Regulatory T cells and the immune pathogenesis of prenatal infection

Jared H Rowe, James M Ertelt, Lijun Xin and Sing Sing Way

Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229, USA

Correspondence should be addressed to S S Way; Email: singsing.way@cchmc.org

Abstract

Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and metabolic waste elimination for the developing fetus. However, these benefits also require durable strategies to mitigate maternal rejection of fetal tissues expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal–placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infections have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells (Tregs) in pregnancy-induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal Treg suppression may become exploited by pathogens that cause prenatal infections and the perilous potential of infection-induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment.

Reproduction (2013) 146 R191–R203

Introduction

Pregnancy in eutherian placental mammals requires expanded maternal tolerance to encompass paternal antigens expressed by the developing fetus. This vital process initiated at the earliest stages of pregnancy with the invasion of fetal trophoblast cells into the uterine lining prevents recognition and rejection of foreign fetal cells. Given the essential nature of reproduction for species survival, it is not surprising that numerous non-overlapping immune evasion strategies that together reinforce protection for the developing fetus have been identified. These include sharply reduced or extinguished expression of immune recognition major histocompatibility (MHC) antigens on trophoblast cells (Sunderland et al. 1981, Ozato et al. 1985, Zuckermann & Head 1986, Hunt et al. 1987, Mattsson 1998), tryptophan catabolism that prevents maternal T-cell activation (Munn et al. 1998, Mellor & Munn 2004), selective expression of galectin-1 that moderates T-cell differentiation or Crry that prevents complement deposition (Xu et al. 2000, Blois et al. 2007), entrapment of antigen-presenting cells within the uterus (Collins et al. 2009), and blunted chemokine expression by decidual stromal cells (Nancy et al. 2012). By coalescing these potent immune suppressive features where they are most needed at the maternal–fetal interface, responsiveness that maintains host defense against most pathogens systemically and within non-reproductive tissues would be predicted to be preserved.

On the other hand, since low-level dissemination of fetal cells into maternal blood and non-reproductive tissues also occurs during pregnancy (Liegeois et al. 1981, Guetta et al. 2003, Khosrotehrani et al. 2004), systemic immune modifications may also be needed to reinforce fetal tolerance. Here, multiple non-overlapping strategies are likely to be simultaneously at work. One is the selective elimination of maternal T cells with high affinity to fetal antigens through apoptotic death in early gestation (Erlebacher et al. 2007). However, this process is incomplete both temporally and for maternal T cells that recognize fetal antigens with lower affinity, suggesting that other ways to prevent the activation of maternal immune cells with fetal specificity also exist. In this regard, the selective silencing of immune effector cells with specificity to...
non-self paternal antigens during pregnancy can be viewed as an example of peripheral immune tolerance. By contrast, even with substantial overlap between maternal and fetal antigens, central tolerance that eliminates developing T cells with self-specificity within the thymus is less operational since maternal thymectomy does not diminish fertility and, in cases of autoimmunity, may improve the outcomes of pregnancy (Visser et al. 2004, Hoff et al. 2007, Griesemier et al. 2010, Stritesky et al. 2012). Thus, immune components that sustain peripheral tolerance in other contexts (e.g. commensal microbes in tissues with direct contact with the external environment or self-antigens for immune cells that escape central tolerance) are likely to play expanded roles in the maintenance of fetal tolerance during pregnancy. Since the pregnancy-associated immune modifications that sustain fetal tolerance have recently been summarized in a very comprehensive fashion both in general terms and from more distinctive perspectives including the maternal–fetal interface, lymphoid organs that drain this compartment, antigen-presenting dendritic cells, and how immunological shifts affect local susceptibility to viral pathogens (Moffett & Loke 2006, Bizargity & Bonney 2009, Mor & Cardenas 2010, Taglauer et al. 2010, Munoz-Suano et al. 2011, Mold & McCune 2012, Erlebacher 2013a, 2013b), we use this opportunity to focus more specifically on evidence for systemic immune modifications and how the dynamic cross-regulation between immunological shifts required for sustaining fetal tolerance dictates susceptibility to prenatal infection and the potential immune pathogenesis of ensuing pregnancy complications.

Maternal regulatory T cells and fetal tolerance

The FOXP3+ subset of CD4 T cells called regulatory T cells (Tregs) has potent immune suppressive properties and plays essential roles in the sustainability of peripheral immune tolerance (Littman & Rudensky 2010, Wing & Sakaguchi 2010, Josefowicz et al. 2012). Spontaneous FOXP3 defects result in fatal systemic and organ-specific autoimmunity within the first 6 months of life described as the immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome (Bennett et al. 2001, Wildin et al. 2001). In turn, similar mortal symptoms arise in mice with naturally occurring or targeted disruptions in Foxp3 (Fontenot et al. 2003, Khattri et al. 2003). The importance of maternal Tregs in fetal tolerance was first suggested by their progressive expansion in healthy human pregnancy and blunted expansion in cases of spontaneous abortion compared with induced abortion (Sasaki et al. 2004, Somerset et al. 2004). At the same time, pioneering studies in mice have shown paralleled levels of maternal Treg accumulation throughout gestation, whereas the selective elimination of maternal Tregs caused fetal wastage and resorption (Aluvihare et al. 2004).

Within the next few years after these seminal findings, the critical necessity of maternal Tregs in sustaining fetal tolerance has been reinforced by numerous other studies characterizing these cells in human and animal pregnancies. For example, significantly reduced levels of maternal Treg expansion have been reported repeatedly for women with preeclampsia or recurrent spontaneous abortion (Sasaki et al. 2007, Toldi et al. 2008, Yang et al. 2008, Prins et al. 2009, Santner-Nanan et al. 2009, Winger & Reed 2011). Along with these quantitative reductions, qualitative diminutions in suppressive function among maternal Tregs on a per cell basis have also recently been described for preterm human pregnancies compared with term human pregnancies (Gomez-Lopez & Laregotti-Servitje 2012, Schober et al. 2012). Here, it is important to point out blunted maternal Treg expansion may not be universally associated with all cases of preeclampsia since normal Treg accumulation has also been reported (Paeschke et al. 2005, Hu et al. 2008). However, the interpretation of these isolated negative findings is somewhat moderated by the wide variation in peripheral lymphocyte numbers and Treg percentages among individuals. Nevertheless, consistent reductions in maternal Treg suppression among multiple seemingly unrelated clinical pregnancy complications underscore the potential importance of preserving fetal tolerance by these cells in healthy pregnancy.

The necessity of maternal Tregs in maintaining pregnancy has been more definitively addressed in animal pregnancy models in which experimental manipulation allows the cause and effect relationship of Treg manipulation with regard to pregnancy outcomes to be investigated. During mouse allogeneic pregnancy, maternal Treg depletion or reconstitution of T-cell-deficient mice exclusively with non-Treg effector cells each triggers significantly increased rates of fetal resorption with a reciprocal loss of live pups (Aluvihare et al. 2004, Shima et al. 2007, Toldi et al. 2009). Furthermore, the accumulation of activated effector T cells within the decidua and systemic expansion of maternal effector T cells with fetal specificity with ablation of maternal Tregs each reinforce a critical protective role for these cells in sustaining fetal tolerance (Rowe et al. 2011, Samstein et al. 2012). Along with these findings illustrating the necessity for maternal Tregs after the near-complete ablation of these cells, the specific requirement for expanded maternal Foxp3+ cells has also been described. The latter using mice in which the high-affinity human diphtheria toxin receptor is co-expressed with Foxp3 and exploiting the X-linked inheritance of Foxp3 whereby female mice heterozygous for the diphtheria toxin receptor transgene contain an equal ratio of Tregs that are either susceptible or resistant to ablation found that even partial transient ablation to pre-pregnancy levels triggers fetal resorption
and fractures fetal tolerance (Rowe et al. 2011). Therefore, despite considerable variation in the overall magnitude of fetal resorption between individual studies that probably reflect differences in the timing and efficiency of Treg depletion using unique experimental approaches (Aluvihare et al. 2004, Shima et al. 2010, Rowe et al. 2011, Samstein et al. 2012), these studies in mice collectively illustrate the importance of maternal Tregs and the sustained expansion of these cells in maintaining pregnancy.

Other complementary data highlighting the importance of Tregs in maternal–fetal tolerance are those on evolutionarily conserved genetic elements required for selective FOXP3 expression unique to humans and other eutherian placental mammals that are conspicuously absent in marsupials and egg-laying monotremes (Andersen et al. 2012, Samstein et al. 2012). This includes the Foxp3 enhancer conserved non-coding sequence 1 (CNS1) required for peripheral induced Treg differentiation among non-Treg CD4 T cells (Zheng et al. 2010). Pregnancies in mice with targeted defects in Cns1 show significantly increased rates of fetal resorption with more pronounced decidual inflammation and abnormal spiral artery remodeling consistent with the pathological features of preeclampsia in human pregnancies (Samstein et al. 2012). This apparent requirement for induced Treg differentiation parallels the efficiency whereby trophoblast cells and high-level progesterone each induce FOXP3 expression among non-Treg CD4 T cells (Lee et al. 2012, Ramhorst et al. 2012). On the other hand, using adoptively transferred FOXP3-depleted cells to show that the pre-existing pool of peripheral Foxp3+ CD4 T cells also contributes significantly to the overall accumulation of maternal Tregs during pregnancy may explain the considerably reduced magnitude of fetal resorption after the selective elimination of induced Tregs based on CNS1 deficiency compared with bulk Tregs based on Foxp3 expression (Rowe et al. 2011, 2012c, Samstein et al. 2012).

Additional investigation exclusive to animal pregnancy has uncovered other interesting facets of the fundamental biology whereby maternal Tregs respond to fetal antigen stimulation. For example, using the wealth of defined inbred strains in mice, maternal Tregs have been shown to accumulate to higher levels during allogeneic pregnancy (when MHC-discordant parents are used for breeding) than during syngeneic pregnancy (between MHC-identical parents) where the only potential source of antigen heterogeneity is that encoded by the Y chromosome (Kahn & Baltimore 2010, Rowe et al. 2011). Reciprocally, fetal resorption triggered by maternal Treg ablation is consistently reduced in syngeneic pregnancy compared with in allogeneic pregnancy (Aluvihare et al. 2004, Shima et al. 2010, Rowe et al. 2012c, Samstein et al. 2012). Accordingly, the degree of mismatch between maternal and paternal–(fetal) MHC alloantigens appears to dictate the necessity for expanded maternal Tregs during pregnancy. In this regard, the natural heterogeneity between maternal and paternal MHC antigens in human pregnancy is more fully recapitulated in mouse allogeneic pregnancy. However, given the selective loss of male offspring with partial ablation of maternal Tregs during syngeneic pregnancy, these cells also probably mitigate mismatch between minor alloantigens encoded on the Y chromosome (Kahn & Baltimore 2010). Together, these findings suggest a critical role for the differentiation of maternal Tregs and the sustained expansion of these cells in maintaining tolerance to paternal non-self antigens expressed by the developing fetus during pregnancy.

Pregnancy-induced shifts in systemic immune responsiveness and maternal Tregs

In addition to these protective roles in the maintenance of fetal tolerance, the sustained accumulation of immune suppressive maternal Tregs has also been linked with notable shifts in non-fetal responses outside female reproductive tissues throughout gestation. A remarkable example of this is the amelioration of many autoimmune disorders during human pregnancy. For example, significant reductions in disease severity or complete remission occur in women with rheumatoid arthritis during pregnancy (Da Silva & Spector 1992, Barrett et al. 1999, Ostensen & Villiger 2007, de Man et al. 2009). The protective benefits are most likely conferred by maternal Tregs, given the inverse correlation between disease severity and circulating levels of these cells during pregnancy and after parturition, and the protective capacity of maternal Tregs from mice with pregnancy induced remission from collagen induced arthritis after adoptive transfer into naive recipients (Forger et al. 2008, Munoz-Suano et al. 2012). Similarly for multiple sclerosis, pregnancy-induced amelioration of weakness and clinical disease exacerbations has been reported to be directly associated with the progressive expansion of maternal Tregs (Confavreux et al. 1998, Sanchez-Ramon et al. 2005, Iorio et al. 2009). In turn, paralleled disease remission also occurs for Graves’ disease and autoimmune hepatitis during pregnancy (Colle & Hautekeete 1999, Buchel et al. 2002, Weetman 2010). Together, these findings suggest immune tolerance that expands during pregnancy is not restricted only to paternal antigens expressed by the developing fetus, but extends to maternal responsiveness to pathological ‘self’ antigens that cause autoimmunity as well. Moreover, these unambiguous examples of autoimmunity remission in the joints, thyroid, liver, and central nervous system highlight that although immune modifications at the fetal interface are clearly important for sustaining pregnancy, systemic alterations in immune responsiveness also become engaged during pregnancy.
With these pregnancy-induced protective benefits that clearly extend beyond fetal tolerance, it may be interesting to consider why the physiological set point for Tregs is not more consistently adjusted to the higher levels found during allogeneic pregnancy. Our recent studies have suggested susceptibility to infection offsets the protective benefits of expanded tolerance from pregnancy-induced maternal Treg accumulation (Rowe et al. 2011). Intriguingly, however, since resistance against most pathogens is not significantly deteriorated with pregnancy, these holes in host defense are probably limited only to those that share the common theme of intracellular survival and placental cell invasion (Robbins & Bakardjiev 2012). Perhaps the best example of this is the markedly increased susceptibility to disseminated infection with the intracellular bacterium *Listeria monocytogenes* during human pregnancy that extends to mice and other rodents (Redline & Lu 1987, 1988, Schuchat et al. 1991, Silver 1998, Bakardjiev et al. 2006, Rowe et al. 2011). Here, pregnancy-induced Treg expansion dictates innate susceptibility because inducing the accumulation of Foxp3+ CD4 T cells in non-pregnant mice to levels comparable to that found during allogeneic pregnancy results in paralleled infection susceptibility (Rowe et al. 2011). On the other hand, maternal Treg depletion restores resistance, but at the insurmountable cost of fractured fetal tolerance and wastage. Similarly, for *Salmonella typhimurium*, representing another intracellular bacterium that causes more severe disseminated infection during pregnancy, resistance is restored with maternal Treg ablation (Pejicic-Karapetrovic et al. 2007, Chattopadhyay et al. 2010, Rowe et al. 2011). Thus, susceptibility to a relatively small handful of prenatal pathogens that exploit the physiological hole in host defense created by the reproductive process is probably the unfortunate byproduct of the greater good served by expanded maternal Tregs that sustain fetal tolerance (Fig. 1a).

Another interesting example is the increased susceptibility to influenza A virus during pregnancy. Pregnant women have significantly higher rates of hospitalization, morbidity, and mortality after infection with either pandemic or seasonal influenza A strains (Neuzil et al. 1998, Siston et al. 2010, Pierce et al. 2011). Here, the newly recommended use of inactivated vaccine formulations during pregnancy provides an exceptional opportunity to characterize how pregnancy affects systemic immune responsiveness. Consistent with the notion of systemic immune modulation during pregnancy, reductions in vaccine-induced antibody titers among pregnant women compared with non-pregnant controls with both seasonal and pandemic inactivated influenza A vaccines have been described (Schaudecker et al. 2012, Bischoff et al. 2013). Similarly, reduced antibody responses have been found among pregnant women after administration of the live attenuated vaccine for yellow fever virus (Nasidi et al. 1993).

However, it is also important to highlight that despite reductions in vaccine-induced influenza A antibody titers during pregnancy, these diminished responses nevertheless provide significant protection for both the mother and infant against respiratory infections, especially in resource-limited environments where influenza A virus is highly endemic (Zaman et al. 2008). These protective benefits of influenza A vaccination during pregnancy for subsequent infection and possibly fetal death have also recently been confirmed in more developed settings where influenza A virus is less prevalent (Haberg et al. 2013). Together, these examples in which immune responsiveness to self-antigens, pathogens, and vaccination each are consistently dampened during pregnancy underscore the exceptional latent systemic immune modulatory properties that become unleashed with gestation. At face value, these findings imply systemic shifts in the balance between immune suppression that averts autoimmunity and immune stimulation required for optimal host defense against infections beyond fetal tolerance become engaged with the accumulation of maternal Tregs during pregnancy.

Along with these quantitative shifts between Tregs and non-Treg effector cells, modifications in Treg suppressive potency on a per cell basis can also occur (Sakaguchi 2003). These qualitative shifts enable Tregs to more efficiently fine-tune the delicate balance between immune activation and suppression by rapidly responding to environmental cues. This feature is probably most critical in the early stages after infection when the race between pathogen replication and immune activation has decisive impacts on the eventual outcome of infection. At the molecular level, this is consistent with drastic shifts in Treg suppressive potency induced by microbial ligands that stimulate cells through conserved pattern recognition receptors such as toll-like receptors. For example, purified lipopolysaccharide (LPS) or flagellin stimulates increased Treg suppressive potency (Caramalho et al. 2003, Crellin et al. 2005), whereas CpG oligonucleotide or the bacterial lipoprotein Pam3Cys-SK4 primes reductions in suppressive potency (Peng et al. 2005, Liu et al. 2006). Importantly, these shifts in Treg suppression after stimulation with individual microbial ligands *in vitro* parallel similar changes in suppressive potency after *in vivo* infection with intact pathogens, reflecting the cumulative response to multiple microbial ligands and the ensuing immune responses (Minigo et al. 2009, Johanns et al. 2010, Ertelt et al. 2011).

Applied to the unique physiological situation of pregnancy, in which immune tolerance to fetal antigens must be sustained, fractured tolerance stemming from disruptions in maternal Treg suppression may explain why fetal resorption occurs after systemic LPS administration, especially in mice lacking the immune regulatory cytokine IL10 (Robertson et al. 2006, 2007). Here, a
Specific role for maternal Tregs is supported by the protective properties of purified CD4 T cells that differentiate into Tregs with LPS-induced preterm delivery (Bizargity et al. 2009). Interestingly, since mice lacking all T and B cells (Rag1^{-/-}) are more susceptible to LPS-induced preterm delivery (Bizargity et al. 2009), inflammation-induced activation of innate immune components probably also contributes to pregnancy complications, especially in the absence of Tregs. The extension of Treg suppression in this context is consistent with the increasingly appreciated role that Foxp3⁺ cells play in moderating the activation of more prototypical innate immune cells such as neutrophils and natural killer cells (Murphy et al. 2005, D’Alessio et al. 2009, Gasteiger et al. 2013a, 2013b). Thus, dampening maternal Treg suppression that unleashes the activation of innate or adaptive immune response pathways for optimal protection against infections has the potential to unravel the fine-tuned shifted balance between immune suppression and stimulation that maintains fetal tolerance during pregnancy. In this regard, infection-induced disruption of maternal Treg suppression that fractures fetal tolerance may represent an underappreciated, but perhaps more unifying, pathway to explain the fundamental biology whereby pregnancy complications occur with clinically apparent or asymptomatic infections.

Infection-induced shifts in Treg suppression and pregnancy complications

Although the cause and effect relationships between maternal infection and unfortunate complications in human pregnancy including spontaneous abortion, stillbirth, and preterm labor have been described (Andrews et al. 2000, Goldenberg et al. 2008, McClure et al. 2010), establishing the mechanistic basis whereby maternal infection triggers these complications has lagged behind. One important limitation has been the lack of representative animal models to specifically investigate the role of maternal Tregs.
investigate pregnancy outcomes after infection. In particular, while pregnancy outcomes have been extensively characterized using rodent infection models, the discordance in pregnancy kinetics and immune cell development between rodents and humans limits the translational relevance of these findings, especially for complications related to birth timing (Mold & McCune 2012, Bezold et al. 2013). These limitations are somewhat bypassed in larger mammals including elegant descriptions of pregnancy in horses, sheep, and non-human primates (Jobe 2005, Barry et al. 2006, Noronha & Antczak 2010, Antczak 2012). However, the significantly more prolonged gestation time, relative lack of immunological tools and defined inbred strains, differences in placental architecture, and exponentially higher experimental costs impose other restrictions that are perhaps even more formidable. Furthermore, while human gestational cells and tissues have become more widely used to characterize the pathogenesis of prenatal infections (Robbins et al. 2010, Zeldovich et al. 2011, Robbins et al. 2012), these in vitro models recapitulate neither the dynamic crosstalk between maternal and fetal cells nor the immune response to infections that probably play critical roles in the pathogenesis of pregnancy complications. Therefore, we propose combining the most salient aspects of individual models may represent the most efficient way to uncover the fundamental biology whereby pathogens cause prenatal infection and pregnancy complications.

The additive and potential synergistic value is illustrated by recent complementary studies describing infection and pregnancy outcomes using the intracellular bacterium *L. monocytogenes*. Using this bacterium to investigate the underlying pathogenesis of prenatal infections is clearly important, given the ubiquitous presence of this pathogen in our food supply, colonization within the gastrointestinal tract, propensity for disseminated infection during pregnancy, and alarming rate of morbidity and mortality associated with human prenatal infection (Gellin & Broome 1989, MacGowan et al. 1991, Southwick & Purich 1996, Iida et al. 1998, Silver 1998, Mylonakis et al. 2002). A somewhat surprising degree of resistance for placental cells to *L. monocytogenes* infection has been described using human organ cultures (Abrahams et al. 2006, Koga & Mor 2008, Robbins & Bakardjiev 2012). In particular, human syncytiotrophoblasts that line the placental surface where nutrient and gas exchange occurs with direct exposure to maternal blood are highly resistant to bacterial invasion and intercellular spread (Robbins et al. 2010). On the other hand, placental invasion primarily occurs through a substantially smaller subset of extravillous trophoblast cells that anchor the placenta in the uterine lining. However, even after invasion into extravillous trophoblast cells, profound defects in *L. monocytogenes* escape from the endocytic vacuole and intracellular replication remain (Robbins et al. 2012). Interestingly, these protective properties of trophoblasts are not limited to only *L. monocytogenes*, but have also been shown for a variety of other bacterial, parasitic, and viral pathogens (Abrahams et al. 2006, Koga & Mor 2008, Zeldovich et al. 2011, Robbins & Bakardjiev 2012). Thus, placental cells provide a protective barrier to fetal infections, at least in vitro without the additional constraints imposed by the ensuing inflammatory response and maternal–fetal tolerance.

In light of these innate cellular barriers to infections, it is interesting to reconsider the basic physiology that causes susceptibility to disseminated infections during pregnancy and the underlying mechanism whereby maternal infection triggers pregnancy complications. With regard to maternal susceptibility to disseminated infections, the prior dogma that placental and fetal tissues represent expanded target tissues susceptible to invasion seems less likely, given the finding that placental cells are actually very resistant to infections (Abrahams et al. 2006, Koga & Mor 2008, Robbins & Bakardjiev 2012). Similarly, the notion of pregnancy induced dampening of CD4 helper type 1 (Th1) responses required for protection against intracellular pathogens is questionable, given the unimpeded innate and early adaptive immune responses in MHC class II CD4 T-cell-deficient mice (Sun & Bevan 2003, Barber et al. 2005). Instead, given the necessity for maintaining fetal tolerance through sustained expansion of immune suppressive maternal Tregs, we propose active suppression by these cells may also play critical roles in causing maternal susceptibility to disseminated infection (Fig. 1a). This notion is supported by the aforementioned epidemiological and experimental data showing increased susceptibility to systemic infections during pregnancy in humans and mice, and non-pregnant mice with expanded Tregs, whereas Treg ablation restores resistance for each group (Redline & Lu 1987, 1988, Schuchat et al. 1991, Silver 1998, Rowe et al. 2011). Interestingly, however, since immunity against most infections is preserved during pregnancy, these do not appear to be drastic defects in global host defense and are instead more isolated holes that become exploited by pathogens with an established predisposition for infections during pregnancy. Furthermore, given the striking consistency in pathogens that cause prenatal infections in humans and other mammalian species (Givens & Marley 2008, Robbins & Bakardjiev 2012), these host defense defects associated with the reproductive process are apparently widely conserved.

Perhaps, more intriguing are the recent findings using allogeneic pregnancy in mice to investigate the pathogenesis of pregnancy complications triggered by disseminated maternal infection. Here, related studies using *L. monocytogenes* as a model to dissect the basic immunology whereby protective T cells are primed after in vivo infection need to be carefully considered in
L. monocytogenes that cannot invade the placental–fetal unit due to targeted defects in ActA required for intercellular spread can also induce fetal wastage with disruptions in fetal tolerance and loss of live pups (Bakardjiev et al. 2005, Le Monnier et al. 2007, Rowe et al. 2012b). Thus, L. monocytogenes infection-induced pregnancy complications do not require in utero pathogen invasion and may instead be due to reductions in maternal Treg suppression with ensuing disruptions in fetal tolerance (Fig. 2a).

By showing that pregnancy complications can occur without direct bacterial invasion of the placental–fetal unit, the high frequency of pregnancy complications associated with L. monocytogenes infection during human pregnancy despite placental cell resistance to direct bacterial invasion can be potentially reconciled (Gellin & Broome 1989, Silver 1998, Mylonakis et al. 2002, Robbins & Bakardjiev 2012). On the other hand, since a majority of newborn infants are infected when born to mothers with disseminated infection (Mylonakis et al. 2002), there are also presumably ways to bypass the protective placental barrier with infection in vivo. We hypothesize inflammation at the maternal–placental interface induced by disrupted fetal tolerance may provide a more direct conduit drawing circulating bacteria into otherwise resistant placental cells. Thereafter, the previously described local immune suppression at the maternal–placental interface and high bacterial concentrations within the infected placenta probably provide a repository for continuous re-infection (Redline & Lu 1987, 1988, Bakardjiev et al. 2002). Based on these findings with perinatal L. monocytogenes infection, we propose a model whereby i) the expansion of immune suppressive maternal Tregs required for maintaining fetal tolerance compromises innate protection against disseminated infection, ii) the normally protective blunting of Treg suppression that unleashes the activation of protective immune effector cells following infection-induced reductions in Treg suppression that unleash the activation of protective immune effector cells following infection probably circumvent the need for some, but not all, more classical T-cell-intrinsic activation signals (Ertelt et al. 2011, 2013). The importance of overriding Treg suppression for immune activation parallels the robust expansion of protective CD8 effector T cells in mice transiently ablated of Tregs after stimulation with purified peptides (Ertelt et al. 2011). Thus, infection- or inflammation-induced reductions in Treg suppression may represent a more fundamental signal zero for stimulating the activation of protective T effector cells (Rowe et al. 2012a; Fig. 1b).

Applied to pregnancy when the sustained expansion of maternal Tregs is essential for maintaining fetal tolerance, infection- or inflammation-induced reductions in Treg suppression have the critical potential to fracture fetal tolerance with ensuing pregnancy complications (Fig. 1c). This has been most definitively shown with a highly informative mating strategy using transgenic male mice that ubiquitously express defined model antigens to establish allogeneic pregnancy with non-transgenic female mice that transform model antigens into surrogate fetal antigens (Erlebacher et al. 2007, Moldenhauer et al. 2009, Taglauer et al. 2009). After L. monocytogenes infection, the normally blunted accumulation of maternal T effector cells with fetal specificity is overtaken (Rowe et al. 2012b). In turn, the robust expansion and activation of maternal T effector cells with fetal specificity with maternal infection recapitulate the quantitative accumulation and qualitative activation of these cells with maternal Treg ablation during pregnancy (Rowe et al. 2011). Intriguingly, although fetal resorption with a reciprocal loss of live pups occurs in a dose-dependent fashion that parallels infection-induced reductions in maternal Treg suppression, bacteria could not be recovered from the majority of resorbed placental–fetal units after infection with low or intermediate dosages of virulent L. monocytogenes (Rowe et al. 2012b). These more recent findings suggesting a threshold inoculum is required for establishing sustained systemic infection are consistent with prior studies illustrating dose-dependent rates of placental invasion after i.v. L. monocytogenes inoculation (Redline & Lu 1987). Here, it is important to highlight that even attenuated L. monocytogenes that cannot invade the placental–fetal unit due to targeted defects in ActA required for intercellular spread can also induce fetal wastage with disruptions in fetal tolerance and loss of live pups (Bakardjiev et al. 2005, Le Monnier et al. 2007, Rowe et al. 2012b). Thus, L. monocytogenes infection-induced pregnancy complications do not require in utero pathogen invasion and may instead be due to reductions in maternal Treg suppression with ensuing disruptions in fetal tolerance (Fig. 2a).

By showing that pregnancy complications can occur without direct bacterial invasion of the placental–fetal unit, the high frequency of pregnancy complications associated with L. monocytogenes infection during human pregnancy despite placental cell resistance to direct bacterial invasion can be potentially reconciled (Gellin & Broome 1989, Silver 1998, Mylonakis et al. 2002, Robbins & Bakardjiev 2012). On the other hand, since a majority of newborn infants are infected when born to mothers with disseminated infection (Mylonakis et al. 2002), there are also presumably ways to bypass the protective placental barrier with infection in vivo. We hypothesize inflammation at the maternal–placental interface induced by disrupted fetal tolerance may provide a more direct conduit drawing circulating bacteria into otherwise resistant placental cells. Thereafter, the previously described local immune suppression at the maternal–placental interface and high bacterial concentrations within the infected placenta probably provide a repository for continuous re-infection (Redline & Lu 1987, 1988, Bakardjiev et al. 2002). Based on these findings with perinatal L. monocytogenes infection, we propose a model whereby i) the expansion of immune suppressive maternal Tregs required for maintaining fetal tolerance compromises innate protection against disseminated infection, ii) the normally protective blunting of Treg suppression that unleashes the activation of protective immune effector cells following infection-induced reductions in Treg suppression that unleash the activation of protective immune effector cells following infection probably circumvent the need for some, but not all, more classical T-cell-intrinsic activation signals (Ertelt et al. 2011, 2013). The importance of overriding Treg suppression for immune activation parallels the robust expansion of protective CD8 effector T cells in mice transiently ablated of Tregs after stimulation with purified peptides (Ertelt et al. 2011). Thus, infection- or inflammation-induced reductions in Treg suppression may represent a more fundamental signal zero for stimulating the activation of protective T effector cells (Rowe et al. 2012a; Fig. 1b).

Applied to pregnancy when the sustained expansion of maternal Tregs is essential for maintaining fetal tolerance, infection- or inflammation-induced reductions in Treg suppression have the critical potential to fracture fetal tolerance with ensuing pregnancy complications (Fig. 1c). This has been most definitively shown with a highly informative mating strategy using transgenic male mice that ubiquitously express defined model antigens to establish allogeneic pregnancy with non-transgenic female mice that transform model antigens into surrogate fetal antigens (Erlebacher et al. 2007, Moldenhauer et al. 2009, Taglauer et al. 2009). After L. monocytogenes infection, the normally blunted accumulation of maternal T effector cells with fetal specificity is overtaken (Rowe et al. 2012b). In turn, the robust expansion and activation of maternal T effector cells with fetal specificity with maternal infection recapitulate the quantitative accumulation and qualitative activation of these cells with maternal Treg ablation during pregnancy (Rowe et al. 2011). Intriguingly, although fetal resorption with a reciprocal loss of live pups occurs in a dose-dependent fashion that parallels infection-induced reductions in maternal Treg suppression, bacteria could not be recovered from the majority of resorbed placental–fetal units after infection with low or intermediate dosages of virulent L. monocytogenes (Rowe et al. 2012b). These more recent findings suggesting a threshold inoculum is required for establishing sustained systemic infection are consistent with prior studies illustrating dose-dependent rates of placental invasion after i.v. L. monocytogenes inoculation (Redline & Lu 1987). Here, it is important to highlight that even attenuated L. monocytogenes that cannot invade the placental–fetal unit due to targeted defects in ActA required for intercellular spread can also induce fetal wastage with disruptions in fetal tolerance and loss of live pups (Bakardjiev et al. 2005, Le Monnier et al. 2007, Rowe et al. 2012b). Thus, L. monocytogenes infection-induced pregnancy complications do not require in utero pathogen invasion and may instead be due to reductions in maternal Treg suppression with ensuing disruptions in fetal tolerance (Fig. 2a).

By showing that pregnancy complications can occur without direct bacterial invasion of the placental–fetal unit, the high frequency of pregnancy complications associated with L. monocytogenes infection during human pregnancy despite placental cell resistance to direct bacterial invasion can be potentially reconciled (Gellin & Broome 1989, Silver 1998, Mylonakis et al. 2002, Robbins & Bakardjiev 2012). On the other hand, since a majority of newborn infants are infected when born to mothers with disseminated infection (Mylonakis et al. 2002), there are also presumably ways to bypass the protective placental barrier with infection in vivo. We hypothesize inflammation at the maternal–placental interface induced by disrupted fetal tolerance may provide a more direct conduit drawing circulating bacteria into otherwise resistant placental cells. Thereafter, the previously described local immune suppression at the maternal–placental interface and high bacterial concentrations within the infected placenta probably provide a repository for continuous re-infection (Redline & Lu 1987, 1988, Bakardjiev et al. 2002). Based on these findings with perinatal L. monocytogenes infection, we propose a model whereby i) the expansion of immune suppressive maternal Tregs required for maintaining fetal tolerance compromises innate protection against disseminated infection, ii) the normally protective blunting of Treg suppression that unleashes the activation of protective immune components to eradicate infection disrupts fetal tolerance with fetal wastage caused by attack from maternal immune cells with infection during pregnancy, and iii) inflammation at the maternal–placental interface with fractured fetal tolerance draws circulating pathogens through the normally protected placental cell barrier promoting fetal invasion (Fig. 2b).

The more general applicability of this model now requires analogous studies with other pathogens that cause prenatal infections and pregnancy complications. In this regard, some clues for pathogens known to cause more severe systemic infections during pregnancy are already in place. For example, S. typhimurium infection during pregnancy triggers catastrophic fetal wastage with exaggerated immune responses within the placenta and approximately twofold reductions in Treg suppressive potency, especially in the later stages of persistent infection (Pejic-Karapetrovic et al. 2007, Chattopadhyay et al. 2010, Johanns et al. 2010). Similarly, quantitative...
reductions in peripheral Treg levels have been described in early stages after systemic murine cytomegalovirus and intestinal Toxoplasma gondii infections (Li et al. 2008, Oldenhove et al. 2009). If similar reductions in maternal Treg suppression were to occur with infection during pregnancy, disruptions in fetal tolerance with ensuing immune-mediated fetal wastage would be predicted.

It is also important to point out a potentially interesting exception for Plasmodium infection that results in placental localization and robust inflammatory changes leading to intrauterine fetal demise (Poovassery & Moore 2009, Poovassery et al. 2009). Unlike most other acute infections in which Treg suppression is reduced, increased proportions of activated Tregs with higher suppressive potency are found after Plasmodium infection, and these shifts are likely to minimize inflammatory sequelae at the expense of parasite replication (Walther et al. 2005, Minigo et al. 2009). Therefore, for this infection, other molecules such as chondroitin sulfate providing placental adhesion may provide a more direct conduit for fetal invasion without the need for overturning maternal Treg suppression (Fried & Duffy 1996, Duffy & Fried 2003). Nevertheless, given the necessity for sustained maternal Treg expansion in fetal tolerance, infection-induced qualitative or quantitative shifts in Treg suppression highlight a potentially more unifying pathway whereby maternal infection may trigger pregnancy complications.

Summary

Reproduction and averting infections are arguably the two most dominant fundamental driving forces in nature. Adaptations that simultaneously improve both reproductive fitness and host defense are most ideal and should be strongly enriched for through positive selection. On the other hand, adaptations that favor only one must be counterbalanced by concurrent adaptations that promote or at least sustain the other. With regard to host defense against infections, diversity in immune-recognition MHC molecules between individuals is clearly advantageous for species survival. However, in placental mammals that also require the benefits of more prolonged in utero protection for the fetus, the same antigenic diversity beneficial for host defense is potentially detrimental for reproductive fitness, unless foreign antigens associated with reproduction can be discriminated against those that cause infections. Fortunately, humans and other mammalian species are endowed with many such discriminatory mechanisms that act at the maternal–fetal interface and act more systemically to ensure protection for the developing fetus. Using animal pregnancy models and investigating complications in human pregnancy, we have uncovered some, but certainly not all, the key players in this meticulously orchestrated process.

Based on what we currently know, an elaborate plethora of molecular and cellular changes occurs at the maternal–placental interface to silence local...
activation of potentially detrimental to maternal immune cells. However, these local modifications alone are insufficient as the systemic expansion of immune suppressive maternal regulatory CD4 T cells is also essential. Although Tregs have been shown to impair optimal host defense against a wide variety of potential human pathogens in non-pregnancy models, the expansion of these cells during pregnancy does not lead to increased susceptibility to most. In fact, the detrimental impacts on host defense for expanded maternal Tregs during pregnancy across mammalian species seem to be limited to a remarkably small handful of microbes that share the common features of residence within infected cells and placental colonization. Thus, prenatal pathogens exploit a naturally occurring hole in host defense created by the reproductive process.

As biologists, we can marvel at this apparent intricate regulation that allows protection against the vast array of potential human pathogens and reproduction to occur efficiently enough as we exponentially approach a population of 7 billion individuals. However, as pediatricians and parents, our struggle is to uncover ways to optimize the outcomes of every last pregnancy. It is through the latter perspective that we have focused on why pregnancy leads to susceptibility and the pathogenesis of pregnancy complications after infection with the prototypical prenatal pathogen L. monocytogenes. The most critical data to support increased infection susceptibility during pregnancy and ensuing pregnancy complications associated with maternal Tregs have been discussed. Based on these results, we propose critically important next steps are to investigate whether other microbes that cause prenatal infections either systemically or locally by ascending through the birth canal utilize similar pathogenesis pathways. If so, therapeutic strategies that focus on moderating the immune response to infections, as well as pathogen eradication, may help improve the outcomes of pregnancy. Furthermore, given the remarkable heterogeneity among Tregs in terms of both antigen specificity and cell-intrinsic molecules utilized for suppression, establishing and reinforcing the protective maternal Treg features that sustain pregnancy and dissociating them from others that compromise host defense also represent areas with critical implications for improving maternal and infant health.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review reported.

Funding

This work was supported by the NIH-NIAID through awards R01AI100934 and R01AI087830 (S S Way) and training grants from NIH-NIDDK F30DK084674 (J H Rowe). S S Way holds an Investigator in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund.

Acknowledgements

Given space limitations, the authors apologize for not being able to discuss in a more in-depth fashion or cite the findings from numerous other important prior studies.

References

Aluvihare VR, Kallikourdis M & Betz AG 2004 Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunology 5 266–271. (doi:10.1038/ni1037)
Bischoff AL, Folsgaard NV, Carson CG, Stokholm J, Pedersen L, Holmberg M, Bisgaard A, Birch S, Tsai TF & Bisgaard H 2013 Altered response to A/H1N1pdm09 vaccination in pregnant women; a single blinded randomized controlled trial. PLoS ONE 8 e56700. (doi:10.1371/journal.pone.0056700)

Collins MK, Tay CS & Erlebacher A 2010 Interleukin 21 directs regulatory T cell development in the absence of Foxp3. Journal of Immunology 184 531–537. (doi:10.4049/jimmunol.1100261)

Curtsinger JM, Valenzuela JO, Agarwal P, Lins D & Mescher MF 2005 Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. Journal of Immunology 174 4455–4469.

Griesemer AD, Sorenson EC & Hardy MA 2010 The role of the thymus in transplantation. Transplantation 90 465–474. (doi:10.1097/TP.0b013e31817e5f46)

Redline RW & Lu CY 1988 Specific defects in the anti-лимерal immune response in discrete regions of the murine uterus and placenta account for susceptibility to infection. Journal of Immunology 140 3947–3955.

Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN & Murali-Krishna K 2007 IL-12 and type-I IFN synergize for IFN-γ production by CD4 T cells, whereas neither are required for IFN-γ production by CD8 T cells after Listeria monocytogenes infection. Journal of Immunology 179 4498–4505.

neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genetics 27 18–20. (doi:10.1038/ng1870)

Received 17 June 2013
First decision 11 July 2013
Revised manuscript received 30 July 2013
Accepted 8 August 2013