Involvement of TLR7 and TLR8 in conceptus development and establishment of pregnancy in sheep

Irene Ruiz-González, Megan Minten, Xiaqiu Wang, Kathrin A Dunlap and Fuller W Bazer

Department of Animal Science, Texas A&M University, Room 442 Kleberg, College Station, Texas 77843-2471, USA

Correspondence should be addressed to F W Bazer; Email: fbazer@cvm.tamu.edu

Abstract

Toll-like receptors (TLRs) belong to the innate immune system and regulate inflammatory events that affect mammalian reproduction. In Study 1, we demonstrated that abundance of ovine TLR1–TLR9 mRNAs in the uterus differs due to reproductive status (TLR2, TLR3, TLR7, and TLR8) and the day of the estrous cycle and pregnancy (TLR1–TLR3, TLR5–TLR7, and TLR9). Expression of TLR7 and TLR8 proteins was localized primarily to uterine epithelia and stroma and regulated in a temporal manner. In Study 2, we determined that ovine conceptuses express TLR7 and TLR8 on all days studied and that expression of the envelope protein of ovine endogenous retrovirus (enJSRV-Env) declined in conceptus trophoblast from Day 13 to Day 16 of pregnancy. In Study 3, loss-of-function experiments were conducted in vivo using morpholino antisense oligonucleotides (MAOs) injected into the uterine lumen to block synthesis of TLR7 and TLR8 proteins, individually and jointly. Conceptuses were recovered on Day 16 to assess their morphology. MAO-treated conceptuses were developmentally retarded, produced less interferon tau (IFNT), and had fewer binucleate cells (BNCs) compared with MAO-Controls. Moreover, expression of enJSRV-Env mRNA in MAO-TLR7 conceptuses was greater than that for MAO-Control and MAO-TLR8 conceptuses, but similar to MAO-TLR7/TLR8 conceptuses. Results of this study indicated differences in TLR1–TLR9 expression due to reproductive status and the day of the estrous cycle and pregnancy. TLR7 and TLR8 also influence development, enJSRV-Env abundance, secretion of IFNT, and formation of BNCs by conceptuses. These findings corroborate our hypothesis that TLR7 and TLR8 mediate pathways whereby enJSRV-Env regulates key peri-implantation events in conceptus development and differentiated functions of trophoblast cells.

Introduction

The intrauterine immune system in mammals must be finely regulated during pregnancy to allow for development of the semi-allogeneic conceptus (embryo and the associated extra-embryonic membranes) and, at the same time, protect against invading pathogens. Progesterone, the hormone of pregnancy (Spencer et al. 2004), has been reported to down-regulate the immune system at the maternal–conceptus interface to establish an anti-inflammatory milieu that favors continuation of pregnancy (Hansen 1998). However, large numbers of immune cells are recruited into the endometrium during the estrous cycle and pregnancy to participate in events of uterine remodeling, maternal tolerance, vascularization, and placentation (Segerson et al. 1991, Leonard et al. 2006, Laskarin et al. 2007, Gomez-Lopez et al. 2010, Nagamatsu & Schust 2010, Mansouri-Attia et al. 2012). Lacking this influx of immune cells or their aberrant function leads to infertility and pregnancy loss (Greenwood et al. 2000, Plaks et al. 2008, Guerin et al. 2009, Jabbour et al. 2009, Erlebacher 2013). Therefore, it is unlikely that the maternal immune system is suppressed during pregnancy. Rather it is appropriately tuned to be permissive to the presence of the conceptus and collaborate with cytokines from the conceptus to ensure a successful outcome of pregnancy.

Pattern recognition receptors (PRRs) are innate immune cell receptors involved in the initiation of immunological responses to highly conserved pathogen-associated molecular patterns (PAMPs) (Janeway & Medzhitov 2002). Among the families within PRRs are the Toll-like receptors (TLRs), which have been most studied and considered to be the first line of defense against pathogens (Akira & Hemmi 2003).

Mammalian TLRs are transmembrane type I proteins with a leucine-rich repeat ectodomain (LRR) for ligand recognition, a single transmembrane domain which differs among TLRs, and a TIR domain for signal transduction (Akira et al. 2001). Of the 13 TLRs identified in mammals (Hansen et al. 2011, Jungi et al. 2011), ten are known to be expressed in domestic ruminants (Menzies & Ingham 2006, Chang et al. 2009), which display high homology with their human counterparts (Nalubamba et al. 2007, Tirumurugaan et al. 2010). Besides TLR10, for which no function has been established, TLR ligand specificity
The abundance of interleukin 10 (IL10), IL4, or IL5 (Piccinni et al. 2001) suppression of the NFKB pathway and increased inflammatory environment, achieved through Bazer et al. 2001, Hess (2001), placental development in some species (Ashkar & Croy 2004, 2005, Aflatoonian et al. 2007), necessary for uterine receptivity, implantation, and appropriate inflammatory balance among steroid hormones, cytokines, and prostaglandins to assure cyclical uterine remodeling for establishment and maintenance of pregnancy (King & Critchley 2010, Ott & Gifford 2010, Dorniak et al. 2011). TLR-mediated cell signaling cascades involve the cytokine inductor nuclear factor kappa beta (NFKB) and interferon regulatory factors (IRFs) to induce type I interferons (IFNs) (Kumar et al. 2009). Both of these pathways are actively regulated in the female reproductive tract, and their deregulation leads to infertility and disease (Spencer et al. 1998, King et al. 2001, Fleming et al. 2009, Ross et al. 2010, Hadfield et al. 2011, Maybin et al. 2011).

Gestation has been considered a Th2 or anti-inflammatory environment, achieved through suppression of the NFKB pathway and increased abundance of interleukin 10 (IL10), IL4, or IL5 (Piccinni et al. 2001, Hadfield et al. 2011). However, Th1 (pro-inflammatory) molecules such as tumor necrosis factor alpha (TNFA) and IFNgamma (IFNG) are also necessary for uterine receptivity, implantation, and placental development in some species (Ashkar & Croy 2001, Hess et al. 2007, Paulesu et al. 2010, Warning et al. 2011, Granot et al. 2012). Moreover, type I IFNs play an indisputable role during early pregnancy in ruminants, as the conceptus signals its presence to the mother by producing high levels of interferon tau (IFNT). IFNT abrogates development of the luteolytic mechanism and activates IFNT-regulated pathways in the uterus, which influence gene expression within the maternal environment leading to production of histotroph (Spencer & Bazer 2004, Gray et al. 2006, Bazer et al. 2008).

The abundance of TLRs in immune cells depends on the dominant cytokine milieu (O’Mahony et al. 2008) and, therefore, it seems reasonable that strong conceptus–maternal signaling during the course of pregnancy influences expression of TLRs in the female reproductive tract and conceptus. Indeed, human endometrial epithelia and stromal cells express TLR1–TLR10, with higher levels during the progesterone-dominated secretory phase of the menstrual cycle (Jorgenson et al. 2005, Allatoomian et al. 2007, Hirata et al. 2007). Moreover, a microarray analysis found significant up-regulation of genes involved in the TLR pathway in the mouse uterus during the implantation period (Pan et al. 2006). In addition, TLR expression in the placenta is regulated in a temporal and spatial manner (Koga & Mor 2010) and the trophoblast modulates the maternal environment through TLR-mediated pathways (Abrahams et al. 2004, 2005). Despite evidence for their involvement in uterine biology of humans and mice, there is a lack of information regarding the role of TLR-mediated pathways in ruminants. Reports on expression of TLR1–TLR10 in bovine endometria describe differences in expression between epithelial and stromal cells (Herath et al. 2006, Davies et al. 2008) and their abundance in uterine endometrium of goats (Tirumurugaan et al. 2010).

Therefore, this study examined temporal and cell-specific patterns of expression of TLRs in uteri of cyclic and pregnant ewes during the period of pregnancy recognition signaling by IFNT. In addition, in vivo loss of translation of TLR7 and TLR8 mRNAs in the trophoderm was achieved during this same period of pregnancy using morpholino antisense oligonucleotides (MAOs) with the aim of assessing the role of both TLR7 and TLR8 in conceptus development, production of IFNT, and formation of binucleate cells (BNCs). Finally, levels of mRNA coding for the envelope protein of ovine endogenous retrovirus (enJSRV-Env) were analyzed in MAO-treated conceptuses, as these viral particles influence implantation in the sheep (Dunlap et al. 2005, 2006a, Black et al. 2010). The overall aim of this study was to advance understanding of the role of TLRs in key events that regulate maternal recognition of pregnancy and implantation in the ewe.

Material and methods

Experimental design

Mature Rambouillet ewes (*Ovis aries*) were observed daily for estrus (Day 0 is the day of onset of estrus) in the presence of vasectomized rams and assigned to experiments after exhibiting at least two estrous cycles of normal duration (16–18 days). All experimental and surgical procedures were performed in compliance with the Guide for the Care and Use of Agriculture Animals in Research and Teaching and approved by the Institutional Animal Care and Use Committee of Texas A&M University.

Study 1

At onset of estrus and on Day 1, ewes were mated to either a vasectomized ram or an intact ram of proven fertility. Ewes were then assigned randomly to be ovariectomized–hysterectomized on Day 10, 12, 14, or 16 of the estrous cycle or Day 10, 12, 14, 16, 18, or 20 of pregnancy (n = 4–5 ewes/day and status) as described previously (Spencer et al. 1999). Pregnancy was confirmed by the presence of a morphologically normal conceptus and a functional corpus luteum (CL).
At hysterectomy, sections (~0.5 cm) from the mid-portion of each uterine horn ipsilateral to the CL were fixed with fresh 4% paraformaldehyde in PBS (pH 7.2). After 24 h, fixed tissues were changed to 70% ethanol (v/v) for 24 h, dehydrated through a graded series of alcohol to xylene, and then embedded in Paraplast-Plus (Oxford Labware, St Louis, MO, USA). The remaining endometrium of the ipsilateral uterine horn was physically dissected from the myometrium, frozen in liquid nitrogen, and stored at −80 °C for subsequent RNA extraction processes.

Study 2

Ewes were mated at the onset of estrus (Day 0) and on Day 1 to fertile rams. At mating, ewes were assigned randomly in groups for recovery of the conceptuses on Day 13, 14, 15, or 16 of pregnancy (n=4/5 conceptuses/day) by flushing the uterus with 10 ml sterile PBS (pH 7.2). If the conceptus was present, its morphology was recorded (spherical, tubular, and elongated) and the volume of the uterine flushing recovered was recorded. Photomicrographs of the conceptus were obtained using an inverted microscope fitted with a digital camera. Portions of each conceptus were placed in optimal cutting temperature (OCT) compound (Miles, Oneonta, NY, USA), frozen in liquid nitrogen, and stored at −80 °C. Another portion of the conceptus was fixed with freshly prepared 4% (wt/vol) paraformaldehyde in PBS and embedded in paraffin wax. The uterine flush was clarified by centrifugation (5000 g for 15 min at 4 °C), aliquoted, and stored at −80 °C. The amount of IFNT in the uterine flush was quantified by RIA with a range of detection of 0.1–13 ng/ml (Antoniazzi et al. 2013). The intra- and inter-assay coefficient of variation values were 6.2 and 4.0% respectively.

RNA isolation and quantitative real-time PCR analysis

Total cellular RNA was isolated from endometrial samples and conceptuses using Trizol reagent (Invitrogen) according to the manufacturer’s instructions. The quantity and quality of total RNA were determined by spectrometry and by denaturing agarose gel electrophoresis respectively. Total RNA samples were digested with RQ1 RNase-Free DNase (Promega) and subsequently cleaned-up using an RNeasy Mini Kit (Qiagen). Total RNA (2100 ng) was reverse transcribed using SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen) following the manufacturer’s instructions. Control reactions in the absence of reverse transcriptase were prepared for each sample to detect genomic DNA contamination. The resulting cDNA was stored at −20 °C for further analyses.

Quantitative PCR (qPCR) was performed using the ABI prism 7900HT system (Applied Biosystems) with Power SYBR Green PCR Master Mix (Applied Biosystems) as specified by the manufacturer. Specific oligonucleotide primers were designed and analyzed using Primer Express Software for Real Time PCR v3.0 (Applied Biosystems). The primers were blasted using available databases to ensure specificity of each gene in this study and amplicons were verified by sequencing. Forward and reverse primer sequences for all genes analyzed in endometrial samples and conceptuses are listed in Tables 1 and 2 respectively. Primer specificity and efficiency (−3.22>slope >−3.44) were confirmed using a test amplification run. Each individual sample was run in triplicate using the following conditions: 50 °C for 2 min, 95 °C for 10 min, and then 95 °C for 15 s and 60 °C for 1 min for 40 cycles. A dissociation curve was generated to determine amplification of a single product. The threshold line was set at the linear region of the plots above the baseline noise, and threshold cycle (Ct) values were determined at the cycle number at which the threshold line crossed the amplification curve. Mean Ct values for each gene were normalized against average Gt values for the reference gene (ovine alpha-tubulin, TUBA). The relative quantification (RQ) of each gene was calculated using the 2ΔΔCt method.

Immunohistochemical analyses

Immunoreactive TLR7 and TLR8 proteins were localized in paraffin-embedded samples from uteri of cyclic and pregnant ewes using the rabbit Vectastain ABC Elite kit (Vector Laboratories, Burlingame, CA, USA) following the manufacturer’s instructions. Briefly, antigen retrieval was performed using boiling

www.reproduction-online.org
citrate and endogenous peroxidase activity was blocked by incubating tissue in methanol with 0.3% hydrogen peroxide for 15 min at room temperature. Slides were incubated overnight at 4 °C with the following primary antibodies: rabbit polyclonal antibodies against TLR7 (ab45371, Abcam, Cambridge, MA, USA) and TLR8 (PA1-12830, Thermo Scientific-Pierce antibodies, Rockford, IL, USA) used at final dilutions of 1:250 and 1:700 respectively.

Fluorescence microscopy and paraffin-immunohistochemistry were utilized to determine knockdown or absence of TLR7 and/or TLR8 proteins in conceptus trophectoderm using the same immunohistochemical procedures described in the previous section for detection of TLR7 and TLR8 except that the nuclei in the cryosections. In addition, immunoreactive placenta-associated glycoprotein (PAG) was detected using the same antibodies described earlier. In addition, cryosections of the uterus were observed for presence of red colored lissamine-tagged MAOs. DAPI-counting medium was used to visualize the nuclei in the cryosections. In addition, immunoreactive placenta-associated glycoprotein (PAG) was detected using the same immunohistochemical procedures described in the previous section for detection of TLR7 and TLR8 except that antigen retrieval was performed with protease treatment at 37 °C. Positive immunostaining for PAG is unique to BNCs. The antibody to ovine PAG (kindly provided by Jonathan A Green, University of Missouri) was incubated overnight at a final dilution of 1:400 for conceptus tissue. PAG-stained sections were counterstained with hematoxylin before affixing cover-slips. In all cases, negative controls were prepared with rabbit IgG at the same concentration as the primary antibody and photomicrographs taken using a Zeiss Axioplan2 microscope fitted with an AxioCam HRc camera (Carl Zeiss, Thornwood, NY, USA). Total conceptus area (in mm²) visible in each slide was measured using Image J1.46r (US National Institutes of Health, Bethesda, MD, USA). Those results were then used along with determinations of PAG-positive BNCs in each conceptus to quantify the number of BNCs per conceptus area.

Statistical analysis

Data were subjected to least-squares ANOVA using Mixed and General Linear Model procedures of the Statistical Analysis System (SAS Institute, Cary, NC, USA). Data obtained from ovine uterus endometria were analyzed for main effects of day and status (cyclical or pregnant), and Day × Status interaction. Data obtained from conceptuses on Days 13, 14, 15, and 16 of pregnancy and from conceptuses following MAO treatments were assessed for effects of treatment. Effects of morpholino treatments on concentrations of IFNT in uterine flushings were analyzed using ANOVA and orthogonal contrasts to determine differences among treatments (MAO-Control vs MAO-TLR7, vs MAO-TLR8, and vs MAO-TLR7/TLR8). The number of BNCs was quantified by determining numbers of PAG-positive BNCs per unit (mm²) of conceptus area in each MAO treatment group. P < 0.05 was considered statistically significant. Data are expressed as least-squares means with overall S.E.M.

Results

Expression of TLRs in the endometrium during the estrous cycle and pregnancy

Expression of TLR1–TLR9 mRNAs was assessed in uterine endometria from cyclical and pregnant ewes by qPCR, and the relative abundance of each TLR was compared (Fig. 1). The pattern of expression of TLR2, TLR7, TLR8, and TLR9 mRNAs was affected by the dayafter the onset of estrus and pregnancy status (Day × Status, P < 0.01). The abundance of these TLR (TLR2, TLR7, TLR8, and TLR9) mRNAs increased from Day 10 to Day 12 of the estrous cycle, and then declined from Day 12 to Day 16; however, expression was maintained between Days 10 and 16 in endometria of pregnant ewes.

With the exception of TLR4, the abundance of the other TLRs differed in response to the day of the estrous cycle or the day of gestation (Day; P < 0.01). During the estrous cycle, expression increased starting from Day 10 and attained maximum levels on Day 12 for TLR1, TLR3, and TLR6, or Day 14 for TLR5. Then, their expression declined on Day 16. In pregnant ewes, relative levels of these TLRs between Days 10 and 14 were similar to that of TLR4.

Table 1 Primer sequences used for qPCR in the ovine endometrium.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Accession numbers</th>
<th>Forward primers</th>
<th>Reverse primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR1</td>
<td>NM_001135060.2</td>
<td>AGATGCTGAGAGCCCTCAAG</td>
<td>TTAGACCTCCAGACCTCAC</td>
</tr>
<tr>
<td>TLR2</td>
<td>NM_001048231.1</td>
<td>CAGTGCAAGGTTTTCACAC</td>
<td>CCAGGCTTCTTCTGCTTT</td>
</tr>
<tr>
<td>TLR3</td>
<td>NM_001135928.1</td>
<td>CAGATGCTAGTGAAGGATT</td>
<td>CACAGTACAACTGAAAT</td>
</tr>
<tr>
<td>TLR4</td>
<td>NM_001135930.1</td>
<td>GTGAGACAAACCTAGTATC</td>
<td>CAGGTTGGGAAAGGCTGAA</td>
</tr>
<tr>
<td>TLR5</td>
<td>NM_001135926.1</td>
<td>GACTGCTGAGTACCCTT</td>
<td>TGCGGTGTCAGTCGTCC</td>
</tr>
<tr>
<td>TLR6</td>
<td>NM_001135927.1</td>
<td>GCCTGCTGCTATGATGTTA</td>
<td>AAACGACATGAGCGATG</td>
</tr>
<tr>
<td>TLR7</td>
<td>NM_001135059.1</td>
<td>CTGCTGACACTGCTGTTAG</td>
<td>TGAGTTGGGAGTGATGGA</td>
</tr>
<tr>
<td>TLR8</td>
<td>NM_001135929.1</td>
<td>TCCACATCCAGACCTT</td>
<td>GTCTTCTGGTCCCTT</td>
</tr>
<tr>
<td>TLR9</td>
<td>NM_001011555.1</td>
<td>GTTCTCTCGATACCCGTG</td>
<td>TATGACAGTCCGGTCCC</td>
</tr>
<tr>
<td>TUBA</td>
<td>AF251146.1</td>
<td>GGTCTCATCGGCTTCTTG</td>
<td>CATATCGACAGAGCGCT</td>
</tr>
</tbody>
</table>

Table 2 Primer sequences used for qPCR in the conceptus.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Accession numbers</th>
<th>Forward primers</th>
<th>Reverse primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR7</td>
<td>NM_001135059.1</td>
<td>CTGTGATGTCACTCTGGAT</td>
<td>TTAGACCTCCAGACCTCAC</td>
</tr>
<tr>
<td>TLR8</td>
<td>NM_001135929.1</td>
<td>AGATGCTGAGAGCCCTCAAG</td>
<td>TTAGACCTCCAGACCTCAC</td>
</tr>
<tr>
<td>enJSRV-Env</td>
<td>AF105220.1</td>
<td>GTTCTCTCGATACCCGTG</td>
<td>TATGACAGTCCGGTCCC</td>
</tr>
<tr>
<td>TUBA</td>
<td>AF251146.1</td>
<td>GGTCTCATCGGCTTCTTG</td>
<td>CATATCGACAGAGCGCT</td>
</tr>
</tbody>
</table>
for cyclic ewes. Then, between Days 16 and 20, expression did not change for TLR1, TLR2, TLR3, or TLR6, but decreased for TLR5, and increased for TLR7 and TLR9.

Expression of TLR2, TLR3, TLR7, and TLR8 was affected by pregnancy status ($P<0.01$), as their expression was more abundant in endometria of pregnant ewes than in that of cyclic ewes. Although there were significant increases in expression of mRNAs for TLR7 and TLR8 in endometria from pregnant ewes, expression of those TLR mRNAs in ovine conceptuses was not significantly different between Days 13 and 16 of pregnancy (Fig. 2).

Localization of TLR7 and TLR8 proteins in the uterus and trophectoderm

As shown in Fig. 3, TLR7 and TLR8 proteins were detected in all cells of uteri from cyclic and pregnant ewes, particularly in the uterine luminal (LE) and superficial glandular (sGE) epithelia, and stratum compactum stroma (S).

TLR7 protein was abundant in the uterine LE and stratum compactum stroma on Day 10 of the cycle, but there was stronger expression in the stroma and sGE of uteri from pregnant ewes. Abundance of TLR7 protein increased in uterine LE and sGE as days of the estrous cycle and gestation advanced. In cyclic ewes, TLR7 protein was most abundant in uterine LE and sGE on Day 14, and then decreased to barely detectable amounts on Day 16. In uteri of pregnant ewes, TLR7 expression was similar on Days 12 and 14, before increasing slightly in uterine LE and sGE on Day 16 of gestation. TLR7 protein was equally abundant in uterine sGE on Days 16, 18, and 20 of pregnancy. At this stage, expression of TLR7 decreased in the uterine LE proximal to the conceptus, but it was strong in the trophectoderm of conceptuses on Days 18 and 20 of pregnancy.

![Relative abundance of mRNAs for TLR1–TLR9 in ovine uterine endometria during the estrous cycle and early pregnancy.](image1)

![Relative abundance of mRNAs for TLR1–TLR9 in ovine uterine endometria during the estrous cycle and early pregnancy.](image2)
Expression of TLR8 protein was detected in uterine LE and stromal cells throughout the estrous cycle. For sGE, the abundance was low on Day 10 and increased from Day 12 to Day 16. In endometria from pregnant ewes, TLR8 protein was similar in abundance in uterine LE, sGE, and stroma on Days 10 and 12. Expression of TLR8 decreased slightly on Day 14 before increasing on Day 16, and remaining at that level of abundance on Days 18 and 20. TLR8 protein was also detected in conceptus trophoderm, with the strongest expression in BNCs. In contrast to TLR7 protein, immunoreactive TLR8 protein was abundant in uterine LE independent of proximity to the conceptus.

Knockdown of TLR7 and TLR8 proteins alters conceptus development from Day 8 to Day 16 of pregnancy

Although treatment with morpholinos did not affect the number of pregnant ewes in each treatment group from which conceptuses were recovered, there were major differences in morphology and degree of development of the conceptuses recovered from ewes that received MAO-TLR7, MAO-TLR8, and MAO-TLR7/TLR8 compared with MAO-Control ewes (Table 3 and Fig. 4). Although most of the conceptuses elongated, MAO-TLR7 conceptuses were smaller than the fully elongated and filamentous conceptuses recovered from MAO-Control ewes. Conceptuses from MAO-TLR8-treated ewes were more variable in size, but generally smaller when compared with conceptuses from MAO-Control ewes. Conceptuses from ewes treated with MAO-TLR7/TLR8 were much smaller and more fragile, and they failed to elongate to a filamentous form.

To quantify the effect of the morpholino treatment on function of conceptus trophoderm, concentrations of IFNT in uterine flushings were determined. Consistent with the abnormal morphology and retarded development, concentrations of IFNT in uterine flushings were lower for ewes treated with MAO-TLR7 (610 ± 185 ng/ml; P < 0.048), MAO-TLR8 (577 ± 119 ng/ml; P < 0.049), and MAO-TLR7/TLR8 (280 ± 133 ng/ml; P < 0.001) when compared with the MAO-Control (1060 ± 210 ng/ml).

Histological analyses revealed a significant reduction in TLR7 and TLR8 protein expression in conceptuses receiving MAO-TLR7, MAO-TLR8, and MAO-TLR7/TLR8, which confirmed the efficiency of morpholino knockdown of translation of the respective mRNAs (Fig. 5A, B, and C). The average number of PAG-positive BNCs (Fig. 6) was less (P < 0.05) in MAO-TLR7 (30.0 ± 19.0 BNCs/mm²) and MAO-TLR7/TLR8.
Table 3 Effect of morpholino antisense oligonucleotide knockdown of translation of TLR7, TLR8 and TLR7/TLR8 mRNAs on pregnancy and conceptus development.

<table>
<thead>
<tr>
<th>Morpholino</th>
<th>Pregnancy rate</th>
<th>Conceptus development</th>
<th>IFNT (ng/ml uterine flush)</th>
<th>BNCs/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAO-Control</td>
<td>85.7% (6/7)</td>
<td>Robust, elongated</td>
<td>1060±210</td>
<td>90.143±33.16</td>
</tr>
<tr>
<td>MAO-TLR7</td>
<td>75% (6/8)</td>
<td>Thin, fragile, small, some elongated</td>
<td>610±185*</td>
<td>30.018±19.03*</td>
</tr>
<tr>
<td>MAO-TLR8</td>
<td>83.3% (5/6)</td>
<td>Small, shredded, fragile. Some elongated</td>
<td>577±119*</td>
<td>79.486±60.01*</td>
</tr>
<tr>
<td>MAO-TLR7/TLR8</td>
<td>71.4% (5/7)</td>
<td>Small, fragile, fragmented, shredded</td>
<td>280±133*</td>
<td>12.225±5.46**</td>
</tr>
</tbody>
</table>

*P<0.05; **P<0.01.

conceptuses (12.2±5.5 BNCs/mm²; P<0.01) when compared with MAO-Control (90.1±33.2 BNCs/mm²) conceptuses. PAG-positive cells were scarce or absent in MAO-TLR7/TLR8 conceptuses. Owing to a high degree of variability in the number of BNCs among MAO-TLR8 conceptuses (79.5±60.0 BNCs/mm²), numbers of BNCs were not significantly different from MAO-Control conceptuses.

TLR7 and TLR8 regulate abundance of enJSRV-Env in the conceptus

Expression of mRNA coding for the envelope protein of the ovine endogenous beta retroviruses (enJSRV-Env) was assessed in conceptuses recovered on different days of pregnancy and from morpholino-treated ewes (Fig. 7). During pregnancy, expression of enJSRV-Env was highest on Day 13 and declined progressively to Day 16 (P=0.01). Abundance of enJSRV-Env in MAO-conceptuses was different among treatment groups. Expression of enJSRV-Env in MAO-TLR7 conceptuses was greater when compared with MAO-TLR8 (P=0.05) and MAO-Control conceptuses (P=0.01), but was similar (P=0.09) to the expression of enJSRV-Env in MAO-TLR7/TLR8 conceptuses.

Discussion

Results of this study provide initial insight into the expression and potential functions of TLRs in the ovine uterus and conceptus, as well as evidence for involvement of TLR7 and TLR8 in development and differentiated functions of the trophectoderm during the peri-implantation period of pregnancy in ewes.

The functional transcripts for TLR1–TLR9 previously identified in ruminants (Menzies & Ingham 2006, Chang et al. 2009) are expressed by cells of the ovine endometrium in a temporal and cell-specific manner during the estrous cycle and early pregnancy. The abundance of TLRs was maximum in the endometrium between Days 12 and 14 of the estrous cycle and early pregnancy, but then decreased on Day 16 in cyclic ewes while remaining similar in abundance in pregnant ewes. This suggests that progesterone influences expression of TLRs as proposed for other species (Jorgenson et al. 2005, Aflatoonian et al. 2007). Production of progesterone by ovine CL is maximal between Days 9 and 10 of the estrous cycle. After that time, and in the absence of a developing conceptus, luteolysis will occur on Days 15 and 16 to decrease progesterone and allow for an increase in estradiol that leads to estrus and an ovulatory surge of luteinizing hormone for ovulation that marks the beginning of the next estrous cycle (Spencer et al. 2004).

The increase in expression of TLR2, TLR7, TLR8, and TLR9 in the endometrium during early pregnancy probably results from both progesterone-dependent recruitment of immune cells enriched in these particular TLRs (Segerson et al. 1991, Plaks et al. 2008, Gomez-Lopez et al. 2010, Mansouri-Attia et al. 2012) and changes in uterine gene expression required for pregnancy (Young et al. 2004, Jorgenson et al. 2005, Aflatoonian et al. 2007, Hirata et al. 2007, Turner et al. 2012). In view of the significant increase in steady-state levels of both TLR7 and TLR8 mRNAs in uteri of early pregnant ewes, we determined cell-specific expression of TLR7 and TLR8 proteins to be particularly abundant in uterine LE and sGE and expressed in a temporal and cell-specific manner that differed due to reproductive

![Figure 4 Morphological comparison of MAO-treated conceptuses. Representative images demonstrating differences in gross morphology of MAO-Control, MAO-TLR7, MAO-TLR8, and MAO-TLR7/TLR8 conceptuses upon recovery on Day 16 of pregnancy.](image-url)
status, which supports results obtained from previous studies (Jorgenson et al. 2005, Aflatoonian et al. 2007, Hirata et al. 2007).

The uterine epithelia constitute a primary barrier against pathogens, while also ensuring tolerance to the implanting conceptus and producing nutrients and adhesion molecules indispensable for pregnancy (Burghardt et al. 2002, Spencer & Bazer 2004, Gray et al. 2006). Progesterone is claimed to suppress or modify the immune system during pregnancy to avoid rejection of the semi-allogeneic conceptus (Hansen 1998); however, expression of the progesterone receptor declines after Day 12 in all uterine epithelia of ewes. Thus, direct actions of progesterone are limited after Day 12 of pregnancy to stromal cells and myometrium as they continue to express the progesterone receptor throughout gestation (Spencer et al. 2004, Bazer et al. 2008). In this study, expression of both TLR7 and TLR8 increased in uterine LE and sGE following down-regulation of the progesterone receptor (Spencer & Bazer 1995). The selective loss of a direct influence via progesterone may allow expression of TLRs to be maintained in the epithelia to ensure protection against pathogens and to influence conceptus development.

In ewes, maternal recognition of pregnancy occurs between Days 12 and 14 of gestation when an appropriately elongated and filamentous conceptus signals its presence by secreting IFNT. This cytokine acts in a paracrine manner on uterine epithelia to abrogate development of the luteolytic mechanism (Spencer & Bazer 2004) and to induce expression of genes critical to establishment and maintenance of pregnancy (Bazer et al. 2012). The morpholino-treated conceptuses in this study did elongate; however, they secreted less IFNT due to being developmentally retarded and morphologically disorganized compared to control conceptuses. Those results indicate essential roles played by TLR7 and TLR8 in the trophectoderm that influence conceptus development directly or indirectly, and therefore, IFNT production.

This study also revealed that MAO-TLR7 and MAO-TLR7/TLR8 conceptuses had significantly fewer BNCs in the trophectoderm, which impairs their ability to fuse with the uterine LE and undergo implantation. Moreover, BNCs

Figure 5 (A, B, and C) Efficiency of morpholino delivery to block translation of TLR7 and TLR8 proteins in the conceptus trophectoderm. (A and B) Immunohistochemical localization of TLR7 and TLR8 in conceptuses recovered from morpholino-treated ewes by (A) fluorescence microscopy and (B) standard paraffin immunohistochemistry. Images demonstrate an efficient morpholino delivery that blocked translation of TLR7 and TLR8 proteins in MAO-TLR7, MAO-TLR8, and MAO-TLR7/TLR8 conceptuses compared with MAO-Controls. Sections with standard paraffin immunohistochemistry were not counterstained. Representative pictures of immunofluorescence and standard immunohistochemical analysis were taken at magnifications of 40× and 10×, respectively, using the same width of field. Ab, antibody used for the analysis. (C) Immunofluorescence analysis demonstrated absence of lissamine-tagged MAO uptake by the uterine epithelial cells. Image width of field = 900 μm. LE, luminal epithelium; sGE, superficial glandular epithelium; S, stroma.
secrete placental lactogen (CSH1) and progesterone, which stimulate endometrial gland morphogenesis and differentiated functions during pregnancy in support of conceptus development. Interestingly, the ovine endogenous beta retroviruses (enJSRVs) included in sheep genome (Palmarini et al. 2001) are responsible for formation of BNCs (Dunlap et al. 2005, 2006a,b). During pregnancy, viral particles shed into the uterine lumen transfect conceptus trophectoderm (Black et al. 2010) as early as Day 12 (Dunlap et al. 2005) and influence development, IFNT production, and BNC formation (Dunlap et al. 2006a). Ovine enJSRV Envelope protein is a member of the syncytin family of retroviral proteins with high fusogenic activity responsible for inducing formation of the syncytiotrophoblasts in placentas of various species (Mi et al. 2000, Cornelis et al. 2013). In the ovine conceptus, mononuclear trophectoderm cells express abundant enJSRV-Env protein by Day 16 of pregnancy (Dunlap et al. 2006a). By Day 20, its expression appears to be limited to BNCs and syncytia (Dunlap et al. 2005), suggesting that this protein induces cell fusion that leads to BNC formation. Blockage of enJSRV-Env mRNA translation results in retarded development, decreased secretion of IFNT, and few or no BNCs in ovine conceptuses (Dunlap et al. 2006b). Thus, enJSRV-Env could interact with TLR7 to influence conceptus development, IFNT production, and BNC formation by ovine trophectoderm cells.

This study revealed that expression of enJSRV-Env mRNA by conceptus trophectoderm decreases between Days 13 and 16 of a normal pregnancy. This decline of enJSRV mRNA could result from active processing through recruitment and activation of antiviral ISGs such as Mx or 2',5'-oligoadenylate synthetase (OAS), which are known to be induced by IFNT (Johnson et al. 2001, 2002). On the other hand, enJSRV-Env mRNA may accumulate under the influence of a regulatory feedback controlled by secretions from BNCs, which would account for the decline in enJSRV-Env mRNA around Day 16 as numbers of BNC increase. Regardless, treatment with MAO-TLR7 affects enJSRV mRNA expression, which opens the possibility for TLR7 involvement in recognition of maternal viral particles (Black et al. 2010) or regulation of enJSRV abundance during the period when expression of IFNT increases rapidly. Till date, this role had been assigned to the proposed cellular receptor, hyaluronidase 2 (HYAL2),
although it is not expressed by the conceptus until Day 16 when secretion of IFNT is actually decreasing (Dunlap et al. 2005). Thus, future experiments are necessary to clarify the mechanism(s) by which TLRs, particularly TLR7, are involved in key events during the peri-implantation period of pregnancy.

In summary, results of this study document patterns of expression of TLR1–TLR9 in ovine uterine endometria and conceptuses during the estrous cycle and the peri-implantation period of pregnancy, with significant differences in temporal and cell-specific expression of endometrial TLR7 and TLR8. Mechanistically, our in vivo loss-of-function experiments provide evidence for essential roles of TLR7 and TLR8 in conceptus development, pregnancy recognition signaling by IFNT, and formation of BNCs. These results provide strong evidence in support of our hypothesis that members of the TLR family are critical to the establishment and maintenance of pregnancy in ewes.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector; however, Dr I Ruiz-González was supported by a Fellowship for Graduate Courses in Universities and Colleges 2012 from the Caja Madrid Foundation (Spain).

Acknowledgements

The authors thank all members of the Laboratory for Uterine Biology and Pregnancy, and Kendrick LeBlanc at Texas A&M University for management of the sheep used in this study. They are thankful to Dr Jonathan A Green for supplying the polyclonal PAG antibody, Dr Thomas ‘Tod’ R Hansen for conducting the RIA for IFNT, and Dr Robert C Burghardt for his assistance with photomicrograph processing.

References

Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R & Mor G 2005 A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. Journal of Immunology 175 8096–8104. (doi:10.4049/jimmunol.175.12.8096)

Dunlap KA, Palmarini M, Adelson DL & Spencer TE 2005 Sheep endogenous beta retroviruses (enJSRVs) and the hyaluronidase 2 (HYAL2) receptor in the ovine uterus and conceptus. Reproductive Biology of Reproduction 73 271–279. (doi:10.1095/biolreprod.105.039776)

Downloaded from Bioscientifica.com at 09/09/2019 12:13:51PM
via free access

www.reproduction-online.org
The regulation of immune function during pregnancy has significant implications for maternal health and reproductive success. This review focuses on the role of toll-like receptors (TLRs) in maternal-fetal recognition. TLRs are a family of pattern recognition receptors that detect pathogen-associated molecular patterns and initiate an immune response. Their action is crucial for the resolution of infections and the maintenance of immunological tolerance during pregnancy.

TLR activation during pregnancy is influenced by various factors such as the conceptus, maternal hormones, and the immune system. The role of TLRs in regulating the maternal immune response is essential for the establishment and maintenance of pregnancy. For instance, TLR4 plays a key role in the recognition of lipopolysaccharides (LPS), which are abundant in the uterine environment and can stimulate innate immune responses.

In conclusion, TLRs play a vital role in the regulation of the maternal immune response during pregnancy. Their activation is necessary for the successful establishment and maintenance of pregnancy, but inappropriate activation can lead to adverse outcomes such as immune-mediated pregnancy loss. Further research is needed to fully understand the complex interplay between TLRs and the immune system during pregnancy and how this balance is maintained to ensure successful pregnancy resolution.

References:

TLR and establishment of pregnancy in sheep

Table 1: Key factors affecting TLR expression and regulation during pregnancy.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect/Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrous cycle</td>
<td>Modulates TLR expression and activity</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Results in altered TLR expression and regulation</td>
</tr>
<tr>
<td>Progesterone</td>
<td>Affects TLR expression and function</td>
</tr>
<tr>
<td>Influenza infection</td>
<td>Triggers TLR-mediated immune response and inflammatory cytokine production</td>
</tr>
</tbody>
</table>

Figure 1: Schematic representation of TLR-mediated immune responses during pregnancy.

- TLRs recognize pathogen-associated molecular patterns.
- Activated TLRs trigger an immune response.
- This response involves the production of inflammatory cytokines.
- The cytokines then modulate the immune environment to support pregnancy.

Figure 2: Distribution of TLR-expressing cells in the ovine uterus.

- TLR-expressing cells are distributed throughout the uterine lining.
- The expression is highest during the early stages of pregnancy.

Figure 3: Regulation of TLR expression by maternal hormones.

- Progesterone upregulates TLR expression.
- Estrogen downregulates TLR expression.

Figure 4: TLR-mediated immune responses during pregnancy complications.

- Inflammation due to TLR activation can lead to fetal loss.
- Proper TLR regulation is crucial for successful pregnancy.

Figure 5: Genetic variations in TLR genes and pregnancy outcomes.

- Variations in TLR gene expression can affect pregnancy success.
- Understanding these variations is crucial for personalized medicine.

Figure 6: The role of TLRs in placental implantation.

- TLRs are crucial for the resolution of infections during pregnancy.
- Proper TLR regulation is necessary for successful placental implantation.

Table 2: Comparative analysis of TLR expression in various species.

<table>
<thead>
<tr>
<th>Species</th>
<th>TLR Expression</th>
<th>Immune Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Strong</td>
<td>Autoimmune disease</td>
</tr>
<tr>
<td>Canine</td>
<td>Moderate</td>
<td>Immune response</td>
</tr>
<tr>
<td>Equine</td>
<td>Weak</td>
<td>Normal pregnancy</td>
</tr>
</tbody>
</table>

Table 3: Summary of TLR-mediated immune responses in pregnancy.

<table>
<thead>
<tr>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td>Results in placental implantation disruption and fetal loss</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>Occurs due to inappropriate immune response</td>
</tr>
<tr>
<td>Normal pregnancy</td>
<td>TLR-mediated immune responses support healthy pregnancy</td>
</tr>
</tbody>
</table>

Table 4: Potential therapeutic targets for TLR modulation in pregnancy.

<table>
<thead>
<tr>
<th>Target</th>
<th>Therapeutic Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR expression</td>
<td>Regulation using small molecules or antisense oligonucleotides</td>
</tr>
<tr>
<td>Immune response</td>
<td>Modulation using TLR antagonists or agonists</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Therapeutic intervention using anti-inflammatory drugs</td>
</tr>
</tbody>
</table>

Table 5: Genes regulated by TLRs in the ovine uterus.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>Inflammatory cytokine</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Inflammatory cytokine</td>
</tr>
<tr>
<td>INF-γ</td>
<td>Antiviral cytokine</td>
</tr>
<tr>
<td>NO production</td>
<td>Nitric oxide production</td>
</tr>
</tbody>
</table>

Table 6: Roles of TLRs in the ovine immune system.

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innate immunity</td>
<td>Recognizes pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>Immune response</td>
<td>Initiates immune responses to protect against infections</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>Induces immune responses that are detrimental to pregnancy</td>
</tr>
<tr>
<td>Normal pregnancy</td>
<td>TLR-mediated immune responses support healthy pregnancy</td>
</tr>
</tbody>
</table>

Table 7: Common treatments for TLR-mediated pregnancy complications.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td>Treat infections related to TLR activation</td>
</tr>
<tr>
<td>Immunosuppressants</td>
<td>Reduce immune responses that are detrimental to pregnancy</td>
</tr>
<tr>
<td>Progesterone supplementation</td>
<td>Increase uterine tolerance and support pregnancy</td>
</tr>
<tr>
<td>Estrogen antagonists</td>
<td>Block the effects of estrogen on TLR expression</td>
</tr>
</tbody>
</table>

Table 8: Conclusion and future directions.

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>Future Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR-mediated immune responses affect pregnancy.</td>
<td>Future studies should focus on the role of TLRs in the establishment of pregnancy.</td>
</tr>
<tr>
<td>Innate immunity is crucial during pregnancy.</td>
<td>Understanding the genetic basis of TLR expression and function is necessary for personalized medicine.</td>
</tr>
<tr>
<td>Normal pregnancy is supported by TLRs.</td>
<td>The development of TLR-targeted therapies for infertility and autoimmune diseases should be explored.</td>
</tr>
</tbody>
</table>

Figure 9: TLR expression in the ovine placenta.

- TLR expression is highest in the implantation zone.
- The expression decreases as the pregnancy progresses.

Figure 10: TLR-dependent inflammatory cytokine production.

- TLR activation leads to the production of inflammatory cytokines.
- These cytokines modulate the immune environment to support pregnancy.

Figure 11: TLR-mediated immune responses during pregnancy complications.

- Inflammation due to TLR activation can lead to fetal loss.
- Proper TLR regulation is crucial for successful pregnancy.

Figure 12: Genetic variations in TLR genes and pregnancy outcomes.

- Variations in TLR gene expression can affect pregnancy success.
- Understanding these variations is crucial for personalized medicine.

Received 8 October 2014
First decision 7 November 2014
Revised manuscript received 6 January 2015
Accepted 14 January 2015