Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells

Hilda M Guerrero-Netro, Younes Chorfi and Christopher A Price

Faculté de médecine vétérinaire, Centre de recherche en reproduction animale, Université de Montréal, St-Hyacinthe, Quebec, Canada J2S 7C6

Correspondence should be addressed to C A Price; Email: christopher.price@umontreal.ca

Abstract

Mycotoxins can reduce fertility and development in livestock, notably in pigs and poultry, although the effect of most mycotoxins on reproductive function in cattle has not been established. One major mycotoxin, deoxynivalenol (DON), not only targets immune cells and activates the ribotoxic stress response (RSR) involving MAPK activation, but also inhibits oocyte maturation in pigs. In this study, we determined the effect of DON on bovine granulosa cell function using a serum-free culture system. Addition of DON inhibited estradiol and progesterone secretion, and reduced levels of mRNA encoding estrogenic (CYP19A1) but not progestogenic (CYP11A1 and STAR) proteins. Cell apoptosis was increased by DON, which also increased FASLG mRNA levels. The mechanism of action of DON was assessed by western blotting and PCR experiments. Addition of DON rapidly and transiently increased phosphorylation of MAPK3/1, and resulted in a more prolonged phosphorylation of MAPK14 (p38) and MAPK8 (JNK). Activation of these pathways by DON resulted in time- and dose-dependent increases in abundance of mRNA encoding the transcription factors FOS, FOSL1, EGR1, and EGR3.

We conclude that DON is deleterious to granulosa cell function and acts through a RSR pathway.

Introduction

Fungal contamination of animal feed is a significant problem in many parts of the world (Marin et al. 2013). Contamination with Fusarium spp is common and results in significant accumulation of the mycotoxins zearalenone (ZEN) and deoxynivalenol (DON) among others (Rodrigues & Naehrer 2012). The actions of ZEN are well known; it is estrogenic and affects the female reproductive system, particularly in pigs where symptoms include nymphomania, pseudopregnancy, and ovarian atrophy (reviewed in Cortinovis et al. (2013)). In cattle, ZEN intoxication is reported to result in reduced conception rates, possibly owing to toxic effects on the oocyte (Minervini et al. 2001).

Less is known about the effects of DON, a non-estrogenic compound, on the female reproductive system. In pigs, DON inhibited cumulus expansion and oocyte maturation in vitro (Alm et al. 2002, Malekinejad et al. 2007, Schoevers et al. 2010). The potential effects of DON on granulosa cells are unclear; DON has been reported to either increase or decrease progesterone secretion and to have a biphasic effect on estradiol (E2) secretion from porcine granulosa cells in vitro (Ranzenigo et al. 2008, Medvedova et al. 2011). In cattle, there are preliminary data to suggest that DON increased levels of mRNA coding for the rate-limiting progestagenic enzyme cytochrome P450 cholesterol side-chain cleavage (CYP11A1), but had no effect on abundance of mRNA encoding the main estrogenic enzyme cytochrome P450 aromatase (CYP19A1) in cultured granulosa cells (Pizzo et al. 2014); any effect of DON on abundance of mRNA encoding StAR protein (STAR), the protein involved in the transport of cholesterol across the mitochondrial membrane, was not reported. To our knowledge, no other information is available on the effects of DON on ovarian function in cattle.

The generally accepted mechanism of action of DON is through binding to ribosomes and initiation of the ribotoxic stress response (RSR). This involves activation of the p38 (MAPK14), ERK1/2 (MAPK3/1), and c-Jun N-terminal kinase (MAPK8) members of the MAP kinase (MAPK) family (Pestka 2008). As all these pathways are active in bovine granulosa cells (Evans & Martin 2000, Uzbekova et al. 2009, Abedini et al. 2015), we hypothesize that DON may activate one or more of these pathways to alter granulosa cell function. The objectives of this study were to determine the effects of DON on granulosa cell steroidogenesis and apoptosis in a non-luteinizing serum-free culture system, and to determine whether DON acts through typical RSR intracellular signaling pathways, including early response genes.
Materials and methods

Cell culture

All materials were obtained from Life Technologies, Inc. Bovine granulosa cells were cultured in serum-free conditions that maintain E2 and progesterone secretion and responsiveness to follicle-stimulating hormone (FSH; Gutierrez et al. 1997, Silva & Price 2000, Sahmi et al. 2004). Bovine ovaries were obtained from adult cows, independently of the stage of the estrous cycle, at the slaughterhouse and transported to the laboratory at 30 °C in PBS containing penicillin (100 IU) and streptomycin (100 µg/ml). Granulosa cells were harvested from follicles 2–5 mm in diameter, and the cell suspension was filtered through a 150 mesh steel sieve (Sigma–Aldrich Canada). Cell viability was assessed by Trypan blue dye exclusion.

Cells were seeded into 24-well tissue plates (Sarstedt, Inc., Newton, NC, USA) at a density of 500 000 viable cells in 500 µl DMEM/F12 containing sodium bicarbonate (10 mM), 25 mM HEPES, sodium selenite (4 ng/ml), BSA (0.1%; Sigma–Aldrich), penicillin (100 U/ml), androstenedione (10^{-6} M), and bovine FSH (10 ng/ml starting on day 2, AFP5346D; National Hormone and Peptide Program, Torrance, CA, USA). Cultures were maintained at 37 °C in an atmosphere of 5% CO2 and 95% air for up to 6 days.

Experimental treatments

To determine the effects of DON on granulosa cell steroidogenesis, cells were treated from day 2 with 0, 1, 10, or 100 ng/ml DON (in methanol) or vehicle (methanol alone), and cells and media were recovered on day 6; these doses were based on concentrations of 2–14 ng/ml DON reported in serum of cattle fed a contaminated concentrate (Keese et al. 2008). Apoptosis was measured using an Annexin V–FITC apoptosis detection kit (Sigma–Aldrich) after treating cells with an effective dose of DON for 4 days. To assess the effect of DON on intracellular pathway activation, cells were treated on day 5 of culture with an effective dose of DON for 0, 5, 15, 30, and 60 min, and cells were recovered in lysis buffer to measure the phosphorylation status of key protein kinases. The dose- and time-dependent effects of DON on abundance of mRNA of early response genes were determined by treating cells on day 5 of culture with an effective dose of DON for 0, 1, 2, 4, 8, and 24 h, and by treating cells for 1 h with 0, 1, 10, or 100 ng/ml DON. Cells were recovered for RNA extraction. All experiments were carried out with three different pools of cells collected on different occasions.

Steroid assay

E2 concentrations in a conditioned medium were measured in duplicate as described (Jiang & Price 2012) using an antibody raised in rams (Sanford 1987). Intra- and inter-assay coefficient of variation (CV) values were 6% and 9% respectively. Progesterone concentration was measured in a conditioned medium in duplicate as described (Belanger et al. 1990, Price et al. 1995) with mean intra- and interassay CV values of 7.2 and 18% respectively. Steroid concentrations in the culture medium were corrected for cell number by expressing the data per unit mass of total cell protein. The sensitivities of these assays were 10 and 4 pg/tube for E2 and progesterone, equivalent to 0.3 and 20 ng/µg protein respectively.

Total RNA extraction and real-time PCR

After treatments, the medium was removed and total RNA was extracted using TRizol according to the manufacturer’s instructions. Total RNA (0.5 µg) was quantified by absorbance at 260 nm and treated with 1 U DNase (InVitrogen). RNA was reverse transcribed in the presence of 1 mmol/l oligo (dT) primer and 4 U Omniscript RTase (Qiagen), and 0.25 mmol/l ddNTP mix and 19.33 U RNase inhibitor (GE Healthcare Canada, Baie D’Urfe, QC, Canada) in a volume of 20 µl at 37 °C for 1 h. The reaction was terminated by incubation at 93 °C for 5 min.

Real-time PCR was performed on a 7300 Real-Time PCR System (Applied Biosystems) with Power SYBR Green PCR Master Mix. The bovine-specific primers have been published previously (Jiang et al. 2013). Common thermal cycling parameters (3 min at 95 °C, 40 cycles of 15 s at 95 °C, 30 s at 59 °C, and 30 s at 72 °C) were used to amplify each transcript. Melting curve analyses were performed to verify product identity. Samples were run in duplicate and were expressed relative to histone H2A.F.Z as a housekeeping gene. Data were normalized to a calibrator sample using the ΔΔCt method with correction for amplification efficiency (Pfaffl 2001).

Western blot

After challenge with DON, cells were washed with cold PBS and lysed in 100 µl/well cold RIPA buffer (25 mM Tris–HCl, pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 1 mM sodium orthovanadate, and protease inhibitor cocktail). The homogenate was centrifuged at 6000 g for 5 min at 4 °C. The resulting supernatant was retained and stored at −20 °C. Protein concentrations were determined by BCA Protein Assay (Pierce, Rockford, IL, USA).

Samples were resolved on 12% SDS–polyacrylamide gels (15 µg total protein/lane) and electrophoretically transferred onto nitrocellulose membrane in a Bio-Rad wet Blot Transfer Cell apparatus (transfer buffer: 39 mM glycine, 48 mM Tris–base, 1% SDS, 20% methanol, and pH 8.3). After transfer, the membranes were blocked in TTBS (total protein/lane) and electrophoretically transferred onto nitrocellulose membrane in a Bio-Rad wet Blot Transfer Cell apparatus (transfer buffer: 39 mM glycine, 48 mM Tris–base, 1% SDS, 20% methanol, and pH 8.3). After transfer, the membranes were blocked in TTBS (10 mM Tris–HCl, 150 mM NaCl, 0.1% Tween-20, and pH 7.5) for 1 h. Membranes were incubated overnight with the primary antibody (rabbit anti-rat MAPK3/1, #9102, 1:2000; rabbit anti-human phospho-MAPK3/1, #9101, 1:1000; rabbit anti-human MAPK14 #9211, 1:1000; rabbit anti-human phospho-MAPK14 #9215, 1:1000; rabbit anti-human MAPK8 #9251, 1:1000; rabbit anti-human phospho-MAPK8 #9252, 1:1000; Cell Signaling Technology, Danvers, MA, USA) diluted in 5% BSA (total MAPK8) or TTBS (all other antibodies) at 4 °C. The loading control was COX4I1 (#69359, 1:1000; Santa Cruz Biotechnology). After washing three times with TTBS, membranes were incubated for 2 h at room temperature with 1:10 000 anti-rabbit HRP-conjugated IgG (GE Healthcare Canada) diluted in TTBS. After five washes in TTBS, protein bands were revealed by ECL (Millipore, Billerica, MA, USA) using a gel imaging system.
(ChemiDoc XRS system, Bio-Rad). Semiquantitative analysis was performed using the Bio-Rad ChemiDoc XRS Software.

Statistical analysis

All statistical analyses were performed using the JMP Software (SAS Institute, Cary, NC, USA). Data were transformed to logarithms if they were not normally distributed (Shapiro–Wilk test). At instances where main effects were significant, the effect of time or treatment was tested using the Tukey–Kramer honest significant difference (HSD) test. The data are expressed as least square means ± S.E.M.

Results

DON suppressed steroid secretion and steroidogenic enzyme gene expression

We first assessed the effect of DON on steroidogenesis. Cultured bovine granulosa cells were challenged with 1, 10, and 100 ng/ml DON for 4 days. At the dose of 100 ng, DON significantly inhibited E2 and progesterone secretion (Fig. 1), and potently suppressed *CYP19A1* mRNA levels but did not alter *CYP11A1* and *STAR* mRNA levels (Fig. 2).

DON increases granulosa cell apoptosis

The ability of DON to inhibit E2 secretion prompted us to determine the effect of DON on granulosa cell health. Addition of an effective dose of DON (100 ng/ml) for 4 days increased the proportion of apoptotic cells by 15% (Fig. 3). In a subsequent experiment, DON was added for 24 h and increased levels of mRNA encoding the apoptosis-related genes *FASLG* and *GADD45B* (Fig. 3).

DON activates pathways related to RSR in granulosa cells

The main mechanism of action of DON is through RSR pathways; therefore, we assessed the activation of these pathways in granulosa cells. The addition of DON caused a rapid and transient increase in MAPK3/1 phosphorylation within 15 min and an increase in MAPK14 phosphorylation that was significant at 30 and 60 min (Fig. 4A and B). Furthermore, DON
health and function, notably on E₂ secretion and CYP19A1 mRNA levels, and that DON acts through typical RSR pathways involving activation of MAPK3/1, MAPK8, and MAPK14 kinases.

Reports on the effects of DON on steroidogenesis are contradictory. In pigs, DON increased E₂ secretion and CYP19A1 mRNA levels at a concentration of 10 ng/ml and inhibited both at a concentration of 100 ng/ml (Ranzenigo et al. 2008), whereas, in bovine granulosa cells, DON (1000 ng/ml) increased CYP19A1 mRNA levels (Pizzo et al. 2014). In this study, no stimulatory effect of DON on E₂ secretion or CYP19A1 mRNA levels was observed, although the decrease in E₂ secretion and CYP19A1 mRNA levels with 100 ng/ml DON was consistent with the study by Ranzenigo et al. (2008). Similarly, for progesterone, 100 ng/ml DON increased progesterone secretion in one study carried out on pigs (Medvedova et al. 2011), but inhibited secretion from granulosa cells in another study (Ranzenigo et al. 2008) and in this study with bovine cells. One difference between the previous and present studies is the use of serum in the culture medium in all previous studies; serum is known to alter granulosa cell steroidogenesis in vitro (Gutiérrez et al. 1997).

In pig granulosa cell cultures, DON at the doses used increased cell numbers and abundance of the increased both MAPK8 (Fig. 4C) and phospho-MAPK8 levels (Fig. 4D), such that the ratio of phosphorylated to total MAPK8 did not change (not shown).

Our next step was to determine whether the activation of these pathways by DON affected expression of specific target genes. Addition of DON increased EGR1, EGR3, FOS, and FOSL1 mRNA levels within 1–2 h, and levels declined to control values by 8 h for all genes. DON also increased PTGS2 mRNA levels, and this was not significant until 24 h of treatment (Fig. 5). We confirmed the effect on the early response genes with a dose–response study at 1 h of treatment, and mRNA levels of all four target genes were increased at the dose of DON that inhibited E₂ secretion (Fig. 6).

Figure 3 Addition of DON increased the proportion of dead cells and abundance of FASLG and GADD45B mRNA in bovine granulosa cells. Cells were cultured for 4 days with 100 ng/ml DON and recovered for either the measurement of apoptosis by flow cytometry (Annexin-V apoptosis kit) or for RNA measurement by real-time PCR. Data are expressed as means (±S.E.M.) of three independent cultures. Asterisk denotes treatment significantly different from control (P<0.05, Student’s t-test).

Figure 4 Intracellular pathways activated by DON in granulosa cells. Bovine granulosa cells were cultured in a serum-free medium and on day 5 were challenged with DON (100 ng/ml) for the times shown. Total cell protein was recovered for western blotting with antibodies against total and phosphorylated forms of (A) MAPK3/1, (B) MAPK14, and (C and D) MAPK8. Representative blots from one replicate are shown above the graphs, and samples were loaded in the same order as in the graphs. Data are represented as the ratio of phosphorylated: total protein for MAPK3/1 and MAPK14, and of each form of MAPK8: COX411 (housekeeping protein), and are means (±S.E.M.) of three independent cultures; bars without common letters are significantly different (P<0.05, Tukey–Kramer HSD).
Thus, the increase in GADD45B (Portela et al. 2013) of apoptotic granulosa cells (Irving-Rodgers (Gutierrez et al. 1997)) reduces the rate of proliferation of granulosa cells apoptosis. This difference is again likely to be owing to where, in this study, DON increased the rate of proliferation marker PCNA without increasing apoptosis, whereas, in this study, DON increased the rate of proliferation of granulosa cells. The time-course of DON-induced phosphorylation observed herein is similar to that observed in a number of cell types, including murine macrophages (Moon & Pestka 2002, Pan et al. 2013), human intestine epithelial cells (Moon et al. 2007), and mouse skin (Mishra et al. 2014) among others. The activity of these pathways was demonstrated by the time- and dose-dependent increase in levels of mRNA encoding the transcription factors EGR1 and FOS; DON has previously been shown to increase Egr1 and Fos mRNAs in various cell lines (Moon et al. 2007, Nielsen et al. 2009) and mouse spleen (Kinser et al. 2004). In this study, we also identified Fosl1 and Egr3 as targets of DON activity, which are novel findings. Egr3 is a zinc finger-containing transcription factor that has been reported in breast cancer cells and in the mouse oocyte (Inoue et al. 2004, Shin et al. 2014). Although it is well known that Egr1 mRNA abundance in granulosa cells is increased by ligands including gonadotropins and growth factors (Espey et al. 2009, Russell et al. 2003, Sayasith et al. 2006, Jiang et al. 2013), we are unaware of any reports demonstrating the regulation of Egr3 proliferation marker PCNA without increasing apoptosis (Ranzenigo et al. 2008, Medvedova et al. 2011), whereas, in this study, DON increased the rate of apoptosis. This difference is again likely to be owing to the absence of serum in the current culture system, as this reduces the rate of proliferation of granulosa cells (Gutiérrez et al. 1997). As an increase in the incidence of apoptotic granulosa cells (Irving-Rodgers et al. 2001) and a decrease in E2 secretion (McNatty et al. 1984) are characteristics of atretic follicles in vivo, the ability of DON to increase apoptosis and decrease E2 secretion suggests that it may be able to cause or promote follicle atresia.

The addition of DON increased the abundance of Faslglg and GADD45B mRNAs, both of which have been linked to apoptosis. While Faslglg is well known to induce apoptosis in a variety of cell types including granulosa cells (Porter et al. 2000), the role of GADD45B is much less clear. Granulosa cells of atretic bovine follicles contain less GADD45B mRNA than do those of healthy follicles (Mihm et al. 2008), and pro-apoptotic factors such as fibroblast growth factor 18 (FGF18) decrease GADD45B mRNA levels in granulosa cells in vitro (Portela et al. 2010), whereas mitogenic factors such as FGF2 increase GADD45B mRNA levels (Jiang et al. 2011). Thus, the increase in GADD45B mRNA levels with increased apoptosis is not consistent with the previous data, and supports the suggestion that the regulation of GADD45B mRNA abundance is context (ligand?) specific (Salvador et al. 2013). It has been suggested that GADD45B may enhance or mitigate Fas-mediated apoptosis, depending on the cell type (Zazzeroni et al. 2003, Cho et al. 2010), thus the increase in GADD45B mRNA levels occurring with increased FASlg mRNA abundance may be part of either the apoptotic mechanism or a DNA repair mechanism.

The intracellular pathways activated by DON in a variety of non-reproductive cell types include MAPK3/1, MAPK8, and MAPK14. In this study, we demonstrate for the first time that DON activates these MAPKs in granulosa cells. The time-course of DON-induced phosphorylation observed herein is similar to that observed in a number of cell types, including murine macrophages (Moon & Pestka 2002, Pan et al. 2013), human intestine epithelial cells (Moon et al. 2007), and mouse skin (Mishra et al. 2014) among others. The activity of these pathways was demonstrated by the time- and dose-dependent increase in levels of mRNA encoding the transcription factors EGR1 and FOS; DON has previously been shown to increase Egr1 and Fos mRNAs in various cell lines (Moon et al. 2007, Nielsen et al. 2009) and mouse spleen (Kinser et al. 2004). In this study, we also identified Fosl1 and Egr3 as targets of DON activity, which are novel findings. Egr3 is a zinc finger-containing transcription factor that has been reported in breast cancer cells and in the mouse oocyte (Inoue et al. 2004, Shin et al. 2014). Although it is well known that Egr1 mRNA abundance in granulosa cells is increased by ligands including gonadotropins and growth factors (Espey et al. 2009, Russell et al. 2003, Sayasith et al. 2006, Jiang et al. 2013), we are unaware of any reports demonstrating the regulation of Egr3
mRNA abundance in granulosa cells. Interestingly, EGR3 but not EGR1 was shown to increase FASLG expression in T cells and fibroblasts (Mittelstadt & Ashwell 1998, Yoo & Lee 2004); therefore, the effect of DON on FASLG expression may be mediated in part through EGR3.

E2 is a major determinant of follicle development and decreases granulosa cell apoptosis in rodents in vivo (Billig et al. 1993). Studies with bovine granulosa cells have demonstrated that E2 can overcome the apoptotic effect of ligands such as FASLG and FGF18 (Quirk et al. 2006, Portela et al. 2015). Of the main RSR pathways, MAPK3/1 is known to alter CYP19A1 mRNA levels; inhibition of MAPK3/1 phosphorylation increased CYP19A1 mRNA levels in bovine and rodent granulosa cells (Moore et al. 2001, Silva et al. 2006) and reduced the ability of tumor necrosis factor alpha to increase apoptosis (Morales et al. 2006). Therefore, one mechanism for the action of DON might be via MAPK3/1 inhibition of CYP19A1 expression and E2 secretion, which then predisposed cells to apoptosis.

In conclusion, this study demonstrates that, in vitro, the mycotoxin DON has a negative impact on granulosa cell steroidogenesis and survival, and that the mechanism of action probably involves activation of the RSR. The potential impact of natural intoxication with DON on fertility in cattle warrants investigation.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Medi-Vet, Inc.

Acknowledgements

The authors thank Dr Raynald Dupras for criticism of the experimental design.

References

Billings H, Furstata I & Husea AH 1993 Estrogen induces and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 133 2204–2212. (doi:10.1210/endo.133.5.8404672)

Evans AC & Martin F 2000 Kinase pathways in dominant and subordinate ovarian follicles during the first wave of follicular development in sheep. Animal Reproduction Science 64 221–231. (doi:10.1016/S0378-7210(00)00210-4)

Minervini F, Dell’Aquila ME, Maritato F, Minoia P & Visconti A 2001 Toxic effects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and 17β-estradiol levels in mural granulosa cell cultures. Toxicology In Vitro 15 489–495. (doi:10.1016/S0887-2333(01)00686-6)

Moore RK, Otsuka F & Shimasaki S 2001 Role of ERK1/2 in the differential effects of 3β,5α-monooxygenase regulatory element binding protein, serum response factor, SP1, and early growth response factor-1. Molecular Endocrinology 17 520–533. (doi:10.1210/me.2002-0066)

Shin H, Kwon S, Song H & Lim HJ 2014 The transcription factor Egr3 is a putative component of the microtubule organizing center in mouse oocytes. PLoS ONE 9 e94708. (doi:10.1371/journal.pone.0094708)

Received 12 January 2015
First decision 9 February 2015
Revised manuscript received 18 February 2015
Accepted 2 March 2015