Pharmacokinetics of human chorionic gonadotropin after i.m. administration in goats (Capra hircus)

M Saleh, M Shahin, W Wuttke, M Gauly and W Holtz

Department of Animal Science, Georg-August-University, Albrecht-Thaer-Weg 3, 37075 Goettingen, Germany and 1Division of Endocrinology, University Medical Centre, 37075 Goettingen, Germany

Correspondence should be addressed to W Holtz; Email: wholtz@gwdg.de

Abstract

The present investigation addresses the pharmacokinetics of human chorionic gonadotropin (hCG), intramuscularly (i.m.) administered to goats. Nine pluriparous does of the Boer goat breed, 2–6 years of age and weighing 45–60 kg, were administered 500 IU hCG (2 ml Chorulon) deep into the thigh musculature 18 h after superovulatory FSH treatment. Blood samples were drawn from the jugular vein at 2 h intervals for the first 24 h, at 6 h intervals until 42 h, and at 12 h intervals until 114 h after administration. After centrifugation, plasma hCG concentrations were determined by electrochemiluminescence immunoassay. Pharmacokinetical parameters were as follows: lag time, 0.4 (S.E.M. 0.1) h; absorption rate constant, 0.34 (S.E.M. 0.002) h; absorption half-life, 2.7 (S.E.M. 0.5) h; elimination rate constant, 0.02 (S.E.M. 0.002) h; biological half-life, 39.4 (S.E.M. 5.1) h; and apparent volume of distribution, 16.9 (S.E.M. 4.3) l. The plasma hCG profile was characterized by an absorption phase of 11.6 (S.E.M. 1.8) h and an elimination phase of 70.0 (S.E.M. 9.8) h, with considerable individual variation in bioavailability and pharmacokinetical parameters. Biological half-life was negatively correlated (P<0.05) with peak concentration (r= −0.76), absorption rate constant (r= −0.78), and elimination rate constant (r= −0.87). The results indicate that after rapid absorption, hCG remains in the circulation for an extended period. This has to be taken into account when assessing the stimulatory response to hCG treatment on an ovarian level.

Introduction

Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein of 57 kDa consisting of a noncovalently bound α-subunit (92 amino acids) and a distinctive β-subunit (134 amino acids). It has the α-subunit in common with the glycoprotein hormones LH, FSH, and TSH. The β-subunit is unique for each of these hormones and responsible for their specific functions (Gupta & Dighe 2000, Senger 2005, De Rensis et al. 2010). The β-hCG chain shows 80% homology with the 121 amino acid subunit of the LH β-subunit (Norman & Litwack 1997). The prime source of hCG is the trophoblast of the human embryo and, after implantation, the villous syncytiotrophoblast of the placenta (Cole 2010). hCG contributes to maternal recognition of the developing human embryo at about 6–8 weeks of pregnancy (Senger 2005, Cole 2010). Furthermore, it initiates angiogenesis via growth factors to prepare the uterus for implantation (Zygmunet al. 2002, Filicori et al. 2005, Cole 2010) and induces the initial production of progesterone by the corpus luteum until the placenta synthesizes adequate amounts to maintain gravidity (Norman & Litwack 1997).

Due to the structural similarity of hCG with LH, it exerts an effect by binding to LH receptors (Lei & Rao 1994, Birken et al. 1996). The prolonged activity and low clearance rate of hCG, in comparison to endogenous LH, are a consequence of the high glycosylation rate (Cole 2010). More than 75% of the hCG molecules are degraded in the liver; the remaining molecules are eliminated via the kidney (Cole 2010). hCG for clinical purposes is extracted from urine of pregnant women (Farrag et al. 2008). Alternatively, hCG may be derived via recombinant DNA technology from genetically engineered Chinese hamster ovary cells (Farrag et al. 2008).

In humans, hCG is extensively used as an ovulation-inducing agent in lieu of LH (Nader & Berkowitz 1990) and, after introduction of IVF and ICSI, in vitro maturation of oocytes (Farrag et al. 2008). In men, hCG is used to stimulate the Leydig cells to synthesize testosterone to support spermatogenesis (Heller & Leach 1971). In domestic animals, hCG has a wide range of applications. It is used in the context of estrus synchronization in cattle and horses (Schmitt et al. 1996, Ginther et al. 2009) and ovulation induction in sheep and goats (Wani et al. 1997, Saleh et al. in preparation) as well as in fish (Kakhkesh et al. 2010), to overcome the negative effect of premature regression of corpora lutea after superovulatory treatment in goats (Saharrea et al. 1998), and for improving pregnancy rate in cattle.
and goats (Rajamahendran & Sianangama 1992, Fonseca & Torres 2005). There is a paucity of information on the pharmacokinetics of hCG in domestic animals with the exception of cats (Swanson et al. 1997). The objective of this study was to characterize the pharmacokinetics of hCG following an i.m. injection to induce ovulation in superovulated Boer goat does.

Results

The plasma profile arising from the hCG injection is depicted in Fig. 1. Individual variation is reflected by the dimension of the range (shaded area) and s.d.. Parameters characterizing the profile are presented in Table 1. Observed and calculated peak concentrations (C_{peak}) of 64.6 and 70.9 mIU/ml were arrived after 11.6 and 11.0 h, respectively, with substantial individual variation ranging from 40 to 85 mIU/ml for observed and 50 to 99 mIU/ml for calculated peak concentrations. Individual differences in pattern and amplitude of plasma hCG concentration are also reflected by the formidable range in area under the curve (1632–3118 h mIU/ml). The pharmacokinetic parameters are presented in Table 2. Absorption from the site of administration was rapid, as indicated by the lag time (T_0) of 0.4 h and the absorption half-life ($T_{0.5abs}$) of 2.7 h. The mean absorption rate constant (K_a) was 0.34 and the biological half-life ($T_{0.5elm}$) was 39.4 h. Both absorption and elimination of hCG took place in an almost linear fashion (Fig. 2). However, whereas absorption took place rapidly, the elimination phase was characterized by a gradual decline extending to, on the average, 70 h (Table 1); traces of hCG were found in the system after 5 days.

The correlation between absorption rate constant and elimination half-life was $r = -0.78$ ($P = 0.01$). Pearson’s correlation coefficients between peak concentration on the one hand and half-life ($r = -0.76$, $P = 0.02$), elimination rate constants ($r = 0.67$, $P = 0.05$), and apparent volume of distribution ($r = -0.97$, $P = 0.0001$) on the other hand were significant; however, clearance rate was not related ($r = 0.06$, $P = 0.90$).

Discussion

This study addresses the pharmacokinetics of intramuscularly injected hCG in goats. The plasma hCG profile following injection was characterized by rapid absorption (11.6 h) and slow elimination (70.0 h) with substantial individual variation in bioavailability.

Fitting the plasma hCG profile to the most appropriate model revealed that hCG follows a two-compartment pharmacokinetic model (Jambhekar & Breen 2009). The pattern of essentially linear absorption and elimination phases resembles that of humans (Weissman et al. 1996, Chan et al. 2003) and domestic cats (Swanson et al. 1997). The substantial individual variation in peak levels might be associated with individual differences in the hypothetical volume of distribution which ranged from 12–25 l. The more hCG molecules are bound to target tissue, the lower the plasma concentration is expected to be. Hence, this is an indication of the hypothetical volume into which hCG is distributed. The biological half-life of, on average, 39.4 h is in close agreement with the 36 h reported for humans (Cole 2010) but longer than the 26.1 h observed in domestic cats (Swanson et al. 1997).

The negative correlation between absorption rate constant and elimination half-life suggests that, if absorption of hCG is rapid, so will be clearance from the circulation. In does with low peak concentrations, half-life was longer; accordingly, elimination rate was lower and apparent volume of distribution was higher. The clearance rate was unaffected.

Elimination from the circulation follows the pattern typical for a two-compartment model (Jambhekar & Breen 2009). The average duration of the elimination phase of 70 h reflects the time hCG molecules reside in the circulation. The elimination phase of hCG, being

Table 1 Characterization of plasma hCG profile (observed and calculated time of maximum concentration: T_{peak}; observed and calculated peak plasma concentration: C_{peak}; duration of absorption and elimination phases; and the area under the curve: AUC) after i.m. administration of 500 IU hCG in nine adult Boer goat does.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>S.E.M.</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{peak} (h)</td>
<td>11.6</td>
<td>1.8</td>
<td>4–20</td>
</tr>
<tr>
<td>Absorption phase duration (h)</td>
<td>11.6</td>
<td>1.8</td>
<td>4–20</td>
</tr>
<tr>
<td>Elimination phase duration (h)</td>
<td>70.9</td>
<td>4.6</td>
<td>50–99</td>
</tr>
<tr>
<td>AUC (h mIU/ml)</td>
<td>2427</td>
<td>177</td>
<td>1632–3118</td>
</tr>
</tbody>
</table>

Figure 1 hCG concentrations recorded after single i.m. administration of 500 IU hCG (arrow) (mean, s.d., minimum and maximum) to nine adult Boer goat does.
about seven times as long as the absorption phase, reflects the extremely slow clearance process especially when contrasted with a clearance rate of 1.9 l/h for endogenous LH released during the preovulatory surge recorded in the same group of goats (Saleh et al. in preparation). Compared with humans (Weissman et al. 1996) and domestic cats (Swanson et al. 1997), the retention time of hCG in the circulation of goats falls within an intermediate range. According to Schmitt et al. (1996), the increase in plasma concentration in hCG-injected cows lasted for 30 h, which is much shorter than in goats. The slow rate of degradation is said to be due to sialic acid residuals on the β-subunit of the hCG molecule (Kalyan et al. 1982, Nisula et al. 1989, Kobata 2010). In humans, it has been shown that these residuals are enzymatically dissociated (Apparailly & Combarnous 1994, Zygmunt et al. 2002, Chan et al. 2003), followed by the binding of the molecule to hepatic receptors and degradation. This pathway takes care of more than three quarters of the biologically active hCG; the remaining is cleared via the kidney. Approximately, 21% is excreted via the urine as heterodimeric hCG, nicked heterodimeric hCG, free subunits (some nicked), and, predominantly, hCG β core fragment (Cole 2010). Elimination rates via liver and kidney might differ depending on the physiological state (Rao 1985), interactions with other hormones or substances (Liu et al. 1995), route of administration (Saal et al. 1991, Wikland et al. 1995, Stelling et al. 2003), body mass index (Chan et al. 2003, Detti et al. 2007), and the presence of large ovarian follicles (Detti et al. 2007).

In the present experiment, ultrasound monitoring of the ovaries revealed that ovulation occurred ~34 h after hCG treatment. Taking this into consideration, it may be surmized that the prolonged bioavailability of hCG, lasting until well after ovulation, might possibly be supportive of corpus luteum function, but might, on the other hand, also be responsible for interference with postovulatory ovarian function. A study, involving possible functional aspects of hCG, including possible interaction with LH and direct or indirect effect on ovulation, is about to be completed and will be published in due course.

Materials and Methods

Animals

The experiment was conducted on pluriparous Boer goat does, 2–6 years of age and weighing 45–60 kg, from the departmental breeding flock at Goettingen, Germany (9° 41’ E, 51° 46’ N) during the breeding season (October to January). The does were group-housed in open barns with straw-bedding and outdoor concrete runs. They were fed a daily ration of 600 g concentrate, consisting of equal parts of a pelleted diet for breeding ewes (16% crude protein, 10.2 MJ ME/kg, supplemented with 43 mg/kg Se, 12 mg/kg I, and 5000 mg/kg Zn), oats, and dried sugar beet pulp and had free access to wheat or barley straw, salt lick, and water. Once daily, the does were routinely tested for estrus with an aproned male.

Donor preparation and superovulation

From 4 days after observed estrus, daily blood samples were drawn from does to be tested for plasma progesterone concentration. Once the concentration exceeded 5 ng/ml, an i.m. injection of 5.0 mg dinoprost (1 ml Dinolytic; Pfizer, Karlsruhe, Germany) was administered. Seven days later,
an i.m. injection of 0.004 mg of the GnRH analog buserelin (1 ml Receptal; Intervet, Unterschleissheim, Germany) was administered followed, 5 days later, by a series of six s.c. injections of 4, 4, 2, 2, 2, and 2 armour units of pFSH supplemented with 40% pLH (Nowshari et al. 1995), administered at 12 h intervals. Along with the last two pFSH injections, 1 ml Dinolytic was administered intramuscularly. To determine the time of ovulation, 18 h after the last dinoprost injection, does were administered an i.m. injection of 500 IU hCG (2 ml Chorulon; Intervet) into the thigh musculature (m. biceps femoris and m. semitendineus).

Blood sampling and determination of hCG concentration

Throughout the experiment, blood samples of 5 ml were drawn daily via jugular venipuncture. Before hCG administration, does were provided with indwelling jugular catheters, so samples could be drawn at 2 h intervals for the first 24 h and at 6 h intervals for the subsequent 18 h. Thereafter, a routine of daily sampling was resumed. Collection tubes contained three drops of Na-citrate to prevent clotting. After centrifugation at 1000 rpm for 10 min, plasma samples were stored at −20 °C until being analyzed for hCG concentration by Electrochemiluminescence Immunoassay (ECLIA, ELECSYS; Roche) as described elsewhere (Forest et al. 1998). The assay is based on an electrochemiluminescent label (Ruthenium (II) tris (bipyridyl)bpy3+; Ru(bpy)32+), which can undergo multiple oxidation–reduction cycles when immobilized at the surface of an electrode in the presence of a co-reactant included in the assay buffer. The co-reactant tripropylamine (TPA), when oxidized at the electrode to allow elimination of the unbound label before proceeding to the electrochemical detection.

Statistical analysis and calculation of biological half-life

To characterize the pharmacokinetics, the following parameters for hCG were assessed (Jambhekar & Breen 2009): lag time Tlag (time from treatment to first detection), absorption rate constant Ke (0.693/T0.5abs), absorption half-life T0.5abs, elimination rate constant Ke (0.693/T0.5elim), elimination half-life T0.5elim and the apparent volume of distribution Vd. To assess the absorption half-life T0.5abs and the biological half-life T0.5elim plasma hCG concentrations of individual does were plotted against time. Absorption half-life was determined as the time required from administration to the point when half of the maximum plasma hCG level was reached, and biological half-life was determined as the time from maximum plasma concentration to half of that level. The apparent volume of distribution, the volume to which a given dose of hCG would have to be diluted to have a concentration equal to the concentration detected in blood, was calculated as Vd = dose/hCG concentration.

To characterize the bioavailability parameters for hCG, observed and calculated peak concentration Cpeak observed and calculated time of peak occurrence Tpeak observed and the area under the hCG curve AUC0–114 were determined. These parameters were calculated on the basis of individual plasma concentrations, whereas the calculated values for the peak concentration and the time of peak occurrence Tpeak were determined by the formulae Tpeak = ln(Ke/Ke)/(Ke − Ke) and Cpeak = I × (e−KeTpeak − e−Ketpeak), respectively, where I stands for intercept. The intercept was assigned after the individual elimination curves had been subjected to linear regression analysis. The area under the hCG curve AUC0–114 was calculated by means of the linear trapezoidal approximation using (AUC)2 = ((Cp1 + Cp2)/2)×(t2 − t1), where Cp1 and Cp2 are hCG concentrations at the corresponding times t1 and t2 respectively. Pearson correlation coefficients were calculated to identify relationships between the pharmacokinetic parameters using the procedure CORR (SAS 9.2, Cary, NC, USA). Mean and standard error were calculated using the MEANS procedure (SAS 9.2).

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Acknowledgements

The authors thank Pfizer (Berlin, Germany) for supplying Dinolytic, Intervet/Germany (Unterschleissheim, Germany) for supplying Receptal and Chorulon, and Elisabeth Stuewe and Heidi Brueggemann for valuable technical assistance.

References

Reproduction (2012) 144 77–81 www.reproduction-online.org

Gupta CS & Dighie RR 2000 Biological activity of single chain chorionic gonadotropin, hCGa[3], is decreased upon deletion of five carboxyl terminal amino acids of the α-subunit without affecting its receptor binding. *Journal of Molecular Endocrinology* 24 157–164. (doi:10.1677/jme.0.0240157)

Senger PL 2005 Pathways to pregnancy and parturition. 2nd revised edn. Current Conceptions, Pullman, WA, USA.

Received 13 March 2012
First decision 12 April 2012
Revised manuscript received 13 April 2012
Accepted 9 May 2012