Luteal maintenance of pregnancy in the African elephant (*Loxodonta africana*)

F J Stansfield¹,² and W R Allen¹,³

¹The Elephant Research and Conservation Unit, Savé Valley Conservancy, Chiredzi, Harare, Zimbabwe, ²Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110 Gauteng P Bag X 04, South Africa and ³The Paul Mellon Laboratory, ‘Brunswick’, 18 Woodditton Road, Newmarket, Suffolk CB8 9BJ, UK

Correspondence should be addressed to F J Stansfield, 490 Lakeview Crescent, Burrowdale Brooke, Harare, Zimbabwe; Email: fjs@yoafrica.com

Abstract

The ovaries of eight African elephant foetuses and their mothers between 2 and 22 months of gestation, and those of two cycling and two lactating elephants, were examined grossly, histologically and immunocytochemically, with emphasis on the development and regression of accessory corpora lutea (CL) of pregnancy and the steroidogenic capacities of the accessory CL and the foetal ovaries. The results supported recent findings that the accessory CL form as a result of luteinisation, with and without ovulation, of medium-sized follicles during the 3-week inter-luteal period of the oestrous cycle. They enlarge significantly and become steroidogenically active around 5 weeks of gestation, probably in response to the placental lactogen which is secreted by the implanting trophoblast of the conceptus. The large luteal cells stained strongly for 3β-hydroxysteroid dehydrogenase (3βHSD) activity throughout the 22-month gestation period although they showed vacuolation and other degenerative changes in the final months of gestation coincident with hypertrophy and hyperplasia of 3βHSD-positive interstitial cells in the foetal gonads. It is proposed that the progestagens secreted by the enlarged gonads of the elephant foetus may function both to assist the maternal ovaries in supporting the pregnancy state and to induce torpor and intrauterine immobility of the rapidly growing foetus.

Reproduction (2012) 143 845–854

Introduction

As in equids (*Squires & Ginther 1975*), a feature of pregnancy in elephantids is the presence of multiple, large, accessory corpora lutea (CL) in the maternal ovaries (*Perry 1953, Hodges 1998*). In both genera these secondary luteal structures make their appearance at the end of the first month of gestation (*Amoroso et al. 1948, Allen et al. 2002*) and they appear to form both by ovulation and by luteinisation of unruptured follicles (*Allen 1975*). Their advent causes a marked secondary rise in progesterone/progestagen concentrations in maternal blood (*Allen 1975, Meyer et al. 2004*). In the pregnant mare, the accessory CLs develop equally on both maternal ovaries as a result of the LH-like biological activity of equine chorionic gonadotrophin (eCG) causing ovulation/luteinisation of mature Graafian follicles stimulated to grow by 10–12 day waves of pituitary FSH released throughout the physiological breeding season in both cycling and pregnant animals (*Evans & Irvine 1975, Urwin & Allen 1982*). The equine accessory CLs also secrete oestrogens (*Daels et al. 1991*) and they regress and disappear around mid-gestation when the diffuse, epitheliochorial placenta is now sufficiently well established to secrete the progestagens necessary to maintain the pregnancy state without any further contribution from the maternal ovaries (*Holtan et al. 1979*).

In pregnant elephant, in contrast, mature follicles are rarely, if ever, seen in the maternal ovaries (*Perry 1964, 1974, Short & Buss 1965, Laws 1969, Hodges 1998, Allen 2006*) and it is now proposed that the accessory CLs of pregnancy first form as a result of luteinisation of small (0.8–1.2 cm) follicles that develop in response to the first of the two peaks in serum LH concentrations which characterise the 20–22 day inter-luteal period of the elephant oestrous cycle (*Lueders et al. 2010, 2011*). These accessory luteal structures, seen clearly by serial transrectal ultrasonographic examinations of the maternal ovaries (*Lueders et al. 2011*), form predominantly, but not exclusively, on the ovary ipsilateral to the uterine horn that will contain the conceptus (*Allen et al. 2002*), and they apparently remain dormant (and non-secretory) during the remainder of the inter-luteal phase, the release of the second ovulation-inducing LH peak (*Kapustin et al. 1996,* Reproduction Online).
Brown et al. 1999) and early gestation. They then enlarge greatly to reach diameters of 10–38 mm (Hodges 1998, Lueders et al. 2011) and begin to secrete appreciable quantities of 5α-dihydroprogesterone (5αDHP) and other 5α-pregnanes (Hodges et al. 1994, 1997), as evidenced by the sharp increase in maternal serum progestagen concentrations at this time (Meyer et al. 2004). Whereas eCG secreted by the foetal endometrial cups (Allen & Moor 1972) is the stimulus for secondary luteal development in the pregnant mare (Allen 1975, Terqui & Palmer 1979), it now seems very likely that placental lactogen (ePL) secreted by the trophoblast from around the time of implantation seems very likely to be the luteotrophic stimulus in the pregnant elephant (Yamamoto et al. 2011). Furthermore, the zonary elephant placenta remains steroidogenically inactive throughout gestation (Allen et al. 2002) and the accessory CLs also persist until birth, presumably secreting progestagens required to maintain the pregnancy state (Allen 2006).

Another common feature of pregnancy in equids and elephantids is the considerable hypertrophy of the foetal gonads, both ovaries and testes, during the second half of gestation, followed by a rapid regression and shrinkage back to a typically pre-pubertal size prior to the birth of the horse foal (Cole et al. 1933, Hay & Allen 1975) or elephant calf (Hanks 1971, Allen et al. 2005). This enlargement stems primarily from hyperplasia and hypertrophy of interstitial cells in the foetal gonads of both genera and is added to in the female elephant foetus, but not in the female horse foetus, by the growth of multiple antral follicles (Allen et al. 2005). In both genera the hypertrophic interstitial cells in the foetal gonads secrete steroid hormones, 5αDHP, and other 5α-reduced pregnanes in the elephant (Allen et al. 2002) and a range of C-19 androgens, including androstenedione, DHEA, 3β-hydroxy-5,7-pregnanedien-20-one and 3β-hydroxy-5,7-androstadien-17-one (Tait et al. 1983, 1985) in the mare which are subsequently aromatised to phenolic and Ring B unsaturated oestrogens by the diffuse epitheliochorial placenta (Bhavnani et al. 1969, 1971).

Some interesting questions arise from our sparse and somewhat presumptive knowledge of luteal development, function and dependence during pregnancy in the elephant. For example, do the accessory CLs found routinely in the ovaries throughout gestation really develop from luteinisation of medium-sized unruptured follicles in response to the first of the two serum LH peaks during the 3-week non-luteal phase of the oestrous cycle? If so, how do they remain dormant and non-secretory during the second ovulation-inducing LH peak and early pregnancy? Also, can a temporary and highly productive endocrine gland like a CL remain active and fully functional for as long as the 22-month gestation period of the elephant?

The opportunistic recovery of the uteri and ovaries from adult cycling, anoestrous, and pregnant African elephant cows culled for management reasons in Zimbabwe enabled an examination of these and other aspects of luteal function during pregnancy in this species. The findings are reported in this paper.

Results

Dealing first with the two cycling females, the right ovary of the 30 y.o. semi-tamed female that had died suddenly of natural causes exhibited two CLs, one of which was composed of homogenous, cream-coloured luteal tissue indicative of a relatively young and functional organ, while the luteal tissue of the second, smaller CL was more pitted and khaki-coloured and therefore thought to indicate an ageing and regressing CL heading towards corpus nigrans (CN) status, likely representing the CL of the previous oestrous cycle (Fig. 1a). Histologically, the tissue of the younger CL was a dense mass of typically small luteal cells each with relatively little, pale staining cytoplasm and a round, very pale nucleus with one or more prominent nuclei (Fig. 1b). Interestingly, the cytoplasm of these small luteal cells stained only faintly for 3β hydroxysteroid dehydrogenase (3βHSD) activity, thereby suggesting a very limited potential to synthesise progestagens (Fig. 1c). A collapsed, haemorrhagic follicle (or cyst?) was also present on the right ovary (Fig. 1a) and neither follicles nor CLs could be indentified in the left ovary.

The other non-pregnant elephant was particularly interesting as its right ovary exhibited a visible ‘blood spot’ indicative of a very recent ovulation (Fig. 1e) plus 7 small-to-medium-sized (6–11 mm diameter) luteinising follicles/accessory CL, one of which had a clear ovulation stigma that was also relatively young in appearance (Fig. 1f). The left ovary exhibited two more small luteal bodies both of which had youthful ovulation stigma. All the luteal bodies were composed either of already pale, homogenous luteal tissue or they still had a central core of pale follicular fluid surrounded by a variably luteinised follicle wall (Fig. 1g). The ovulation ‘blood spot’ covered a small accumulation of clotted blood adhered to the already luteinising follicle wall. Two of the luteal bodies were examined histologically and both showed the same accumulation of small luteal cells with pale staining nuclei and minimal cytoplasm seen in the nulliparous cycling female (Fig. 1h). Thus, it seemed reasonable to conclude that this animal had probably been in oestrus recently and the ‘blood spot’ represented the recent, possibly fertile, ovulation resulting from the second LH peak of the inter-luteal period while the nine luteal bodies, three of which had clear ovulation stigma, represented the luteinised follicles described by Lueders et al. (2011) as developing.

Reproduction (2012) 143 845–854
following the first LH rise of the inter-luteal period that had occurred 3 weeks previously.

Turning to pregnancy, in the earliest stage of gestation encountered at 60 days, the left (ipsilateral to the conceptus) ovary contained two large CL of 42 and 38 mm diameter respectively (Fig. 2a). Both consisted of cream-coloured, homogenous luteal tissue and both showed prominent ovulation stigmata (Fig. 2a). The right (contralateral) ovary contained a 40 mm diameter CL of the same appearance and with a definite, although much smaller, ovulation stigma (Fig. 2a). Histologically, each CL was composed of a uniform, pavement-like arrangement of luteal cells that were now much larger, due to appreciably more cytoplasm, than the small luteal cells that constituted the cyclical CL. Small blood vessels were scattered throughout the luteal tissue along with strands of fibroblast cells constituting the structural framework (Fig. 2b). These large luteal cells were uniformly stained by the anti-3βHSD antibody but with a particularly dark area of staining surrounding the nucleus of most cells (Fig. 2c).

At 5.7 months of gestation (36 g foetus, Fig. 2f) the right (ipsilateral) ovary similarly contained two CL (51 and 35 mm diameter) and the left a single CL of 41 mm, all composed of healthy, homogenous luteal tissue that was very slightly more yellowish in colour than those at 60 days; the large 51 mm CL in the ipsilateral ovary had a prominent ovulation stigma (Fig. 2d). Histologically, the tightly packed large luteal cells were very similar in appearance to those in the earlier specimen but with
slight shrinkage and vacuolation of the cytoplasm of some cells (Fig. 2e). These were also stained uniformly by the anti-3βHSD antiserum and they likewise showed increased density of staining around the otherwise pale staining nucleus containing one or more prominent nucleoli.

At the next stage of gestation examined (7.2 months, 463 g foetus), the left and right ovaries each contained three significant CL of 35, 32 and 29 mm diameter on the left (ipsilateral) ovary the first two of which showed large ovulation stigmata and 34, 22 and 21 mm on the right (contralateral) two of which showed stigmata (Fig. 3a). Histologically, the tightly packed large luteal cells still appeared normal and healthy with perhaps a slight increase in shrinkage and vacuolation of the cytoplasm (Fig. 3b) and a basically similar pattern of staining for 3βHSD (Fig. 3c). Four months later in mid-pregnancy (7 kg foetus, 11.2 months gestation) the left (ipsilateral) ovary contained four sizeable CL (28–43 mm diameter) and the right ovary two (24 and 36 mm diameter). Only one CL in the ipsilateral ovary showed a small ovulation stigma (Fig. 3d). The luteal tissue in all three CL was homogenous and very pale yellow in colour and only one of the CL in the ipsilateral ovary showed an ovulation stigma. (e) Histological section of one CL in the ipsilateral ovary showing the typical dense mass of large, healthy looking luteal cells (scale bar = 150 μm). (f) The 36 g foetus recovered from this conceptus (scale bar = 1 cm).

Figure 2 (a) Sectioned ovaries of a pregnant elephant at 60 days of gestation showing two large pale cream-coloured CL (42 and 38 mm diameter) in the ipsilateral ovary and one (40 mm diameter) in the contralateral ovary. The arrow points to a prominent ovulation stigma (scale bar = 1 cm). (b) Histological section of the CL with the ovulation stigma in (a) showing the dense mass of now large, epithelioid luteal cells with pale staining nuclei. There are relatively few strands of supporting fibroblasts (scale bar = 150 μm). (c) Section of the same CL stained with the anti-3βHSD antiserum and showing strong staining in the central region of the cytoplasm surrounding the nucleus (scale bar = 150 μm). (d) Sectioned ovaries from a pregnant elephant at 5.7 months of gestation showing two large CL (51 and 35 mm diameter) in the ipsilateral right and one (41 mm diameter) in the contralateral left ovary. The luteal tissue in all three CL was homogenous and very pale yellow in colour and only one of the CL in the ipsilateral ovary showed an ovulation stigma. (e) Histological section of one CL in the ipsilateral ovary showing the typical dense mass of large, healthy looking luteal cells (scale bar = 150 μm). (f) The 36 g foetus recovered from this conceptus (scale bar = 1 cm).
fibroblast-like interstitial cells in the medulla (Fig. 3f). Interestingly, the cytoplasm of the oocytes and the partly haemolysed red blood cells in the vessels appeared to also take up the chromagen non-specifically. The cortex of the foetal ovary was tightly packed with small primary follicles, a few of which had migrated into the medulla and were just beginning to enlarge (Fig. 3f).

Towards the end of pregnancy (17.5 months, 51.5 kg foetus) the ipsilateral (right) ovary contained three large CL (31–37 mm diameter), the stroma of which, although basically still homogenous, was considerably more yellow/khaki in colour while the single, smaller CL in the left (contralateral) ovary (25 mm diameter) was even more khaki coloured (Fig. 4a). Histologically, the large luteal cells were showing definite signs of degeneration, including pronounced shrinkage of the cytoplasm away from the cell wall leading to the formation of vacuoles that encircled the entire perimeter of most cells, with smaller, isolated vacuoles within the persisting cytoplasm (Fig. 4b). This cytoplasm shrinkage was accompanied by darker, more granular staining of the centrally located persisting cytoplasm with the anti-3βHSD antiserum (Fig. 4c). In addition, the structural strands of fibroblasts were more prominent and now appeared to be separating the aging luteal cells into smaller and more isolated cell pockets (Fig. 4b and c).

Just prior to parturition (139 kg foetus, 22 months gestation) the two large CL, one in each ovary (42 and 36 mm diameter, both with stigmata), were now quite markedly orange/khaki in colour and the luteal tissue

Figure 3 (a) Sectioned ovaries (fixed) from a pregnant elephant at 7.2 months of gestation. Each ovary contains three significant CL (21–35 mm diameter). The solid white arrows indicate two prominent ovulation stigmata and the dotted arrow indicates a CN from a previous oestrous cycle or pregnancy. (b) Histological section of one CL in (a). The tightly packed large luteal cells still appear healthy and (c) they stain strongly for 3βHSD activity particularly around the nucleus (both scale bars = 150 μm). (d) Sectioned ovaries of a pregnant elephant at 11.2 months of gestation carrying a 7 kg foetus. The lower (ipsilateral) left ovary contains four CL (28–43 mm diameter) and the upper (contralateral) right ovary two CL (24 and 36 mm diameter). The homogenous luteal tissue now has a very pale brown/khaki colouration but, (e) histologically, the large, tightly packed luteal cells still appear healthy and functional (scale bar = 150 μm). (f) Section of the ovary of the 11.2 month female foetus stained with the anti-3βHSD antibody and showing the tightly packed small primary follicles in the cortex with a few enlarging follicles that have migrated into the medulla. The interstitial cells in the medulla are still small and fibroblast like and they stain only patchily for 3βHSD activity at this stage (scale bar = 240 μm).
was noticeably less smooth and homogenous, with prominent cracks and fissures radiating out from the central core (Fig. 4d). Histologically, cytoplasmic shrinkage and vacuolation of the luteal cells was very advanced and the structural strands of fibroblasts even more prominent and numerous (Fig. 4e). Overall, staining with anti-3βHSD serum was markedly reduced and now very concentrated to the small volume of cytoplasm present in each luteal cell (Fig. 4f).

Small brown CN were present in the ovaries of the two anoestrous lactating females, calculated on the basis of the weight and height at the shoulder of their calves (Laws 1966, Krumrey & Buss 1968, Whyte 1996, Shrader et al. 2006) to be 7 and 18 months postpartum respectively (Fig. 5a). Histologically, these consisted of an approximately equal mixture of fibroblasts and former luteal cells that had shrunk dramatically to become even smaller than those that comprised the cyclical CL, but still retained their small, pale-staining, spherical nuclei (Fig. 5b). And, curiously, these very shrunken and degenerate-looking luteal cells still showed some patchy staining with the anti-3βHSD antiserum (Fig. 5c).

Discussion

The origin and time of formation of the large accessory CLs that develop in the ovaries of pregnant elephants has aroused considerable speculation over many years (Short 1966, Laws 1969, Smith et al. 1969, Hanks & Short 1972, Smith & Buss 1975, Hodges et al. 1994, 1997,
Hodges 1998 and others), the more so since significant follicular growth is not seen at any stage of gestation in the elephant ovary (Allen 2006, Lueders et al. 2011). However, the findings in the present study lend strong circumstantial support to the novel proposal by Lueders et al. (2011) that these accessory luteal structures form initially by luteinisation of relatively small (5–15 mm diameter) follicles shortly after the first of the two pronounced serum LH peaks which characterise the 3-week inter-luteal period in the elephant, but with the notable exception that, clearly as shown by our demonstration of ovulation stigmata on many of the accessory CL, some of these follicles can actually ovulate before luteinisation commences. In others, particularly the smaller follicles situated deep in the ovarian stroma, luteinisation without ovulation occurs as proposed by Lueders et al. (2011). It is not currently understood why, if ovulation occurs at the first LH peak and mating behaviour involving young bulls is observed (Moss 1983), that pregnancy does not ensue. Ovulation is the culmination of a complex series of events leading to oocyte maturation and its release into the ovarian sac, it is therefore highly likely that these ovulated oocytes are potentially fertile. Blockage to pregnancy therefore may be behavioural in which mating, despite the enthusiastic attention of young bulls, does not take place as females are not fully receptive (Poole et al. 2011), or it may be related to the preparation of the reproductive tract. Mature bulls with mating experience are capable of differentiating between females following the first LH peak and those at fertile oestrus. This signalling from the female, as in the Asian elephant, is probably through pheromone production (Rasmussen & Schulte 1998) which in turn may be influenced by a hormone stimulus, suggested to be oestrogens as in other mammals, which concurrently prepares the fallopian tubes for conception and the uterus for sperm transport and later implantation.

The likelihood that these accessory CL remain dormant in terms of steroid production during at least the remainder of the luteal period, and probably also the first 5–6 weeks of pregnancy, is supported by the present findings of a lack of 3βHSD activity in the luteal cells and those of Meyer et al. (2004) of continuing basal levels of progestagen in the peripheral blood of female elephants between the two LH peaks of the inter-luteal period and only a moderate rise in plasma progestagen concentrations after the second LH peak which may reasonably be assumed stems from the primary or gestational CL that develops from the mature (2.0–2.2 cm) follicle which has ovulated normally in response to the second LH peak. And then, at the end of the first 5–6 weeks of gestation, and presumably in response to the luteotrophic action of the commencing ePL secretion by the implanting trophoblast (Yamamoto et al. 2011), the ‘dormant accessory CL’ are stimulated into action, their small luteal cells hypertrophy to form the typically large luteal cells of a mature CL and they then begin to secrete the much larger quantities of progestagens that give rise to the marked, secondary increase in serum progestagen concentrations measured by Meyer et al. (2004). All these pieces of the jigsaw begin to fall into place well, but the mechanism which enables the accessory CL to lie doggo and remain inactive until stimulated by ePL, but in the face of the second pituitary LH release of the inter-luteal period and the maturation, ovulation, luteinisation and commencing progesterone secretion of the primary (fertile) CL, remains a mystery.

Twenty-two months is indeed a long time for any temporary endocrine gland like a CL to remain active.
and maintain its full secretory function so it is perhaps not surprising that they should show clear histological signs of progressive cell degeneration and loss of steroid synthetic capacity during the second half of gestation. This seems to accord well with the definite decline in, and flattening of, plasma progesterone profiles during the later stages of pregnancy in the elephant (Hodges et al. 1997, Meyer et al. 2004) and it seems reasonable to propose that any shortfall in prostagangnenous production that may be occasioned by this later-stage decline in lutal prostagengen secretion rate is met by an equivalent increase in the capacity of the foetal gonads, either ovaries or testes, to secrete greater amounts of prostagengens as the proportion of steroidogenically active interstitial cells increases. Furthermore, the marked increase in general vascularity seen in the foetal gonads with advancing gestation (F Stansfield & WR Allen 2012, unpublished observations) may function usefully to facilitate the flow of prostagengens from the gonads towards the maternal blood supply via the now highly vascularised endotheliochorial placenta (Wooding et al. 2005).

Returning finally to the original comparison between the hormone secreting capacities of the horse and elephant fetoplacental units, bilateral gonadectomy of the horse foetus in late gestation ablated oestrogen production by the placenta which, in turn, reduced vascular development at the placental interface to lessen placental exchange and cause significant deprivation of foetal development (Pashen & Allen 1979). While equivalent surgical intervention to ablate foetal gonadal secretion of prostagengens is not feasible in the elephant, it is nevertheless interesting to speculate what effects upon foetal development and continuation of the pregnancy state might occur were it to be possible. Clearly, oestrogens are not the important vasculogenic factor involved in placental exchange in the elephant that they are in the horse and it is difficult to conceive that prostagengens, of lutal or foetal origin, would have the same action. It is much more likely from previous studies in other domestic animal species, especially ruminants (Buttle & Forsyth 1976, Watkins & Reddy 1980, Wooding & Beckers 1987, Martal et al. 1997, Takahashi 2006) that the large quantities of elPL secreted by the elephant trophoblast directly onto the endothelium of the adjacent maternal vessels in the elephant endotheliochorial placenta (Allen et al. 2003, Wooding et al. 2005) would act in concert with vasculoendothelial growth factor (VEGF) to stimulate the degree of vasculogenesis required to keep pace with the rate of placental development needed to drive foetal growth. If so, a more likely role for the increasing amounts of foetal gonadal prostagengens secreted in late gestation in the elephant would be, in addition to maintaining cervical closure and myometrial quiescence, to induce torpor and general inactivity in the rapidly enlarging foetus. 5αDHP has potent anaesthetic properties (Holzbauer et al. 1974, Gyermek & Soyka 1975, Mok et al. 1991, Pearson Murphy et al. 2001) and since the combined weight of the foetus and placenta approaches 140 kg towards term (Laws 1966), a hyperactive near-term foetus cramped, due to the nature of its zonary placenta, into just half of the uterus suspended in the abdominal cavity, would clearly be undesirable and could lead to all manner of malpresentations and dystocias at parturition. Thus, perhaps the intrauterine safety and destiny of the elephant foetus, at least in later gestation, is ensured by the tranquilizing properties of the products of its own enlarged and hyperactive gonads.

Materials and Methods

Animals and tissues

The uterus and ovaries, and occasionally the foetal ovaries, were recovered within 3 h of death by free bullet from a total of 10 female elephants aged 8.5 to 38 years (Laws 1966), culled as whole family groups under government licence for management reasons to preserve habitat in the Savé Valley Conservation (SVC) in Southern Zimbabwe; one animal was a tamed female aged 30 years that died suddenly. One or both authors were present at the culling operations and they dissected, sectioned and photographed the maternal and foetal ovaries in the field before taking pieces of CL or CN from the maternal ovaries and pieces of foetal ovary (or the whole embryo) for fixation in >10 volumes neutral buffered formalin which was replaced entirely after 1 h. The elephant cows, both pregnant and non-pregnant, were aged on the basis of eruption and wear of the molar teeth in the lower jaw as described by Laws (1966) and Lee et al. (2011). The stage of gestation in the pregnant animals was estimated on the basis of embryonic/foetal weight using the formula devised by Hildebrandt et al. (2007) for foetuses weighing <2 kg and Craig (1984) for heavier foetuses.

Histology and immunocytochemistry

For normal histology, pieces (~2 cm³) of each maternal CL and foetal ovary were embedded in paraffin wax, sectioned at 5 μm and stained with haematoxylin and eosin (H&E).

For immunostaining, a mouse MAB raised against recombinant-derived 3βHSD of human origin (3β-HSD[37-2]:sc 100466; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used at a dilution of 1:100. The 5 μm paraffin-embedded sections were placed in a 56 °C oven overnight to de-wax them. They were then immersed in a pre-heated (65 °C) bath of high pH antigen unmasking solution (Dako PT link; Dako UK Ltd., Ely, Cambs, UK) and heated to 97 °C for 20 min. After cooling, the slides were rinsed in neutral buffer and transferred to a Dako Plus Autostainer (Dako UK Ltd.) where a computer controlled indirect staining method was performed. Incubations of the optimally diluted primary and secondary antibodies were for 30 min. The secondary antibody, blocking reagents, buffers, substrate, chromagen and nuclear stain were all Envision FLEX reagents (Dako UK Ltd.) optimised for use on

Reproduction (2012) 143 845–854
the Autostainer Plus. After staining, the slides were removed from the machine, dehydrated, cleared and mounted in DPX. The H&E-stained and 3BHS SD-stained slides were examined using an Olympus Laborlux AH-3 microscope (Olympus, Tokyo, Japan) and photographed using the microscope’s built-in camera.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This project was kindly funded, in part, by the China Wildlife Conservation Association and Collingwood Neptune.

Acknowledgements
The authors are most grateful to the owners and staff of the Sáv Valley Conservancy and Mwanga Lodge, Zimbabwe, for their help in collecting the elephant tissues and for their generous hospitality. Mrs Sue Gower kindly carried out the histological and immunocytochemical preparations.

References

Bhavnani BR, Short RV & Solomon S 1969 Formation of oestrogens by the pregnant mare. I. Metabolism of 7α-dehydroisoandrosterone and 4α-3b-androstenedione injected into the umbilical vein. Endocrinology 85 1172–1179. (doi:10.1210/endo-85-6-1172)

Bhavnani BR, Short RV & Solomon S 1971 Formation of oestrogens by the pregnant mare. II. Metabolism of 14b-acetate and 14α-cholesterol injected into the fetal circulation. Endocrinology 89 1152–1157. (doi:10.1210/endo-89-5-1152)

Luteal maintenance in pregnant elephant