The role of BH3-only proteins in apoptosis within the ovary

Karla J Hutt

1MIMR-PHI, Clayton, Victoria, Australia and 2Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia

Correspondence should be addressed to K J Hutt; Email: karla.hutt@princehenrys.org

Abstract

BH3-only proteins are pro-apoptotic members of the BCL2 family that play pivotal roles in embryonic development, tissue homeostasis and immunity by triggering cell death through the intrinsic apoptosis pathway. Recent in vitro and in vivo studies have demonstrated that BH3-only proteins are also essential mediators of apoptosis within the ovary and are responsible for the initiation of the cell death signalling cascade in a cell type and stimulus-specific fashion. This review gives a brief overview of the intrinsic apoptosis pathway and summarises the roles of individual BH3-only proteins in the promotion of apoptosis in embryonic germ cells, oocytes, follicular granulosa cells and luteal cells. The role of these proteins in activating apoptosis in response to developmental cues and cell stressors, such as exposure to chemotherapy, radiation and environmental toxicants, is described. Studies on the function of BH3-only proteins in the ovary are providing valuable insights into the regulation of oocyte number and quality, as well as ovarian endocrine function, which collectively influence the female reproductive lifespan and health.

Introduction

Programmed cell death, or apoptosis morphology (hereafter referred to as ‘apoptosis’), is a major feature of normal ovarian development, with more than two-thirds of the germ cells produced during female embryonic development undergoing cell death shortly after they are formed (Pepling & Spradling 2001, Myers et al. 2014). The apoptotic elimination of germ cells ultimately results in a reduced number of oocytes stored as primordial follicles within the ovary at birth (Myers et al. 2014). Once formed, primordial follicles may be lost from the ovarian reserve as a consequence of exposure to endogenous and exogenous stressors, such as chemotherapy, radiation and environmental toxicants (Kerr et al. 2012a, Sobinoff et al. 2013, Sivakumar et al. 2014). These agents are known to activate apoptotic responses within the primordial follicle oocyte itself, as well as in the granulosa cells of growing follicles (Suh et al. 2006) (reviewed in Morgan et al. 2012). Furthermore, the majority of follicles that initiate growth and development throughout reproductive life do not progress to ovulatory status, but instead undergo selective atresia, a process underpinned by the apoptosis of granulosa and theca cells, followed by death of the enclosed oocyte (reviewed in Matsuda et al. 2012). Thus, apoptosis plays a critical role in regulating the number of oocytes available for ovulation, which influences the length of a woman’s fertile lifespan and the timing of menopause. Apoptosis is also intimately involved in the constant and cyclical remodelling of the ovary that occurs after ovulation, and is particularly important for the later phase of corpus luteum regression involving structural involution (Juegel et al. 1993, Shikone et al. 1996, Bowen et al. 1999, Goyeneche et al. 2006), which occurs after the initial decline of progesterone production. Given the clear importance of apoptosis for germ cell development, folliculogenesis and overall female fertility, much research effort has focussed on identifying and characterising the proteins that regulate this process. In this regard, the pro-apoptotic BH3-only proteins are emerging as the key regulators of apoptosis within the ovary. BH3-only proteins are members of the BCL2 family that trigger apoptosis through the intrinsic apoptosis pathway, which will be described briefly below.

Pathways to apoptosis

Apoptosis is a genetically programmed, evolutionarily conserved process essential for the elimination of dangerous, damaged or supernumerary cells (reviewed in Golstein 1998). There are two apoptotic pathways in mammalian cells: the intrinsic pathway, which is triggered by activation of pro-apoptotic BH3-only proteins in response to a diverse range of developmental...
function: i) the multi-BH domain pro-survival proteins, into three subgroups according to their structure and homology domains (BH1–BH4) and can be divided.

The intrinsic apoptosis pathway, also known as the mitochondrial or BCL2 regulated apoptosis pathway, is regulated by the relative levels and activities of both pro- and anti-apoptotic members of the BCL2 superfamily (Figs 1 and 2; reviewed in Hanno et al. (2012) and Czabotar et al. (2014)). The members of the BCL2 superfamily share one or more of the four BCL2 homology domains (BH1–BH4) and can be divided into three subgroups according to their structure and function: i) the multi-BH domain pro-survival proteins, BCL2, BCL extra-large (BCL-XL), myeloid cell leukaemia sequence 1 (MCL1), A1 and BCL-W (also known as BCL2L2), which inhibit apoptosis and are essential for cell survival; ii) the multi-BH domain pro-apoptotic members BCL2-associated X protein (BAX), BCL2 antagonist/killer (BAK) and possibly also BCL2-related ovarian killer protein (BOK), which are critical for activation of the downstream events in cell destruction; and iii) the pro-apoptotic BH3-only proteins, including BCL2 interacting mediator of death (BIM, also known as BCL2L11), p53 upregulated modulator of apoptosis (PUMA, also known as BBC3), BH3 interacting domain death agonist (BID), BCL2 antagonist of cell death (BAD), BCL2 modifying factor (BMF), BCL2 interacting killer (BIK, also known as BLK/NBK), HRK (also known as DP5) and NOXA (also known as PMAIP1) (Fig. 2; reviewed in Czabotar et al. (2014)).

BH3-only proteins are the critical sensors of cell stress and initiators of the intrinsic apoptosis signalling cascade (reviewed in Tsujimoto & Shimizu (2000)). They promote apoptosis by binding, via the BH3 domain, the pro-survival BCL2 family members and neutralising their activity by stabilising and inhibiting their function (Chen et al. 2005; reviewed in Willis et al. (2007), Hanno et al. (2012) and Czabotar et al. (2014)). Inhibition of the pro-survival BCL2 proteins then leads to the release from inhibition and activation of apoptotic effectors BAX and BAK (reviewed in Hsueh & Hsueh (2000), Willis & Adams (2005) and Adhikari & Liu (2009)). Some BH3-only proteins, such as tBID (activated form of BID, see below), BIM and possibly PUMA, may also directly bind and activate BAX and BAK and in this instance a key role of the pro-survival BCL2 proteins may be to sequester these BH3-only proteins.

Figure 2 The BCL2 protein family. The BCL2 family of apoptotic regulators can be divided into three broad groups based on their general structure and function. The BH3-only proteins contain only a BH3 domain and comprise family members PUMA, NOXA, BMF, tBID, BIK, BAD, HRK and BIM. The pro-survival BCL2-like proteins have all four BCL2 homology domains (BH1–4) and comprise family members BCL2, BCL-XL, BCL-W, MCL1 and A1. Finally, the proapoptotic effectors BAX, BAK, and possibly BOK all contain four BH domains. Most of the BCL2 family members also have a transmembrane domain (TM), which enables them to anchor to the mitochondria.
to prevent or curtail direct activation of BAX and BAK in the absence of sufficient apoptotic stimuli (Letai et al. 2002, Kuwana et al. 2005, Certo et al. 2006, Gavathiotis et al. 2008). Activation of BAX/BAK proteins results in permeabilisation of the mitochondrial outer membrane, followed by release of cytochrome c and other apoptogenic factors from the mitochondria. Formation of the apoptosome then promotes the activation of initiator caspase-9, with subsequent activation of the effector caspases (e.g. caspase-3, -7, -6; reviewed in Happo et al. (2012)). The fate of the cell is thus determined by the balance or ratio of these three groups of apoptotic regulators.

Stress factors known to result in activation of the intrinsic apoptosis signalling cascade include reactive oxygen species, detachment from the extracellular matrix, heat, hypoxia, γ-irradiation, chemotherapy or cytokine deprivation (reviewed in Youle & Strasser (2008)). Importantly, individual BH3-only proteins are activated by different apoptotic stimuli, with some overlap and functional compensation. They also differ in their affinity for individual pro-survival BCL2 proteins (reviewed in Czabotar et al. (2014)). This difference defines the apoptotic potency of each BH3-only protein because it is likely that most of the pro-survival proteins expressed by a given cell must be neutralised for apoptosis to occur efficiently (Chen et al. 2005, Willis et al. 2007). In this regard, PUMA, BIM and tBID are particularly potent cell killers because they can heterodimerise with and inhibit all pro-survival BCL2 family members (BCL2, BCL-XL, BCL-W, MCL1 and A1) (Tsujimoto & Shimizu 2000; reviewed in Kuwana & Newmeyer (2003) and Kelly & Strasser (2011)). By contrast, the killing capacity of NOXA is considerably reduced because it can only bind and inhibit MCL1 and A1 (reviewed in Yu & Zhang (2008)).

The extrinsic apoptotic pathway is initiated by the activation of cell surface death receptors belonging to the tumour necrosis factor receptor family (e.g. FAS and TNFR1) by binding of their respective pro-apoptotic ligands (e.g. FASL and TNFα) (Fig. 1; reviewed in Strasser et al. (2000)). The activation of death receptor is followed by cleavage and activation of caspase-8, which then directly activates effector caspase-3 (Fig. 1; reviewed in Kaufmann et al. (2012)). While the intrinsic and extrinsic pathways to apoptosis are largely independent, some cells require simultaneous activation of both pathways for death to occur (Kaufmann et al. 2009). In these cells, death receptor activation also leads to the cleavage of the BH3-only protein BID by caspase-8 (Fig. 1; Kaufmann et al. 2009). BID cleavage results in the generation of a 15 kDa truncated active protein called tBID, which translocates to the mitochondria, where it forms a heterodimer with the pro-survival BCL2 proteins, BCL2 itself, BCL-XL, BCL-W, MCL1 and A1 (Fig. 1; reviewed in Happo et al. (2012)). This interaction results in the inactivation of the pro-survival BCL2 proteins, followed by activation of pro-apoptotic proteins BAX/BAK. Activation of BAX/BAK results in destabilisation of the mitochondrial membrane, cytochrome c release, formation of the apoptosome, caspase activation and apoptosis. Thus, BID is the essential bridge between the intrinsic and extrinsic apoptosis pathways and cleavage of BID results in the simultaneous activation of the cell death machinery of both the intrinsic and extrinsic pathways.

Unique and overlapping roles for individual BH3-only proteins in triggering apoptosis have been extensively studied in many non-ovarian cell types and organ systems, with much progress made though the generation and study of gene knockout mouse models. Knowledge regarding the function and regulation of BH3-only proteins gained from studies in other cells is now being applied to the ovary, and important roles for BH3-only proteins in triggering apoptosis in germ cells, oocytes, granulosa cells and luteal cells are now emerging.

PUMA and NOXA

Studies carried out in somatic cells have shown that PUMA and NOXA are direct transcriptional targets of p53, with important roles for these proteins in the activation of apoptosis in response to DNA damage induced by γ-irradiation and chemotherapeutic drugs (Jeffers et al. 2003, Villunger et al. 2003). By contrast, transcriptional induction of PUMA and NOXA in the oocytes of primordial follicles following γ-irradiation-induced DNA damage does not rely on p53, but is dependent on the p53 homologue TAp63 (Kerr et al. 2012b). Notably, while oocytes lacking NOXA alone are sensitive to γ-irradiation, oocytes deficient in PUMA are partially resistant and oocytes lacking both PUMA and NOXA are robustly resistant to this insult (Kerr et al. 2012b). Thus, PUMA, alone and together with NOXA, plays a critical role in the elimination of primordial follicles from the ovarian reserve that have sustained DNA damage.

PUMA has also been implicated in the developmentally regulated germ cell loss that occurs during the embryonic migration of germ cells to the gonad and in the newly forming ovary (Myers et al. 2014). Interestingly, mice genetically deficient in PUMA are endowed with an almost twofold increase in the normal number of primordial follicles, highlighting the key role PUMA-mediated apoptosis plays in determining how many primordial follicles are initially established in the ovarian reserve (Myers et al. 2014). However, it is not yet clear whether PUMA directly mediates germ cell apoptosis during this time, or whether PUMA initiates somatic cell apoptosis, which subsequently limits germ cell survival.

BCL2 modifying factor

BMF initiates apoptosis by binding pro-survival BCL2 proteins BCL2, BCL-XL and BCL-W, and MCL1, but unlike BID, BIM and PUMA, does not interact with the
pro-apoptotic family members BAX and BAK. There are two major apoptosis inducing isoforms of BMF that arise from different translation start sites on a single transcript (Grespi et al. 2010). Some studies have suggested that the pro-apoptotic activity of BMF is negatively regulated by binding to dynein light chain 2 (DLC2), a component of the myosin V actin motor complex, which sequesters BMF to the cellular cytoskeleton (Puthalakath et al. 2001, Grespi et al. 2010). DLC2 binding is facilitated by a highly conserved motif (K/RXQTQ) found near the N-termini of BMF (Puthalakath et al. 2001). Upon activation, BMF is released from the myosin V motor complex, allowing it to translocate to the mitochondria and inhibit pro-survival BCL2 family members, thereby initiating the apoptotic program. The release of BMF from the myosin V motor complex may be regulated through phosphorylation by JNK on the serine residue adjacent to the BMF actin/myosin domain (Lei & Davis 2003, Labi et al. 2008). Interestingly, the pro-apoptotic BH3-only protein BIM is also negatively regulated by cytoskeletal sequestration (Puthalakath et al. 2001).

Bmf^{−/−} mice are viable and fertile, but have disrupted B-cell lymphocyte homeostasis, with excess B-cells observed (Labi et al. 2008, Hubner et al. 2010). Furthermore, embryonic fibroblasts and lymphocytes from mice lacking BMF are resistant to apoptosis induced by the inhibition of phosphatidylinositol 3-kinase, glucocorticoids and histone-deacetylase inhibitors (Labi et al. 2008, Grespi et al. 2010). Some studies using primary mammary epithelial cells, intestinal cells and transformed cell lines have suggested that BMF initiates cell death resulting from loss of cellular attachment from the basal lamina (anoikis) (Puthalakath et al. 2001, Schmelzle et al. 2007, Hausmann et al. 2011), whereas other studies using embryonic fibroblasts and gastrointestinal epithelial cells from Bmf^{−/−} mice have suggested that BMF may be dispensable for anoikis of certain cell types (Labi et al. 2008).

While male Bmf^{−/−} mice do not exhibit impaired or altered fertility (Labi et al. 2008), two in vitro studies have suggested that BMF may be important for mediating the death of germ cells when they lose Sertoli cell attachment and thus may act as a germ cell quality control mechanism (Show et al. 2004a,b). It is proposed that separation of germ cells from the Sertoli cells activates JNK1, which leads to the phosphorylation of BMF and its relocation from the sub-acrosomal space to the cytoplasm of round spermatids, triggering their apoptosis (Show et al. 2008).

Recently, the role of BMF within the adult female reproductive system has been studied in detail using Bmf^{−/−} mice (Liew et al. 2014). BMF was shown to regulate the number of primordial follicles maintained in the adult mouse ovary, and loss of BMF was associated with increased numbers of primordial follicles between post natal days 100 and 545 and conferred prolonged fertility (Liew et al. 2014). While primordial follicle depletion during female reproductive ageing is known to occur as a result of their activation and entry into the growing follicle pool, this study suggests that it is also possible that primordial follicles are directly lost from the pool through apoptotic processes involving BMF. Notably, the follicle stages and ovarian cells in which BMF is expressed were not identified, and it remains unknown whether BMF directly initiates death within oocytes or if BMF mediates death of somatic cells (e.g. granulosa cells), indirectly leading to oocyte death (Liew et al. 2014). Clearly, further work must be done before this issue can be resolved.

BH3 interacting domain death agonist

Studies in non-ovarian somatic cells show that BID is a potent cell killer, but it is significantly different to all other BH3-only proteins because it induces death only after the extrinsic apoptotic pathway is triggered, which leads to its cleavage by caspase-8 to from truncated tBID (Fig. 1; reviewed in Kantari & Walczak (2011) and Happo et al. (2012)). Consequently, BID has a unique role in the connection of proximal signals from the death receptors of the extrinsic apoptotic pathway to the common intrinsic apoptotic pathway, thereby providing a mechanism for amplification of the apoptotic cascade.

Though a comprehensive study of the role of BID in cell death within the ovary using knockout mice is yet to be published, several studies have hinted at important roles in follicular atresia and corpora lutea regression (Yadav et al. 2005, Goyeneche et al. 2006, Sai et al. 2011, 2012, Paulose et al. 2012, Craig et al. 2013). More than 99% of the growing follicles in the ovary are destined for atresia, which is usually first evident by apoptosis of the granulosa cells. Notably, BID expression increases during follicular atresia in the porcine ovary and knockdown of BID expression in human granulosa cell-derived KGN cells can suppress apoptosis (Sai et al. 2011, 2012), suggesting a role for BID in regulating the normal process of follicular atresia. In addition to this natural process, BID may also be responsible for triggering follicular atresia following exposure to exogenous environmental toxicants such as di-n-butyl phthalate and the organochlorine pesticide methoxychlor, which are known to increase follicular atresia (Paulose et al. 2012, Craig et al. 2013).

The apoptotic mechanisms involved in structural luteolysis and the eventual disappearance of the corpus luteum from the ovary in normally cycling mammals are not well characterised. Inter-species differences in the factors that induce luteal cell apoptosis and the low number of apoptotic cells observed in situ at any given time has made clarification of the precise mechanisms involved challenging (reviewed in Sugino & Okuda (2007)). In an attempt to overcome this latter problem, Goyeneche et al. (2006) used an in vitro model of rat luteal cell apoptosis to investigate the cellular machinery involved. While high levels of BID were detected in...
protein extracts from healthy luteal cells cultured in the presence of serum, when luteal cell apoptosis was induced under conditions of serum starvation, they unexpectedly found reduction in BID expression (Goyeneche et al. 2006). The authors implied that this reduction in BID expression might have been due to its cleavage to the active tBID form, but tBID expression itself was not evaluated and active caspase-8 could not be detected (Goyeneche et al. 2006). Another study clearly showed increased expression of FAS and FASL increased caspase-8 activity, BID cleavage to tBID and increased caspase-3 and -9 cleavage during PGF2 α-induced bovine luteal tissue apoptosis (Yadav et al. 2005). Indeed, a potential role for BID in triggering luteal cell apoptosis during normal cycling is supported by many studies carried out in rodents, cattle and humans showing FAS signalling and caspase-8 activation during luteolysis (Quirk et al. 1995, Sakamaki et al. 1997, Kuranaga et al. 2000a, b, Taniguchi et al. 2002, Carambula et al. 2003).

BCL2 interacting mediator of death

BIM binds all prosurvival BCL2 proteins with high affinity, and can also bind BAX and BAK (Merino et al. 2009, 2012). BIM exists as three major splice variants referred to as BIM S, BIM I and BIM EL (O’Connor et al. 1998, Wang et al. 2012a). Studies in a number of somatic cell types have shown that BIM, both alone or together with other BH3-only proteins, promotes apoptosis in response to a variety of stimuli including cytokine deprivation, taxol, glucocorticoids, radiation, chemotherapy and endoplasmic reticulum (ER) stressors and has a well-characterised role in the apoptosis of autoreactive thymocytes and B-cells (Bouillet et al. 1999, 2002, Enders et al. 2003, Erlacher et al. 2006, Ekoff et al. 2007, Happo et al. 2010). Transcription of BIM is positively regulated by the forkhead transcription factor FOXO3a in response to cytokine deprivation (Dijkers et al. 2000) and by C/EBP homologous protein (CHOP) in response to endoplasmic reticulum stress (Puthalakath et al. 2007). Similar to BMF, BIM may be negatively regulated at the post-translational level by sequestration to the cellular cytoskeleton (Puthalakath et al. 2001). The activity of BIM can also be regulated by phosphorylation which, depending on the site of modification, can enhance (reviewed in Ewings et al. (2007)) or reduce (Lei & Davis 2003, Putcha et al. 2003) its activity.

Within the ovary, BIM protein has been detected in the granulosa cells of follicles at all stages of development (O’Reilly et al. 2000). Two studies hinting that BIM may be involved in the apoptosis of naked oocytes and oocytes from newly formed primordial follicles in the developing rat ovary have been published. One was an in vitro study showing that the survival cytokine, stem cell factor, reduces apoptosis and suppresses BIM expression in cultured naked rat oocytes (Liu et al. 2009). The second was a study of neonatal rat ovaries showing that apoptotic (TUNEL positive) oocytes express FOXO3a and BIM (Sui et al. 2010). However, further work needs to be done before a physiological role for BIM in the developmental apoptosis of oocytes during follicle formation could be firmly established.

While the role of BIM in the regulation of apoptosis at the earliest stages of oocyte and follicle development remains unclear, recent work from Wang et al. (2012b) has demonstrated an important role for BIM in the atresia of antral follicles. Atretic porcine follicles have increased levels of BIM mRNA compared with healthy follicles and overexpression of BIM EL triggers apoptosis in cultured granulosa cells (Wang et al. 2012b, Fu et al. 2013). Notably, the well-characterised ability of FSH to prevent atresia of antral follicles is, at least in part, achieved through its ability to suppress BIM EL expression via the PI3K/AKT/FOXO3a pathway (Wang et al. 2012b). Work from this same group has also indicated that the low level of apoptosis observed in cumulus compared with mural granulosa cells is achieved through oocyte-secreted GDF9, which inhibits BIM EL expression in cumulus cells (Hussein et al. 2005, Wang et al. 2013).

BCL2 antagonist of cell death

The proapoptotic activity of BAD is mediated through its ability to bind and neutralise BCL2, BCL-XL and BCL-W, but not MCL1 or A1 (Chen et al. 2005). BAD has been implicated in the apoptosis of haematopoietic cells following withdrawal of cytokine: in the presence of cytokines, BAD can be inhibited by AKT-mediated phosphorylation, which leads to its sequestration by 14-3-3 scaffold proteins or by preventing its interaction with BCL-XL (Zha et al. 1996, del Peso et al. 1997). By contrast, cytokine deprivation leads to dephosphorylation of BAD, enabling it to induce apoptosis. Bad−/− mice are generally fertile and healthy, although have excess platelets and exhibit a tendency to develop lymphoma with ageing (Ranger et al. 2003, Kelly et al. 2010).

Bad was first identified in the ovary following a screen for BCL2 interacting proteins and was one of the first pro-apoptotic proteins shown to have a role in follicular atresia (Kaipia et al. 1997). Early studies has shown that BAD mRNA is expressed in the granulosa and theca cells of follicles of all sizes and overexpression of BAD in granulosa cells induces their apoptosis (Kaipia et al. 1997). However, BAD expression does not actually increase throughout the course of normal atresia or during atresia induced experimentally by estrogen withdrawal in immature rats (Kaipia et al. 1997). Instead, induction of granulosa cell apoptosis by loss of hormonal support is associated with the activation of BAD through its dephosphorylation, (Kaipia et al. 1997, Gebauer et al. 1999). More recent work has provided additional support for the involvement of BAD in granulosa cells apoptosis by showing that progesterone suppresses granulosa cell apoptosis by binding the progesterone receptor.
membrane component-1 (PGRMC1) and inhibiting BAD gene expression (Peluso et al. 2010; reviewed in Peluso (2013)). In addition, one of the mechanisms by which VEGFA is thought to promote granulosa cell survival is through its ability to increase AKT-mediated phosphorylation of BAD (Abramovich et al. 2010).

In addition to triggering follicular atresia in response to physiological stimuli, BAD may also be involved in follicle depletion caused by environmental pollutants. For example, 4-vinylcyclohexene diepoxide, a by-product in the manufacture of pesticides, flame retardants and plastics, is known to induce the atresia of small preantral follicles, which likely involves BAD (Hu et al. 2001). Similarly, hexavalent chromium (CrVI), a widely used industrial pollutant, induces apoptosis in cultured granulosa cells and is associated with decreased expression of BCL2, BCL-Xs, HSP70 and HSP90 and increased expression of BAX and BAD (Banu et al. 2011).

BCL2 interacting killer

There is little information available about the role of BIK in the ovary. However, studies of male mice deficient in both Bik and Bim suggest a role in the elimination of supernumerary germ cells. Whereas mice lacking Bik appear to be largely normal, likely due to functional redundancy with other BH3-only proteins (Coultas et al. 2004), tests from young males lacking both Bik and BIM have increased numbers of spermatogonia and spermatocytes. These males cannot produce mature sperm due to the inability of sertoli cells to support the excess germ cells (Coultas et al. 2005). Female Bik−/− Bim−/− mice are reported to be fertile (Coultas et al. 2005), but their ovarian phenotype has not yet been characterised and such a study may reveal a similar role for BIK, together with BIM, in female germ cell apoptosis.

HRK

HRK is best characterised for its role in neuronal cell death (Imaizumi et al. 1997, 1999, 2004, Coultas et al. 2007). Indeed, in situ hybridisation of mouse embryos and northern blotting of adult rodent tissues suggested that Hrk expression is limited to the central and peripheral nervous systems (Imaizumi et al. 1997, Coultas et al. 2007). However, these studies did not appear to screen for the expression of HRK during the latter stages of embryonic ovarian development when large numbers of germ cells are eliminated in response to unknown developmental cues (e.g. E15.5-PN1) or in the adult ovary, leaving open the possibility of a role for HRK in the mediation of apoptosis within the ovary. In this regard, Jurisicova et al. (2007) showed that polycyclic aromatic hydrocarbons (PAH), such as those found in cigarette smoke, can induce the expression of HRK mRNA and HRK protein in primordial and primary follicles. Furthermore, elimination of HRK in mice conferred protection against PAH-induced primordial and primary follicle depletion (Jurisicova et al. 2007). Maternal exposure to cigarette smoke has also been recently shown to upregulate the expression of HRK mRNA in the human foetal ovary (Fowler et al. 2014). These studies implicate HRK in the apoptosis of oocytes and granulosa of very early follicles and should stimulate further investigation of HRK and ovarian cell apoptosis, particularly in response to PAH exposure.

Concluding remarks

BH3-only proteins are emerging as important regulators of apoptosis in the ovary during embryonic development and throughout reproductive life. In this regard, roles for individual BH3-only proteins in germ cell, oocyte, granulosa and luteal cell apoptosis have been described. Much of the information accumulated so far has been the result of expression studies and the analysis of gene-targeted mice, in response to both developmental cues and cellular stressors. However, further in-depth analysis of single-gene knockout mice will likely yield additional insight into the regulation of apoptosis in the ovary and targeted conditional knockouts will help to specifically identify roles in the different cellular compartments of the ovary. In addition, the analysis of compound mouse mutants, deficient in more than one BH3-only gene, will undoubtedly lead to the identification and characterisation of additional roles for BH3-only protein family members in the ovary, which may be obscured in single-gene knockouts by functional redundancy. It is also important to continue to verify findings in animal models using human tissue, where possible, in order to gain more understanding as to the involvement of apoptosis in the regulation of oocyte and follicle number and quality in the context of female reproductive longevity and health.

Declaration of interests

The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the review.

Funding

This work was supported by the National Health and Medical Research Council (NHMRC Australia) Project Grant #1007027, Fellowship KJH (#1050130). This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS.

References

Expression of the pro-apoptotic Bcl-2 family member Bim is regulated (doi:10.1242/jcs.002063)

Concomitant loss of proapoptotic BH3-only Bcl-2 expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Science 286 1735–1738. (doi:10.1126/science.286.5454.1735)

Reproduction 20030411)

Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits apoptosis upon inhibition of CAP-dependent protein synthesis. Cell Death and Differentiation 17 1672–1683. (doi:10.1038/cdd.2010.97)

Nature 455 1076–1081. (doi:10.1038/ nature07396)

Cell 120 2044–2052. (doi:10.1016/S0092-8674(04)00130-0)

Nature 455 1076–1081. (doi:10.1038/ nature07396)

Cell Biology 15 49–61. (doi:10.1038/srm3722)

Nature 478 122–126. (doi:10.1038/nature10319)

Journal of Biological Chemistry 286 26533–26540. (doi:10.1074/jbc.M111.265322)

Journal of Biological Chemistry 286 26533–26540. (doi:10.1074/jbc.M111.265322)

Molecular and Cellular Biology 15 49–61. (doi:10.1038/srm3722)

Journal of Biological Chemistry 286 26533–26540. (doi:10.1074/jbc.M111.265322)

Journal of Biological Chemistry 286 26533–26540. (doi:10.1074/jbc.M111.265322)

Journal of Biological Chemistry 286 26533–26540. (doi:10.1074/jbc.M111.265322)

homology domain 3-only Bcl-2 family member, in axotomy-induced neuronal cell death. Journal of Neuroscience 24 3721–3725. (doi:10.1523/JNEUROSCI.5101-00.2004)

O'Connor L, Strasser A & Bouillet P 2012 Bim must be able to engage all pro-survival Bcl-2 family members for efficient tumor suppression. Oncogene 31 3392–3396. (doi:10.1038/onc.2011.508)

BH3-only proteins regulate apoptosis in the ovary

Received 28 August 2014
First decision 8 October 2014
Accepted 20 October 2014