The complete control of murine pregnancy from embryo implantation to parturition

Jumpei Terakawa1,2, Takaho Watanabe3, Rutsuko Obara3, Makoto Sugiyama1,2, Naoko Inoue1, Yasushige Ohmori1, Yoshinao Z Hosaka2 and Eiichi Hondo1

1Laboratory of Animal Morphology, Division of Biofunctional Development, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan, 2Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan and 3Hatano Research Institute, Food and Drug Safety Center, Kanagawa 257-8523, Japan

Correspondence should be addressed to E Hondo; Email: ehondo@agr.nagoya-u.ac.jp

Abstract

The ovary is the main secretory source of progestin and estrogen and is indispensable to the maintenance of all events of pregnancy in mice. The purpose of this study was to control all processes of pregnancy in mice, from embryo implantation to parturition, without ovaries. The ovaries were removed before embryo implantation, and a single injection of medroxyprogesterone acetate (MPA) was given. Embryo implantation was induced by leukemia inhibitory factor, which can substitute 17β-estradiol (E2). Continuous exposure to E2 was necessary at mid-pregnancy, when placentation was completed. All mice sustained pregnancy without ovaries before parturition, which was initiated by the removal of E2 and MPA. Murine pregnancy is a complicated process involving embryo implantation, placentation, and parturition. Complete control of pregnancy was achieved with the simple treatment of MPA and E2 after induction of embryo implantation. Here, time-dependent events in the uterus during pregnancy could be realized without the ovaries, because the initiation of each event could be stringently controlled by hormonal treatments.

Reproduction (2012) 143 411–415

Introduction

The ovary is the main secretory source of progestin and estrogen and is indispensable to maintenance of pregnancy throughout gestation in many mammals, including cows (Estep Green et al. 1967), goats (Meites et al. 1951), dogs (Verstegen-Onclin & Verstegen 2008), and/or rabbits (Pickworth & Lamming 1967). On the other hand, an ovariectomy at mid-pregnancy or the later trimester of pregnancy does not disrupt the process of pregnancy in several mammals, including humans (Csapo et al. 1972), monkeys (Albrecht et al. 2000), guinea pigs (Bland & Donovan 1969), and/or mares (Hinrichs et al. 1987), whose progestin and estrogen are supplied by other tissues such as the placenta. In ovariectomized mares, a daily single injection of progesterone is sufficient to establish and maintain pregnancy after embryo transfer (Hinrichs et al. 1987). In addition, ovariectomized ferrets cannot sustain pregnancy with any steroid treatment (Wu & Chang 1972). The steroid requirements for pregnancy are dependent on the animal species.

The ovary is absolutely necessary for murine pregnancy (Rubinstein & Forbes 1963). In mice, serum progesterone levels increase with the progress of pregnancy, reach a peak at gestation day 16 (D16; the first day of pregnancy (D1) is determined as the morning a vaginal plug is observed in a female that had been housed with a male the previous evening), and rapidly decrease before parturition (Murr et al. 1974). A transient increase in 17β-estradiol (E2) at D4 is essential for embryo implantation (McCormack & Greenwald 1974). Serum E2 levels increase from mid-pregnancy to term and decline rapidly before delivery (Barkley et al. 1977). Ovariectomy at any time during pregnancy results in abortion in mice, even if progesterone is administered.

Here, we attempted to control murine pregnancy completely, from embryo implantation to parturition, using mice that were ovariectomized before the implantation period, with hormonal treatments.

Results

The number of implantation sites at the ninth day of experimental pregnancy day (ED9) was 10.2 ± 4.2 (n = 11, average ±s.d.) after injection with leukemia inhibitory factor (LIF). The number of placenta or living fetuses at ED22 was verified in mice, inside which the E2 implant and medroxyprogesterone acetate (MPA) were
left. All ovariectomized mice \((n=7)\) had formed the placenta (8.6 \(\pm\) 7.2/head, average \(\pm\) S.D.), and 53 of 60 pups (88.3\%) were alive (Table 1). Nine of ten mice underwent successful parturition by removal of the silicone tube containing E2 and MPA (Table 1). One mouse died at ED19, although the pregnancy was sustained. Forty-three pups (4.8 \(\pm\) 4.0/head, average \(\pm\) S.D.) were delivered, of which 36 (83.7\%) were alive (Table 1). The number of the metrial glands (11.0 \(\pm\) 3.7/ head, average \(\pm\) S.D.), which were counted after parturition, was consistent with the number of implantation sites at ED9 (Table 1).

Plasma levels of MPA were almost constant and not high through pregnancy (Fig. 1A) compared to those of progesterone during normal pregnancy (Murr et al. 1974). MPA was rapidly declined after ED20, at which MPA was removed for induction of the parturition, and not detectable at ED23 (Fig. 1A). The concentrations of E2 became slightly higher during ED11 and ED17 after the silicone tube was implanted (Fig. 1B). Elevation of E2 was observed after parturition (ED24, Fig. 1B).

The mammary glands were sparse among the fat tissue in ovariectomized mice (Fig. 2A) compared to that in the normal pregnant mice (Fig. 2B). Secreted milk was stored in the alveolus of ovariectomized mice, which is occasionally enlarged (Fig. 2A). The alveolar epithelium of these mice is thinner than the control (Fig. 2C and D).

Discussion

Successful pregnancy, from initiation of embryo implantation to parturition, was completely achieved artificially in ovariectomized mice by exogenous treatments according to the experimental procedure. LIF lies downstream of estrogen and is an essential factor of murine embryo implantation (Chen et al. 2000). Although female \(Lif\)-deficient mice are infertile, injection with LIF can recover the implantation process, and embryos are sustained to birth if the mother possesses ovaries (Chen et al. 2000). This effect is completely reflected by that of E2 (Chen et al. 2000). The requirement for E2 at the time of implantation is very low (<10 ng/head; Milligan & Finn 1997) and excess amounts of E2 disrupt implantation. Therefore, we substituted LIF for E2 to facilitate implantation control. Our finding suggests that LIF priming at ED6 of pregnancy and simultaneous administration of progesterone (MPA) can sustain pregnancy at the earliest until ED11. Serum levels of MPA were almost constant after injection (Fig. 1A). This experimental model could be applied to precise analysis of trophoblast differentiation toward completion of placentation and/or vasculogenesis during placentation. Embryo implantation was also induced by other molecules such as cAMP except for E2 in mice (Holmes & Bergström 1975). Because pregnancy was not sustained with progesterone alone after cAMP-induced implantation, it was not determined whether cAMP was sufficient for complete embryo implantation (Holmes & Bergström 1975). It might be due to failure of sustenance of pregnancy after mid-pregnancy.

Table 1 Maintenance of pregnancy in ovariectomized mice with hormonal treatments.

<table>
<thead>
<tr>
<th>Removal of E2 (ED17) and MPA (ED20)</th>
<th>No. of pregnant mice</th>
<th>Pregnancy rates (%)</th>
<th>Total no. of placetas (live; ED22)</th>
<th>Birth rates (%)</th>
<th>Total no. of birth (live)</th>
<th>Total no. of MGs (ED24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>7</td>
<td>100</td>
<td>60 (53)</td>
<td>0</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td>+</td>
<td>10</td>
<td>100</td>
<td>N/A</td>
<td>90</td>
<td>43 (36)</td>
<td>110</td>
</tr>
<tr>
<td>Normal pregnancy</td>
<td>4</td>
<td>100</td>
<td>N/A</td>
<td>100</td>
<td>58 (58)</td>
<td>69</td>
</tr>
</tbody>
</table>

E2, the silicone tube containing with E2; MPA, medroxyprogesterone acetate; MGs, the metrial glands; and N/A, not applicable.
The control of murine pregnancy

parturition by removal of the silicone tube containing E_2 and MPA (Table 1). The time-point of steroid removal was the start point of parturition in this study. This is a very useful model for analysis of the molecular mechanisms of parturition without functioning ovaries. The concentration of plasma E_2 was higher after parturition at ED24 (n=2). E_2 derivative, E_2 benzoate used in this study, itself does not have high estrogenic activity as E_2 (Whitman et al. 1937). This derivative dissociates benzoate rapidly after administration into the body (Dunn et al. 1977). The antibody for E_2 inside the EIA system does not show any cross-reactivity with it. Therefore, the removal of MPA at ED23 might promote dissociation of benzoate very rapidly to produce E_2.

The live pups were born alive, however, they all died within a day after parturition. It was because the mammary glands of the mothers did not grow well (Fig. 2). The pups from the normal mother were transferred to the ovariectomized mother. However, the pups could not live over 48 h. Relaxin derived from the ovary is essential to develop the mammary gland (Zhao et al. 1999). The morphological structures of the mammary gland in ovariectomized mice were quite similar to those in the mice without a functional relaxin gene (Zhao et al. 1999). Previous study showed that the administration of relaxin extract from pregnant rabbit serum and/or pregnant sow ovaries improved the number of mice which reared their pups after ovariectomy at mid-pregnancy and subsequent maintenance by daily injection of progesterone and E_2 (Hall 1957).

Delivered pups from ovariectomized mother had been raised by the normal mother since immediately after parturition (n=3). These pups did not grow under the foster mother (died in a day). The possible reasons why the pups from ovariectomized mice could not live long are as follows: 1) the levels of two steroids, MPA and E_2, are not high enough for the embryos to urge normal development of the mammary glands. Mice deficient in the prostaglandin receptor that binds to prostaglandin F2alpha cannot deliver their fetuses because the corpora lutea does not regress, and the levels remain high (Sugimoto et al. 1997). In these mice, ovariectomy could induce parturition because of the decline in the sex steroids (Sugimoto et al. 1997). Ninety percent of ovariectomized mice underwent successful parturition by removal of the silicone tube containing E_2 and MPA (Table 1). The time-point of steroid removal was the start point of parturition in this study. This is a very useful model for analysis of the molecular mechanisms of parturition without functioning ovaries. The concentration of plasma E_2 was higher after parturition at ED24 (n=2). E_2 derivative, E_2 benzoate used in this study, itself does not have high estrogenic activity as E_2 (Whitman et al. 1937). This derivative dissociates benzoate rapidly after administration into the body (Dunn et al. 1977). The antibody for E_2 inside the EIA system does not show any cross-reactivity with it. Therefore, the removal of MPA at ED23 might promote dissociation of benzoate very rapidly to produce E_2.

The live pups were born alive, however, they all died within a day after parturition. It was because the mammary glands of the mothers did not grow well (Fig. 2). The pups from the normal mother were transferred to the ovariectomized mother. However, the pups could not live over 48 h. Relaxin derived from the ovary is essential to develop the mammary gland (Zhao et al. 1999). The morphological structures of the mammary gland in ovariectomized mice were quite similar to those in the mice without a functional relaxin gene (Zhao et al. 1999). Previous study showed that the administration of relaxin extract from pregnant rabbit serum and/or pregnant sow ovaries improved the number of mice which reared their pups after ovariectomy at mid-pregnancy and subsequent maintenance by daily injection of progesterone and E_2 (Hall 1957).

Delivered pups from ovariectomized mother had been raised by the normal mother since immediately after parturition (n=3). These pups did not grow under the foster mother (died in a day). The possible reasons why the pups from ovariectomized mice could not live long are as follows: 1) the levels of two steroids, MPA and E_2, are not high enough for the embryos to urge normal development (Murr et al. 1974, Barkley et al. 1977); and 2) the embryos require additional ovarian factors from the mother for normal development.

When we counted the number of pups in the morning after parturition, the number of delivered pups was 4.78 on an average, which was significantly less than the prospective number of implantation sites. It is possible that some pups were eaten by their mothers because their young died after birth accompanying maldevelopment of the mammary glands.

This is the first report on control of whole pregnancy in mice, from embryo implantation to parturition, by exogenous treatments without the ovaries. According to the protocol, almost all the mice could sustain pregnancy. Murine pregnancy is a very complicated process involving embryo implantation, placentaion, and parturition and contains multiple cellular/tissue events. In addition to this, the timing of the initiation of each event depends on that of mating time (up to 12 h). This model is quite helpful in the analysis of
transcriptomes and proteomes in the uterus, because time-dependent events can be traced exactly at any time during pregnancy.

Materials and Methods

Animal

All experimental procedures were performed under avertin anesthesia (Sigma–Aldrich) according to the guidelines established by the Committee for Animal Welfare at Nagoya University (approval number: 2010042803). ICR mice (Japan SLC, Shizuoka, Japan) of 8–12 weeks of age were used in the experiments. Mice were housed at 23 ± 3 °C in controlled light–darkness cycles (1200 h light:1200 h darkness) and were fed ad libitum.

Control of pregnancy

The protocol of the experiment is described in Fig. 3A. Mice were ovariectomized between 1730 and 1900 h on D3 (D1 = vaginal plug), and MPA (100 μl/head; Pfizer Inc, New York, NY, USA) was injected s.c. at the dorsal limber region (Fig. 3B). I.p. injection with LIF (25 μg/head), which can substitute estrogen (Chen et al. 2000), was given to induce embryo implantation at ED6. Because embryo implantation was occurred at D4 in normal pregnancy (McCormack & Greenwald 1974), this experimental procedure was 2 days late compared to the normal pregnancy after embryo implantation. Recombinant LIF protein was prepared according to a previous report (Terakawa et al. 2011). A silicone tube containing 50 μl of 25 μg/ml E2 benzoate (Kyoritsu Seiyaku, Tokyo, Japan) was s.c. inserted at the dorsal region at ED11 (Fig. 3B), as a previous study reported that a silastic implant with 10–33 μg/ml E2 was sufficient to maintain pregnancy during this period (Milligan & Finn 1997, Okada et al. 2005). The silicone tube consists of inner silicone tube (i.d. 2 mm, o.d. 3 mm, and 20 mm in length; Kaneka Medix Corp, Osaka, Japan) and outer polyethylene tube (i.d. 3 mm, o.d. 4 mm, and 8 mm in length; Imamura, Tokyo, Japan), and both sides of edge were covered by the silicone (Shin-Etsu Chemical Co Ltd, Tokyo, Japan) after E2 was infused (Fig. 3C). The silicone tube was soaked in sterile saline before the day of transplantation. To deliver the fetuses, the silicone tube with E2 was removed at ED17, and MPA was removed at ED20. The expected date of delivery (EDD) was ED22.

![Figure 3 Experimental procedure to control pregnancy in mice (A). Medroxyprogesterone acetate (MPA) is injected (B, arrowhead) simultaneously with ovariectomy at D3. LIF administrated at ED6 induces embryo implantation. A silicone tube with 17β-estradiol (E2) is inserted at ED11 (B, arrow; and C). E2 and MPA are removed for parturition at ED17 and ED20 respectively. The EDD is ED22.](image-url)

Plasma levels of steroid hormones

Blood samples (n = 3–5) from the mice of the experimental group were collected via the tail vein at ED5, 8, 11, 14, 17, 20, and 23 (or 24) respectively. Each plasma was isolated and stored at −80 °C until the measurement. E2 concentration was measured by the E2 EIA kit (Cayman Chemical Company, Ann Arbor, MI, USA) according to the instruction manual. Detection limit of this assay system was 11.8 pg/ml.

Plasma levels of MPA were determined by LC-MS/MS. Ten microliters of centrifuged supernatant from the mixture of 20 μl of each plasma and 80 μl of methanol (Wako, Osaka, Japan) were applied to ACQUITY Ultra Performance LC (UPLC; Waters, Milford, MA, USA) with ACQUITY UPLC HSS T3 column (50×2.1 mm, i.d. 1.8 μm; Waters) by the following conditions: flow rate, 0.4 ml/min; column temperature, 40 °C; and mobile phase, 0.1% formic acid (Wako)/methanol containing 0.1% formic acid. UPLC was connected with Micromass Quattro Premier XE Tandem Quadrupole Mass Spectrometer (Waters). The measurement condition was as follows: method: electrospray ionization, positive-mode; capillary voltage: 3.5 kV; cone voltage: 25 V; collision energy: 15 eV; and precursor ion→product ion: m/z 387.4→327.1. The concentrations of MPA in samples were calculated on the calibration curve, which was determined by the normal murine plasma containing known concentrations of MPA.

Statistical analysis

Statistical analysis was performed by one-way ANOVA. Values of E2 at ED23 and ED24 were excluded from the statistical analysis because the number of samples was insufficient for one-way ANOVA.

Evaluation of successful pregnancy

The number of the placenta or living pups at term of pregnancy (ED22) was counted using mice, inside which the E2 implant and MPA were left (n = 7). To confirm whether the fetuses were alive or not, their hind limbs were lightly pinched by the forceps immediately after the fetuses were picked out from the uterus. Delivered pups were counted on the peri-EDD (n = 10). Mothers were sacrificed after parturition, and the number of the metrial glands, which is the number of predicted implantation sites, was counted. The mammary gland was collected at ED23 in ovariectomized mice and at D21 in normal pregnant mice respectively. Samples were fixed in Bouin’s solution and paraffinized by the conventional procedure. Four micrometer section was prepared and stained with hematoxylin and eosin.
Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This study was partly supported by grants-in-aid for Scientific Research (grant number 20380161) and a grant-in-aid for JSPS Fellows (grant number 229587) from the Japan Society for the Promotion of Science.

References

Received 9 August 2011
First decision 16 September 2011
Revised manuscript received 2 December 2011
Accepted 22 December 2011