Ppp2ca knockout in mice spermatogenesis

Xiaoyun Pan*, Xia Chen*, Xin Tong, Chao Tang and Jianmin Li

Key Laboratory of National Reproductive Medicine, Department of Cell Biology and Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 210029, China

Correspondence should be addressed to J Li; Email: jianminlilab@163.com

*(X Pan and X Chen are co-first authors and contributed equally to this work)

Abstract

Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase involved in meiosis, mitosis, sperm capacitation, and apoptosis. Aberrant activity of PP2A has been associated with a number of diseases. The homolog PPP2CA and PPP2CB can each function as the phosphatase catalytic subunit generally referred to as PP2AC. We generated a Ppp2ca conditional knockout (CKO) in C57BL/6J mice. Exon 2 of Ppp2ca was knocked out in a spatial or temporal-specific manner in primordial germ cells at E12.5. This Ppp2ca-null mutation caused infertility in male C57BL/6J mice. These CKO mice provide a powerful tool to study the mechanisms of Ppp2ca in development and disease.

Introduction

Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase involved in meiosis, mitosis, sperm capacitation, and apoptosis. Several studies have demonstrated a link between PP2A and a number of diseases (Janssens et al. 2005, Rivera & Losada 2006, Krapf et al. 2010, Brestovitsky et al. 2011, Ruediger et al. 2011). Its catalytic subunit PP2AC plays a critical role in embryonic development and human diseases, such as Alzheimer’s disease, cancer, and diabetes (Goedert et al. 1995, Zolnierowicz 2000, Kowluru 2005, Eichhorn et al. 2009, Liu & Wang 2009). The homologues PPP2CA and PPP2CB can each function as the catalytic subunit of PP2A and are related to the male and female reproductive systems respectively. While the amino acid sequence of the two encoded proteins are very similar, PPP2CA is ten times more abundantly expressed than PPP2CB (Khew-Goodall et al. 1991). The PP2A phosphatase participates in the regulation of several cell-signaling pathways and cellular functions, including proliferation, cytoskeletal rearrangement, apoptosis, and cell migration (Janssens & Goris 2001, Kong et al. 2004, 2007). It exists primarily as a heterotrimeric holoenzyme consisting of a structural A subunit, a regulatory B subunit, and a catalytic C subunit. Previous studies have specifically linked dysregulation of the catalytic subunit with several pathologies, including Alzheimer’s disease, cancer, diabetes, and sperm capacitation. For example, SFK-mediated PP2AC phosphorylation inactivates PP2A and leads to mammalian sperm capacitation (Goto & Harayama 2009, Krapf et al. 2010).

Interestingly, dysregulation of both PP2CA and PP2CB is associated with infertility. For example, Ppp2cb mRNA is upregulated in meiosis arrest female 1 (MARF1)-mutant mice, which results in meiotic arrest and female infertility (Su et al. 2012). Furthermore, mutant mice could undergo meiotic reversal if Ppp2cb was inhibited. Therefore, meiotic arrest in MARF1 mutant oocytes is dependent on upregulated Ppp2cb gene expression. The amino acid sequence of PPP2CA is 97% identical with PPP2CB and appears to play a role in embryonic development because null mutations lead to early embryonic lethality at E6.5 (Götz et al. 1998). It is possible that Ppp2ca is involved in WNT signaling, which controls epithelial–mesenchymal transition during vertebrate development (Peifer et al. 1994). As PP2A plays an important role in sperm capacitation, and Ppp2ca-null mutations are embryonic lethal, we bred a Ppp2ca conditional knockout (CKO) mouse with a loxP system to study the function of Ppp2ca in the male reproductive system.

Mvh, also known as DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (Ddx4), is exclusively expressed in testicular germ cells. The MVH protein is localized in the cytoplasm of spermatocytes and round spermatids containing a perinuclear granule. The protein is also expressed in germ cells colonized in embryonic gonads, but is not detected in pluripotent embryonic cells, such as stem cells and germ cells (Fujii et al. 1994). A Ddx4-Cre mouse line displays active expression in
primordial germ cells by E12.5 and maintains expression in germ cells for life (Tanaka et al. 2000). In this study, we employed Ddx4-Cre transgenic mice to specifically delete Ppp2ca in embryonic gonad tissues. These tissue-specific CKO mice were used to demonstrate that Ppp2ca is required for testicular development.

Materials and methods

Construction of targeting plasmid

Bacterial artificial chromosome (BAC) DNA extracted from DH10B cells was electroporated into SW106 cells, and then SW106 colonies containing the BAC were selected and confirmed with Ampicillin and BamHI digestion respectively. Two primer pairs (A/B; Y/Z) were used to amplify the homology arms from the BAC. These two homology arms were ligated into PL253, forming a target vector that was confirmed by PCR (primers A/B; Y/Z). The target vector was electroporated into the SW106 cells containing the BAC, and Ampicillin-resistant colonies were selected by PCR and BamHI and Sall digestion. The homology arms were amplified from the BAC by PCR (primers C/D; E/F), and then ligated into PL452 in a loxP-Neo/ kanamycin (Kan)-loxP cassette to produce the first loxP (1stloxP) plasmid. This plasmid was electroporated into 0.1% arabinose-treated SW106 cells, and kanamycin-resistant colonies were used for plasmid propagation following restriction enzyme mapping. The second loxP site was inserted similarly into the gene-targeting vector (primers G/H; I/J) and mapped by restriction enzyme digests (Fig. 1C). The completed targeting plasmid contained exon 2 between the two loxP sites and was verified by sequencing. The sequences of the primers used are listed below:

PPP2CA-A: AATAATGCGGCCGCAATCCCTTTTACTCCTG; PPP2CA-B: AATAATAGCTTTCCTCTACTGTTCTCCTG; PPP2CA-C: AATAATAGCCTTTCCTCTAGTTCTTCTG; PPP2CA-D: AATAATAGCTTTTCTCTACTCTCTC; PPP2CA-E: AATAATGGATTCCTCTCTCTCT; PPP2CA-F: AATAATGCAGGCTCCCCAATGCCTCC; PPP2CA-G: AATAATGGGTCTCCCTTCTG; PPP2CA-H: AATAATGGATTCCTCTCTAGTTCTTCTG; PPP2CA-I: AATAATGGACCTGATCCCTCCAGCAGT; PPP2CA-J: AATAATGGACCTGATCCCTCCAGCAGT.

Generation of Ppp2ca^floxed/ mice and Ppp2ca^floxed/ knockout mice

The gene-targeting vector was linearized by restriction digest with NotI and then electroporated into C129 mouse embryonic stem (ES) cells. The electroporated ES cells were cultured with G418, and the resistant clones were screened for a successful recombination event by long-range PCR. The PCR primers used were specific for the neomycin cassette and upstream (Ppp2ca-FS5) or downstream (Neo-F/pp2ca-RS2) of the respective 5’ or 3’ homology arms (Fig. 1D) resulting in PCR products ~7 kb in length. The presence of the 3’ loxP site was also

Figure 1 Generating a conditional null Ppp2ca allele. (A) The PPP2CA protein is made of 309 amino acids and the catalytic domain (light orange region) spans residues 23–293. The knockout region (dark orange region, crossed) spans amino acids 35–105. (B) Generation of Ppp2ca^floxed mice. The Ppp2ca allele spans nearly 30 kb from exon 1 to exon 7 (first row, scale). The targeted region spans exon 2 to exon 6 (second row). The targeting construct contains a silent mutation with a NotI site, and inserts a neo cassette flanked by frt sites (open triangles) into intron 2. The presence of the 3’ loxP site (black triangles) upstream of exon 2 but downstream of the neo cassette (third row). ES cells were screened for the Ppp2ca^floxed allele using primers Ppp2ca-FS5/ES1R3 and Neo-F/pp2ca-RS2 (fourth row). Ppp2ca^floxed mice were identified with primers Ppp2ca-loxp1-L-F/Ppp2ca-loxp2-R-R (fifth row). (C) BamHI and Sall double digestion; M, marker; lane 1, PL253-Ppp2ca fragment; lane 2, PL253-Ppp2ca-RS2 fragment; lane 3, PL253-Ppp2ca-RS2-popout fragment; lane 4, PL253-Ppp2ca-targeting vector fragment. (D) ES clones were screened for a successful recombination event by a long-range PCR. (left panel) PCR screening with primer pair Ppp2ca-FS5/ES1R3 and Ppp2ca-RS2 (fourth row) of the Ppp2ca^floxed allele event by long-range PCR. (right panel) PCR screening with primer pair Ppp2ca-FS5/ES1R3 and Ppp2ca-RS2 (fourth row) of the Ppp2ca^floxed allele event by long-range PCR. (E) Primer pair Ppp2ca-F/R distinguishes Ppp2ca^floxed mice (322 bp) from WT mice (408 bp).
validated using PCR primers that flanked the loxP site. Of the 20 G418-resistant clones, one had a homologous recombination event. ES cells from this clone (C2) were microinjected into C57BL/6J blastocysts to generate chimeric mice. The chimeric mice (Ppp2ca-loxp1-L-F/ES-1R3; Neo-F/Ppp2ca-loxp2-R-R) were then bred with C57BL/6J mice to verify germline transmission of the targeted allele. The Ppp2ca mice were genotyped by PCR (Ppp2ca-F/R). Subsequently, we bred the Ppp2ca mice to obtain homozygous Ppp2ca/flox/flox mice. To achieve germ cell-specific deletion of Ppp2ca, female homozygous flox mice were crossed with male Ddx4-Cre transgenic mice (germ cell-specific Cre line, #006954, Jackson Laboratory, Bar Harbor, ME, USA). The male heterozygous progeny that bears the genotype Ppp2ca/flox/+; Ddx4-Cre/F-R; Ppp2ca-F/R was mated with the female Ppp2ca/flox/flox mice to obtain Ppp2ca/flox/Jaxx/+; Ddx4-Cre/F-R; Ppp2ca-F/R, Ppp2ca-loxp1-L-F/Ppp2ca-loxp2-R-R. This study was approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (Number: NJMU-IACUC-20100601001). The sequences of the primers used for PCR are listed below:

Mpp2ca-P5F: GGTCAAGAGCCTCTGCGAGAA; Mpp2ca-P5R1: CCGGTCATGGCACCAGTTAT.

Figure 2 Decreased Ppp2ca expression in mutant mice. (A) Ppp2ca/flox/+; Ddx4-Cre is identified by PCR. Lanes 2 and 3: Ddx4-Cre is identified with primer CRE-F/R (364 bp). Lanes 4 and 5: flox is identified with primer Ppp2ca-F/R (322 bp). Lanes 6 and 7: knockout fragment between the two loxP sites is identified with primer Ppp2ca-loxp1-L-F/Ppp2ca-loxp2-R-R (1024 bp). M, marker. (B) Testes of WT mice, Ppp2ca/flox/+ mice, and Ppp2ca/flox/- littermates were tested for Ppp2CA protein expression by western blotting analysis using Ppp2Ac antibody. There was a dramatic reduction in the expression of Ppp2AC in mutant mice, and any protein detected may have been the product of the homolog Ppp2cb. GAPDH was used as the loading control. (C) Gene expression in the testes of Ppp2ca/flox/-, Ppp2ca/flox/+, and WT mouse was determined by reverse transcription PCR. The mutant mice had shorter transcripts than control mice, indicating successful knockout. Background Ppp2ca expression in the mutant samples could be from non-testicular cells present in our samples.

Western blotting analysis

Western blot analysis of endogenous proteins from organ tissues was performed as described previously (Brestovitsky et al. 2011). The following antibodies were used: rabbit monoclonal PP2AC antibody (Cell Signaling Technology, Inc., Beverly, MA, USA), rabbit monoclonal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (Sigma–Aldrich), and goat anti-rabbit IgG-HRP antibody (Sigma–Aldrich). Visualization was achieved with the SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

RNA preparation and RT-PCR

RNA was extracted from testicular cells using RNAiso Plus following the manufacturer’s protocol (TaKaRa, Dalian, China). To obtain cDNA, the PrimeScriptTM Reverse Transcription Reagent Kit with gDNA Eraser (TaKaRa) was used with random primers (Invitrogen). The sequences of the specific primers used for PCR are listed below:

Mpp2ca-P5F: GGTTGAAGACCTTAGTAACCTCATACAAG; Ppp2ca-loxp1-L-F: AATATGCGGCCGCAACCCCAACAACCAACA; Ppp2ca-loxp2-R: AATATGCGACACCTACTCTAAGCTCTC-CATT Cre-F: TTGCGCTATTACCAGGATGC; Cre-R: TTGACGTTACCCGGCATACAG.

DNA content assay

The testicular cells of mice at P38 and P56 were analyzed by flow cytometric analysis to quantify the number of haploid, diploid, and tetraploid cells.

Figure 3 Phosphatase function is required for normal spermatogenesis. (A) Mice testes at 4 weeks. Left to right: WT, heterozygous, and mutant. The mutant testes were significantly reduced in size compared with the WT. (B) Mutant tubules with vacuolation (*) and disrupted morphology as observed by H&E staining of the seminiferous tubules.
Sperm smear

The epididymides of killed mice were minced and then placed in tubes with 200 μl of PBS for a 5 min incubation in a 37 °C water bath. A sample of the supernatant (10 μl) was pipetted dropwise on to a glass slide, covered with a coverslip, and allowed to dry at room temperature. The slides were then fixed in 4% paraformaldehyde for 40–60 min and rinsed in PBS for 5 min, followed by staining with hematoxylin and eosin (H&E).

Fertility testing

To test for fertility, 8-week-old male mice were randomly divided into control and experimental groups according to genotype. Each male mouse was housed with two 8-week-old C57/B6 female mice for 1 week. Following co-housing, the female mice were killed, and the number of embryos within the uterine horns was determined. Live embryos were taken as an indication of male fertility.

Results

Generating a conditional null Ppp2ca allele

There are seven exons in the mouse Ppp2ca gene, spanning ~30 kb (Khew-Goodall et al. 1991). In one reported Ppp2ca knockout more than 0.5 kb of the promoter, exon 1, and 0.3 kb of intron 1 are replaced by a neomycin (neo) resistance cassette, which leads to early-embryonic lethality at E6.5 (18). The catalytic domain of PPP2CA spans amino acid 23–293. We designed a conditional targeting vector spanning ~2.2 kb to disrupt exon 2, which encodes amino acids 35–105 (Fig. 1A). To construct the conditional gene-targeting vector, we used recombination to introduce loxP sites at each end of exon 2 in a vector containing positive and negative markers for selection (Fig. 1B). Positive clones were identified by PCR and enzyme digestion (Fig. 1C). The plasmid containing the loxP sites and positive and negative selection markers was then electroporated into ES cells. Long-range PCR was then used to verify the 24 selected colonies and colony C2 that carried the Ppp2ca CKO allele (Fig. 1D). C2 clones were microinjected into C57BL/6J blastocysts to generate chimeric animals. The heterozygous Ppp2ca^{flox/+} offspring were viable, fertile, and did not display any obvious abnormalities. Next, we bred Ppp2ca^{flox/+} mice together to obtain Ppp2ca^{flox/flox} mice (Fig. 1E), which were also fertile and did not exhibit any obvious abnormalities.

Decreased Ppp2ca expression in mutant mice

To examine whether Ppp2ca plays a role in the male reproductive system, we applied a Cre-loxP system to ablate Ppp2ca expression in developing testes. Floxed Ppp2ca mice were bred with the Ddx4-Cre line. By utilizing this Cre line, we were able to examine
Stage cells, chromatin agglutination was abnormal and however, the cells were similar to primary spermatocytes, spermatids, and sperm. In the mutant mice, at 8 weeks, the seminiferous tubules of normal mice decreased expression of Ppp2ca resulted, the function of Ppp2ca was reduced in the overall weight of the mutant mice. Compared with the control, the germ cells in mutant tubules contained a large number of vacuolation structures, and any spermatogonia or primary spermatocytes were arranged in a disorderly manner. However, mutant epididymides contained some round cells of different sizes and shapes, but nothing resembling normal sperm. The male mutant mice infertility was determined by fertility testing (Table 1). Therefore, Ppp2ca deficiency can cause male infertility.

Ppp2ca-deficient mice were incapable of generating normal sperm

It remained uncertain at which stage Ppp2ca influenced sperm production. First, the haploid, diploid, and tetraploid cells in the testes of mice at P38 were investigated by flow cytometric analysis. Compared with the control group, meiosis was blocked at the diploid stage in cells from mutant mice (Fig. 5A1). This result indicated that the gene influences meiosis at younger ages. We also examined the haploid, diploid, and tetraploid cells in testes of adult mice at P56. Surprisingly, the number of haploid and diploid cells in testes were almost the same (Fig. 5A2). This scattered, and there was a lack of normal spermatozoa in the testes (Fig. 4B). Overall, the process of spermatogenesis was disordered in the mutant testes; at all levels, reproductive cells were arranged in a disorderly manner or were completely absent. In normal mice, the epididymis tubules at the tail of the epididymis contained many sperm. The mutant epididymides contained some round tubules of normal sperm (Fig. 4B). The male mutant mice infertility was determined by fertility testing (Table 1). Therefore, Ppp2ca deficiency can cause male infertility.

Table 1 Decreased levels of Ppp2ca expression caused male infertility.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number</th>
<th>Genotype</th>
<th>Number</th>
<th>Average number of pups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7</td>
<td>WT</td>
<td>14</td>
<td>7.93 ± 2.08</td>
</tr>
<tr>
<td>Mutant</td>
<td>7</td>
<td>WT</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

Seven control mice and seven mutant mice were used for comparison; the seven mutant males produced no pups.

the functions of Ppp2ca in the male reproductive system. From this, we obtained the Ppp2ca^{−/−}; Ddx4-Cre (heterozygous) lines and the Ppp2ca^{lox/−}; Ddx4-Cre (mutant) lines (Fig. 2A). The mutant mice were infertile; therefore, Ppp2ca was not expressed in testes. Next, we examined the protein expression of PPP2CA in the testes of the different mouse strains. Compared with control testes, there were low levels of expression in the testes of mutant mice (Fig. 2B) using a PP2Ac antibody. As mutational protein expression was not observed, expression at the RNA level was determined. Due to the Cre-lox recombination, Ppp2ca transcripts were shorter in mutant mice than in control mice (Fig. 2C).

Phosphatase function is essential for normal spermatogenesis

The testicular morphology of mutant mice and WT mice were completely different at 4 weeks. For example, there was a significant reduction in the size and weight of the testes (Fig. 3A and B). The mutant testes were approximately half the weight of the control testes, but there was no significant reduction in the overall weight of the mutant mice (Fig. 4B). Normal tubules containing spermagonia, primary spermatocytes, and secondary spermatocytes were not observed in the mutant testes. Instead, the mutant tubules contained a large number of vacuolation structures, and any spermagonia or primary spermatocytes were arranged in a disorderly manner. However, there was no difference in the testicular morphology and size between the heterozygous and WT mice at 4 weeks (Fig. 3B).

By 8 weeks, the mutant testes were approximately half the weight of the control testes (Fig. 4A and B), and there were fewer vacuole-like structures in the tubules. Compared with the control, the germ cells in the mutant tubules were disorganized and lacked elongated spermatozoa (Fig. 4C). Based on these results, the function of Ppp2ca is essential for normal spermatogenesis.

Decreased expression of Ppp2ca caused male infertility

At 8 weeks, the seminiferous tubules of normal mice contain spermagonia, primary and secondary spermatocytes, spermatids, and sperm. In the mutant mice, however, the cells were similar to primary spermatocyte-stage cells, chromatin agglutination was abnormal and the functions of Ppp2ca in the male reproductive system. From this, we obtained the Ppp2ca^{−/−}; Ddx4-Cre (heterozygous) lines and the Ppp2ca^{lox/−}; Ddx4-Cre (mutant) lines (Fig. 2A). The mutant mice were infertile; therefore, Ppp2ca was not expressed in testes. Next, we examined the protein expression of PPP2CA in the testes of the different mouse strains. Compared with control testes, there were low levels of expression in the testes of mutant mice (Fig. 2B) using a PP2Ac antibody. As mutational protein expression was not observed, expression at the RNA level was determined. Due to the Cre-lox recombination, Ppp2ca transcripts were shorter in mutant mice than in control mice (Fig. 2C).

Phosphatase function is essential for normal spermatogenesis

The testicular morphology of mutant mice and WT mice were completely different at 4 weeks. For example, there was a significant reduction in the size and weight of the testes (Fig. 3A and B). The mutant testes were approximately half the weight of the control testes, but there was no significant reduction in the overall weight of the mutant mice (Fig. 4B). Normal tubules containing spermagonia, primary spermatocytes, and secondary spermatocytes were not observed in the mutant testes. Instead, the mutant tubules contained a large number of vacuolation structures, and any spermagonia or primary spermatocytes were arranged in a disorderly manner. However, there was no difference in the testicular morphology and size between the heterozygous and WT mice at 4 weeks (Fig. 3B).

By 8 weeks, the mutant testes were approximately half the weight of the control testes (Fig. 4A and B), and there were fewer vacuole-like structures in the tubules. Compared with the control, the germ cells in the mutant tubules were disorganized and lacked elongated spermatozoa (Fig. 4C). Based on these results, the function of Ppp2ca is essential for normal spermatogenesis.

Decreased expression of Ppp2ca caused male infertility

At 8 weeks, the seminiferous tubules of normal mice contain spermagonia, primary and secondary spermatocytes, spermatids, and sperm. In the mutant mice, however, the cells were similar to primary spermatocyte-stage cells, chromatin agglutination was abnormal and the functions of Ppp2ca in the male reproductive system. From this, we obtained the Ppp2ca^{−/−}; Ddx4-Cre (heterozygous) lines and the Ppp2ca^{lox/−}; Ddx4-Cre (mutant) lines (Fig. 2A). The mutant mice were infertile; therefore, Ppp2ca was not expressed in testes. Next, we examined the protein expression of PPP2CA in the testes of the different mouse strains. Compared with control testes, there were low levels of expression in the testes of mutant mice (Fig. 2B) using a PP2Ac antibody. As mutational protein expression was not observed, expression at the RNA level was determined. Due to the Cre-lox recombination, Ppp2ca transcripts were shorter in mutant mice than in control mice (Fig. 2C).

Phosphatase function is essential for normal spermatogenesis

The testicular morphology of mutant mice and WT mice were completely different at 4 weeks. For example, there was a significant reduction in the size and weight of the testes (Fig. 3A and B). The mutant testes were approximately half the weight of the control testes, but there was no significant reduction in the overall weight of the mutant mice (Fig. 4B). Normal tubules containing spermagonia, primary spermatocytes, and secondary spermatocytes were not observed in the mutant testes. Instead, the mutant tubules contained a large number of vacuolation structures, and any spermagonia or primary spermatocytes were arranged in a disorderly manner. However, there was no difference in the testicular morphology and size between the heterozygous and WT mice at 4 weeks (Fig. 3B).

By 8 weeks, the mutant testes were approximately half the weight of the control testes (Fig. 4A and B), and there were fewer vacuole-like structures in the tubules. Compared with the control, the germ cells in the mutant tubules were disorganized and lacked elongated spermatozoa (Fig. 4C). Based on these results, the function of Ppp2ca is essential for normal spermatogenesis.

Decreased expression of Ppp2ca caused male infertility

At 8 weeks, the seminiferous tubules of normal mice contain spermagonia, primary and secondary spermatocytes, spermatids, and sperm. In the mutant mice, however, the cells were similar to primary spermatocyte-stage cells, chromatin agglutination was abnormal and scattered, and there was a lack of normal spermatozoa in the testes (Fig. 4B). Overall, the process of spermatogenesis was disordered in the mutant testes; at all levels, reproductive cells were arranged in a disorderly manner or were completely absent. In normal mice, the epididymis tubules at the tail of the epididymis contained many sperm. The mutant epididymides contained some round tubules of normal sperm (Fig. 4B). The male mutant mice infertility was determined by fertility testing (Table 1). Therefore, Ppp2ca deficiency can cause male infertility.

Ppp2ca-deficient mice were incapable of generating normal sperm

It remained uncertain at which stage Ppp2ca influenced sperm production. First, the haploid, diploid, and tetraploid cells in the testes of mice at P38 were investigated by flow cytometric analysis. Compared with the control group, meiosis was blocked at the diploid stage in cells from mutant mice (Fig. 5A1). This result indicated that the gene influences meiosis at younger ages. We also examined the haploid, diploid, and tetraploid cells in testes of adult mice at P56. Surprisingly, the number of haploid and diploid cells in testes were almost the same (Fig. 5A2). This...
demonstrated that meiosis was still blocked in the diploid stage, but some cells could proceed to the next stage as the mouse aged. However, normal sperm were not observed in a sperm smear collected from the mutant epididymides at P56 (Fig. 5B1 and B2). Although there were still haploid cells in testes of mice at P56, these sperm were not normal.

Discussion

It is well known that PP2Ac is expressed abundantly in testis (Hatano et al. 1993) and plays an important role in embryonic development and sperm capacitation. Based on these facts, we set out to determine the homologue responsible in these mechanisms. Therefore, we generated conditional Ppp2ca knockouts to determine whether the loss of expression in mouse testes causes testicular morphological changes or infertility. Previously, our laboratory demonstrated that knockout of exons 3–5 of Ppp2ca resulted in testicular morphological changes and infertility. In comparison, the knockout of exon 2 delayed morphological changes, and the vacuole-like structures increased significantly. We have yet to determine whether these delayed changes are the result of exon 2 deletion or whether the rest of PP2Ac delays the changes.

Disruption of PP2A activity will lead to meiotic arrest. Specifically, PP2A prevents the cleavage of centromeric cohesin during meiosis I by counteracting CK1-mediated phosphorylation of REC8, which activates separase (Ishiguro et al. 2010). Our results suggest that deletion of Ppp2ca causes male infertility. Therefore, we surmise that an arrest in meiosis leads to infertility. We plan to investigate whether meiosis is blocked in Ppp2ca-knockout cells, and which stage of meiosis is blocked.

PP2AC is the catalytic subunit critical for the function of PP2A. Ppp2ca is an important homolog that can function as the PP2AC subunit. We hypothesized that the loss of Ppp2ca would affect testicular morphology. However, Ppp2ca is also known to perform other critical functions as well. For instance, decreased Ppp2ca expression has been associated with Alzheimer’s disease and other tauopathies (Planel et al. 2007, Whittington et al. 2011), which indicates that it plays a role in regulating phosphorylation in the brain. In addition, PP2A was shown to play a role in cardiomyocyte cell death by regulating calcium ion (Ca2+) signaling (Ferron et al. 2011). Further investigations are necessary to determine the importance of Ppp2ca gene function in other organs.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC, nos 811100143, 31171443, and 30971092), and the National Basic Research Program of China (973 Program, no. 2009CB941700).

References

Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM & Visconti PE 2010 Inhibition of Ser/Thr phosphatases induces

Zolnierowicz S 2000 Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. *Biochemical Pharmacology* **60** 1225–1235. (doi:10.1016/S0006-2952(00)00424-X)

Received 14 May 2014
First decision 11 June 2014
Revised manuscript received 9 December 2014
Accepted 26 January 2015