elution of the columns was performed at 5° C to reduce the loss of phosphagens. All solvents were deoxygenated before use and a nitrogen gas atmosphere was used whenever possible. Elution of the lipid fractions was monitored using the microplate thin-layer chromatographic technique of Peifer (1962).
Gas–liquid chromatography

Fatty acids and aldehydes of the choline phosphatide and ethanolamine phosphatide fractions were analysed by gas–liquid chromatography. The phosphatides were subjected to alkaline and acid hydrolysis, and the resulting free fatty acids and aldehydes were methylated using the boron-trifluoride–methanol procedure (Metcalfe & Schmitz, 1961). The methyl esters were then chromatographed on a Beckman GC-2A apparatus using a β-cyclodextrin acetate column (Sand & Schlenk, 1961) maintained at 220° C with an argon inlet pressure of 25 lb/in². The detector cell current was 250 mA. Methyl esters were identified by comparison of their retention times with those of authentic methyl ester standards (Hormel Institute, Austin, Minn.). The relative percentage of each ester was calculated from the area under the curve using triangulation.

Analytical methods

The total phospholipid fraction and each phospholipid sub-fraction were determined by analysis of lipid phosphorus (Bartlett, 1959). The aldehyde content of the total phospholipid, choline phosphatide and ethanolamine phosphatide fractions was determined by the phenylhydrazine method (Wittenberg, Korey & Swenson, 1956). Total cholesterol content was determined in isopropanol by the ferric chloride–sulphuric acid reaction (Zlatkis, Zak & Boyle, 1953) using the Technicon AutoAnalyzer. A Cahn microbalance was utilized in the gravimetric determination for total lipid.

RESULTS

Spermatozoal lipids

The average concentrations of the identified lipid components of the spermatozoa are listed in Table 1. Total lipid determinations were made for only four spermatozoal samples because petroleum jelly used to lubricate the artificial vaginae during semen collection contaminated the other ten samples. Analysis of the lubricant by thin-layer chromatography revealed that it was composed entirely of petroleum hydrocarbon; thus, quantitative determination for the other lipid constituents was not prevented.

The choline phosphatides accounted for 63·6% of the total phospholipid with the ethanolamine phosphatides and sphingomyelin making up 27·2 and 9·1%, respectively. The plasmalogens made up 35·2% of the phospholipid with the major component being phosphatidal choline.

Even though the choline phosphatides and sphingomyelin were fractionated on the silicate-silicic acid columns, complete separation of these components was not attained. Considerable tailing of the two components undoubtedly contributed to the variation between bulls for these constituents.

The low recovery of lipid phosphorus from chromatographic procedures (average 87%) was due to the use of two columns during chromatography and thin-layer chromatography to monitor the elution.

Analysis of variance revealed no significant differences between breeds of bull for any of the lipid constituents.
Table 1

Concentrations of lipids in the spermatozoa from fourteen bulls

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration/10⁹ sperm</th>
<th>Percentage of total phospholipid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>S.E.</td>
</tr>
<tr>
<td>Total lipid (mg)</td>
<td>2.18*</td>
<td>0.22</td>
</tr>
<tr>
<td>Total cholesterol (µg)</td>
<td>270</td>
<td>20.74</td>
</tr>
<tr>
<td>Total phospholipid (µg)</td>
<td>1377</td>
<td>63.46</td>
</tr>
<tr>
<td>Choline phosphatide (µg)</td>
<td>485</td>
<td>24.03</td>
</tr>
<tr>
<td>Phosphatidyl choline (µg)</td>
<td>876</td>
<td>38.81</td>
</tr>
<tr>
<td>Phosphatidyl choline (µg)</td>
<td>490</td>
<td>23.11</td>
</tr>
<tr>
<td>Ethanolamine phosphatide (µg)</td>
<td>386</td>
<td>20.86</td>
</tr>
<tr>
<td>Phosphatidyl ethanolamine (µg)</td>
<td>375</td>
<td>25.12</td>
</tr>
<tr>
<td>Phosphatidyl ethanolamine (µg)</td>
<td>276</td>
<td>22.65</td>
</tr>
<tr>
<td>Sphingomyelin (µg)</td>
<td>99</td>
<td>7.23</td>
</tr>
</tbody>
</table>

* Total lipid determinations were only made on spermatozoa from four bulls.

Seminal plasma lipids

The phospholipids of seminal plasma were somewhat different qualitatively from those in spermatozoa. Analysis by thin-layer chromatography indicated the presence of two lipid constituents migrating near the solvent front that were not present in spermatozoal phospholipids (Text-fig. 1). These two

![Text-fig. 1. Separation of phospholipids on silica gel G. Solvent: chloroform-methanol-water-acetic acid, 45:45:5:5, v/v/v/v. Indicator: 25% sulphuric acid. Lipids applied: (1) seminal plasma phospholipids, (2) spermatozoal phospholipids, (3) phosphatidyl ethanolamine, (4) phosphatidyl choline, (5) sphingomyelin. Lipids tentatively identified: LL, lysolecithin; Cere., cerebroside; Poly., polyglycerol phosphatide.](image-url)
lipid constituents were tentatively identified as polyglycerol phosphatide and cerebroside.

The average concentrations of the various lipid components of the seminal plasma from fourteen bulls are listed in Table 2. The total lipid was composed of 30.1% phospholipid and 19% cholesterol. The choline phosphatides accounted for 53.7% of the total phospholipid with the ethanolamine phosphatides, sphingomyelin and polyglycerol phosphatide making up 26.8%, 14.1% and 7.2% respectively.

Table 2

Concentrations of lipids in the seminal plasma from fourteen bulls

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Concentration/ml seminal plasma</th>
<th>Percentage of total phospholipid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>S.E.</td>
</tr>
<tr>
<td>Total lipid (mg)</td>
<td>1.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Total cholesterol (µg)</td>
<td>198</td>
<td>19.75</td>
</tr>
<tr>
<td>Total phospholipid (µg)</td>
<td>313</td>
<td>29.33</td>
</tr>
<tr>
<td>Total plasmalogen (µg)</td>
<td>125</td>
<td>12.04</td>
</tr>
<tr>
<td>Choline phosphatide (µg)</td>
<td>168</td>
<td>16.35</td>
</tr>
<tr>
<td>Phosphatidyl choline (µg)</td>
<td>94</td>
<td>10.00</td>
</tr>
<tr>
<td>Phosphatidial choline (µg)</td>
<td>74</td>
<td>7.27</td>
</tr>
<tr>
<td>Ethanolamine phoshatide (µg)</td>
<td>84</td>
<td>7.82</td>
</tr>
<tr>
<td>Phosphatidyl ethanolamine (µg)</td>
<td>33</td>
<td>3.60</td>
</tr>
<tr>
<td>Phosphatidial ethanolamine (µg)</td>
<td>51</td>
<td>4.95</td>
</tr>
<tr>
<td>Sphingomyelin (µg)</td>
<td>44</td>
<td>3.97</td>
</tr>
<tr>
<td>Polyglycerol phosphatide (µg)</td>
<td>17</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Table 3

Fatty acid and aldehyde content in the choline and ethanolamine phosphatide fractions of spermatozoa and seminal plasma from fourteen bulls

<table>
<thead>
<tr>
<th>Fatty acid or aldehyde</th>
<th>Spermatozoa</th>
<th>Seminal plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Choline phosphatide</td>
<td>Ethanolamine phosphatide</td>
</tr>
<tr>
<td></td>
<td>(14)*</td>
<td>(5)*</td>
</tr>
<tr>
<td>10:0</td>
<td>3.5†</td>
<td>1.6</td>
</tr>
<tr>
<td>12:0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>14:0 DMA</td>
<td>10.6</td>
<td>1.2</td>
</tr>
<tr>
<td>14:0</td>
<td>3.6</td>
<td>1.6</td>
</tr>
<tr>
<td>16:0 DMA</td>
<td>31.6</td>
<td>4.1</td>
</tr>
<tr>
<td>16:0</td>
<td>11.8</td>
<td>4.5</td>
</tr>
<tr>
<td>16:1</td>
<td>2.4</td>
<td>1.4</td>
</tr>
<tr>
<td>18:0</td>
<td>4.2</td>
<td>10.4</td>
</tr>
<tr>
<td>18:1</td>
<td>2.5</td>
<td>9.2</td>
</tr>
<tr>
<td>18:2</td>
<td>0.9</td>
<td>14.3</td>
</tr>
<tr>
<td>20:4</td>
<td>0.8</td>
<td>5.5</td>
</tr>
<tr>
<td>22:6</td>
<td>28.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* Numbers in parentheses represent number of chromatographed samples.
† Values are mean peak area as a percentage of the total peak area.
and 5.4%, respectively. The plasmalogens constituted 39.9% of the phospholipid with the major component being phosphatidal choline.

Fatty acids and aldehydes

The relative percentages of the fatty acids and aldehydes are presented in Table 3.

Palmitic acid (16:0) was the most abundant saturated fatty acid in both phosphatide fractions of spermatozoa and in ethanolamine phosphatide of seminal plasma. In the choline phosphatide fraction of seminal plasma stearic acid (18:0) made up a higher percentage of the total fatty acids than palmitic acid.

The major unsaturated fatty acid in the choline phosphatide fractions of spermatozoa was docosahexaenoic acid (22:6), while in ethanolamine phosphatide fractions, linoleic acid (18:2) was the predominant unsaturate. Oleic acid was the predominant unsaturate in the choline phosphatide fraction of seminal plasma and linoleic acid (18:2) in the ethanolamine phosphatide fraction.

The choline phosphatide fractions of the spermatozoa from the two Guernsey bulls used in the study were completely devoid of caproic acid (10:0) and palmitoleic acid (16:1). No other differences between bulls or breeds were observed.

Palmıtáldehyde (16:0 dMa) and myristaldehyde (14:0 dMa) were the only aldehydes detected in the choline and ethanolamine phosphatide fractions. Palmıtáldehyde was the most abundant.

DISCUSSION

The quantity of total lipid per 10⁹ spermatozoa and per ml seminal plasma was lower than values reported by Komarek et al. (1964). This difference may have been due to differences in lipid extraction technique; however, in preliminary experiments, ultrasonic treatment using a Branson Model S-75 sonifier on spermatozoa before lipid extraction did not increase the quantity of lipid extracted from spermatozoa.

The relative amounts of phospholipid and cholesterol were similar to results of Miller (1960) and Komarek et al. (1964). Likewise, the percentage of cholesterol in seminal plasma lipid agreed with previous reports. However, we found the percentage phospholipid in seminal plasma lipid to be considerably less than reported by Komarek et al. (1964), i.e. 30.1% compared to 68.6%. This difference may be explained by the fact that the quantitative methods employed in these two investigations differed considerably. In our study the cerebroside was excluded from quantitation with phospholipid since cerebroside does not contain phosphorus; conversely, the gravimetric procedure in their study would include cerebroside in the quantitation of phospholipid.

The relative proportions of choline phosphatides to ethanolamine phosphatides in the spermatozoal lipids were almost identical to that reported by Scott, Dawson & Rowlands (1963) for rat spermatozoa recovered from the ductus deferens. Gray (1960b) reported the phosphatides of whole ram semen...
fulfilment
Data
with
lysis
fractions.
in
mitochondria
of
source
chondria
amine,
Ballard,
tidyl
fractions.
made
of
were
constituent
the
1962)
plasmalogen.
The
findings.
making
of
phospholipid
of
ram
spermatozoa
while
we
reported
9-1%
of
the
phospholipid
for
bull
spermatozoa.
The
finding
that
plasmalogen
constituted
an
average
of
35-2%
of
the
total
phospholipid
of
bull
spermatozoa
agreed
with
Masaki
&
Hartree
(1962)
who
found
five
samples
of
bull
spermatozoa
contained
from
32
to
44%
of
the
phospholipid
in
the
form
of
plasmalogen.
However,
our
results
were
lower
than
the
50
to
55%
plasmalogen
reported
for
ram
spermatozoal
phospholipid
by
Gray
(1960b)
and
Hartree
&
Mann
(1961).
Scott
et
al.
(1963),
on
the
other
hand,
reported
that
ram
spermatozoal
phospholipids
contained
only
20%
plasmalogen.
The
polyglycerol
phosphatide
was
the
smallest
phospholipid
fraction
in
the
bull
semen.
This
substance
has
previously
been
reported
to
be
a
constituent
of
ram
spermatozoa
by
Hartree
&
Mann
(1961).
The
fatty
acid
composition
of
the
choline
and
ethanolamine
phosphatides
of
bull
spermatozoa
and
semen
differed
considerably
from
that
reported
previously
for
whole
bull
semen
(Dietz,
Pickett,
Komarek
&
Jensen,
1963),
bull
spermatozoa
(Miller,
1960),
the
diglyceride
fraction
of
bull
semen
(Terner
&
Korsh,
1962)
and
the
free
fatty
acids
of
ram
spermatozoa
(Hartree
&
Mann,
1961).
Analysis
of
choline
plasmalogen
and
lecithin
of
ram
semen
by
Gray
(1960a)
compared
well
with
our
fatty
acid
analysis.
However,
Gray
(1960a)
found
considerable
quantities
of
15-
and
17-carbon
fatty
acids
which
were
not
observed
in
our
analysis,
while
we
observed
considerable
quantities
of
docosahexaenoic
acid
(22:6)
in
the
spermatozoal
choline
phosphatide
fractions.
Docosahexaenoic
acid
and
other
polyenoic
acids
have
been
found
in
lecithin
fractions
of
mouse
brown
fat
(Spencer
&
Dempster,
1962)
phosphatidyl
ethanolamine
fractions
of
human
platelets
(Marcus,
Ullman,
Safier
&
Ballard,
1962),
rabbit
liver
phospholipids
(Moore
&
Williams,
1963),
ethanolamine,
serine
and
choline
phosphatides
of
human
erythrocytes
(Farquhar,
1962)
and
ox
retina
fatty
acids
(Hands,
Sutherland
&
Bartley,
1965).
In
most
of
these
studies
the
presence
of
the
polyenoic
acids
was
attributed
to
the
mitochondria
of
cells
or
issues.
Richardson,
Tappel,
Smith
&
Houle
(1962)
analysed
heart
and
liver
mitochondria
of
numerous
species
of
fish
and
found
that
docosahexaenoic
acid
made
up
to
23-1%
of
the
total
fatty
acid
content
in
certain
species.
It
thus
seems
highly
probable
that
the
mitochondrial
helix
of
the
sperm
cell
was
the
source
of
the
docosahexaenoic
acid
found
in
the
spermatozoal
phospholipids.
Palmitaldehyde
and
myristaldehyde
were
the
only
two
aldehydes
identified
in
our
study
and
the
former
was
the
most
abundant
in
both
phosphatide
fractions.
Insufficient
quantities
of
phosphatide
prevented
more
detailed
analysis
of
the
aldehyde
constituents
such
as
that
performed
by
Gray
(1960a)
with
choline
plasmalogen
of
ram
semen.

ACKNOWLEDGMENTS

Data
presented
are
taken
from
a
thesis
presented
by
the
senior
author
in
partial
fulfilment
of
the
requirements
for
the
Ph.D.
degree,
University
of
Minnesota.

Bovine
semenal
phospholipids
209
Gratitude is expressed for the financial aid and cooperation of Badger Breeders Cooperative, Shawano, Wisconsin; Consolidated Breeders Cooperative, Anoka, Minnesota; East Central Breeders Cooperative Association, Waupun, Wisconsin; Minnesota Valley Breeders Association, New Prague, Minnesota; and Tri-State Breeders Cooperative, Westby, Wisconsin.

REFERENCES

GRAY, G. M. (1960a) The phospholipids of spleen with special reference to the fatty acid and fatty aldehyde compositions of the lecithin and kephalin fractions. Biochem. J. 77, 82.
Bovine seminal phospholipids

