Endogenous interleukin 18 regulates testicular germ cell apoptosis during endotoxemia

Taketo Inoue1,2, Michiko Aoyama-Ishikawa1,3, Shingo Kamoshida1, Satoshi Nishino1, Maki Sasano1, Nobuki Oka1, Hayato Yamashita1, Motoki Kai1, Atsunori Nakaō3, Joji Kotani3 and Makoto Usami1

1Department of Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, Japan, 2Ono Ladies Clinic, 538-3, Nishihonmachi, Ono, 675-1375 Hyogo, Japan and 3Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan

Correspondence should be addressed to M Usami; Email: musa@kobe-u.ac.jp

Abstract

Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis. Interleukin 18 (IL18) is a proinflammatory cytokine and is an apoptotic mediator during endotoxemia, but the role of IL18 in response to inflammation in the testes was unclear. WT and IL18 knockout (KO) mice were injected lipopolysaccharide (LPS) to induce endotoxemia and examined 12 and 48 h after LPS administration to model the acute and recovery phases of endotoxemia. Caspase activation was assessed using immunohistochemistry. Protein and mRNA expression were examined by western blot and quantitative real-time RT-PCR respectively. During the acute phase of endotoxemia, apoptosis (as indicated by caspase-3 cleavage) was increased in WT mice but not in IL18 KO mice. The death receptor-mediated and mitochondrial-mediated apoptotic pathways were both activated in the WT mice but not in the KO mice. During the recovery phase of endotoxemia, apoptosis was observed in the IL18 KO mice but not in the WT mice. Activation of the death-receptor mediated apoptotic pathway could be seen in the IL18 KO mice but not the WT mice. These results suggested that endogenous IL18 induces germ cell apoptosis via death receptor-mediated and mitochondrial-mediated pathways during the acute phase of endotoxemia and suppresses germ cell apoptosis via death-receptor mediated pathways during recovery from endotoxemia. Taken together, IL18 could be a new therapeutic target to prevent orchitis during endotoxemia.

Introduction

Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis (O’Bryan et al. 2000, Kajihara et al. 2006, Metukuri et al. 2010). Lipopolysaccharide (LPS), the endotoxic component in the bacterial wall of gram-negative bacteria, is a known inducer of orchitis (Kajihara et al. 2006, Metukuri et al. 2010). In an LPS-mediated orchitis mouse model, germ cell apoptosis was observed in the testes for up to 5 weeks after LPS injection (Kajihara et al. 2006). In an Escherichia coli-induced epididymo-orchitis rat model, severe testicular atrophy and impaired spermatogenesis were observed despite ongoing antimicrobial therapy (Demir et al. 2007). Understanding the mechanisms driving germ cell apoptosis caused by orchitis is important to improve spermatogenesis and male fertility after systemic inflammation. Every year 20–30 million people worldwide suffer from sepsis (Reinhart et al. 2013), and ~20% of the adult male patients suffering sepsis are 18–45 years old (peak reproductive
ages (Beale et al. 2009). Recently, long-term mortality and quality of life after sepsis has been studied (Winters et al. 2010), but few reports discuss the impact of sepsis on male fertility.

Interleukin 18 (IL18) is a pro-inflammatory cytokine induced by LPS in the mouse testes (Abu Elhija et al. 2008a). Under physiologic conditions, IL18 regulates testicular function, development, and spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008b, Komsky et al. 2011). IL18 is a mediator of apoptosis through both the death receptor (extrinsic) and the mitochondrial (intrinsic) pathways (Marin˜o & Cardier 2003, Chandrasekar et al. 2004, Akhtar et al. 2011, Zhang et al. 2011). In this study, we focused on the role of IL18 in testicular germ cell apoptosis during sepsis by investigated IL18-dependent effects in a mouse model of endotoxemia.

Materials and methods

Antibodies

For western blot analyses, rat monoclonal anti-Bid and anti-rat IgG antibodies were purchased from R&D Systems (Minneapolis, MN, USA). For immunohistochemistry, polyclonal antibodies against cleaved caspase-3 (cleaved at Asp175) were purchased from Cell Signaling Technology (Danvers, MA, USA). Polyclonal antibodies against cleaved caspase-8 (active caspase-8 antibody) were purchased from BioVison (Milpitas, MA, USA). Polyclonal antibodies specific for cleaved caspase-9 (cleaved at Asp 330) were provided by the Laboratory of Pathology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences (kindly provided by S Kamoshida).

Animals

Male 9–10 week-old C57BL/6j (WT) mice (CLEA Japan, Tokyo, Japan) and B6.129P2-I18^{tm1Aki}/J (IL18 knockout (KO)) mice (Jackson Laboratory, Bar Harbor, ME) were injected with E. coli O111: B4, Sigma–Aldrich) intraperitoneally. The vehicle group was injected with PBS. The mice were then allowed access to a standard diet and water ad libitum. The testes were removed 12 h after injection for examination of the acute phase and 48 h after injection for examination of the recovery phase. Blood was collected at 0, 12, 24, and 48 h after LPS injection for ELISA. This study was approved by the Institutional Animal Care and Use Committee and carried out according to the Kobe University Animal Experimentation Regulations.

Mouse behavior

Mouse behavior was observed every hour for 48 h after LPS or PBS injection. The severity of endotoxic shock was scored according to Retew et al. (2009). Mice with ruffled fur but no detectable behavioral differences scored 1; mice with percolated fur and a huddle reflex that were still active scored 2; mice that were less active and relatively passive when handled scored 3; inactive mice that exhibited only a limited response when handled scored 4; moribund, unresponsive mice scored 5; dead mice scored 6.

Quantitative real-time RT-PCR

Total RNA was extracted from whole testes with ISOGEN (Nippon Gene, Tokyo, Japan) according to the manufacturer’s instructions. RT was performed using iScript CDNA synthesis kits (Bio-Rad Laboratories) according to the manufacturer’s instructions. The expression of Tnf-α, Tnfr1, Fas, Fas ligand (Fasl), Fadd, and inducible nitric oxide synthase (iNos) were detected by quantitative real-time RT-PCR (MyiQ Single-Color Real-Time PCR Detection System; Bio-Rad Laboratories) using SYBR green real-time PCR master mix (Table 1) (Toyobo, Osaka, Japan). Relative expression of the genes was calculated by the ddCt method after normalization to the glyceraldehyde-3-phosphate dehydrogenase (Gapdh).

Western blotting

Protein was extracted from whole testes with ISOGEN (Nippon Gene) according to the manufacturer's instructions. Equal concentrations of each pooled sample were subjected to SDS–PAGE and transferred onto membranes (Amersham Hybond-P; GE Healthcare, Buckinghamshire, UK). The membranes were blocked with 2% skim milk containing 5 mM Tris–HCl, 250 mM NaCl, and 0.1% Tween 20 and incubated with primary antibodies overnight at 4 °C and then incubated with secondary antibodies. Blots were developed using the ECL-plus Western Blotting Detection System (GE Healthcare) and exposed on Hyperfilm (GE Healthcare). GAPDH was used as the internal control.

Table 1 Quantitative PCR primer sequences and annealing temperatures.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence 5’–3’</th>
<th>Annealing (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tnf-α</td>
<td>AGAAGAGGCACACTCCCCCAAAA</td>
<td>63</td>
</tr>
<tr>
<td>Tnfr1</td>
<td>AGAACAGTCCAACACGCC</td>
<td>57</td>
</tr>
<tr>
<td>Fas</td>
<td>GAACCTCCAGTCCAACAGC</td>
<td>62</td>
</tr>
<tr>
<td>Fasl</td>
<td>TCAGCTTGGAAACACCAGCC</td>
<td>62</td>
</tr>
<tr>
<td>Fadd</td>
<td>CAGGTCGACAGCATGTTG</td>
<td>62</td>
</tr>
<tr>
<td>iNos</td>
<td>TCTCCACTGGAGAGAAGACACAGAAATG</td>
<td>65.6</td>
</tr>
<tr>
<td>Gapdh</td>
<td>TTCTGTTGAGTCCAGGCC</td>
<td>60</td>
</tr>
</tbody>
</table>

www.reproduction-online.org
Immunohistochemical staining

Immunohistochemical staining was performed according to the method reported by Shintani et al. (2011). After deparaffinization, rehydration, and blocking of endogenous peroxidase, heat-induced epitope retrieval was performed in 1 mM EDTA (pH 8.0) when staining for cleaved caspase-3 or cleaved caspase-9 or in 10 mM citrate buffer (pH 7.0) when staining for cleaved caspase-8 for 10 min using a pressure cooker (T-FAL, Rumilly, France). Nonspecific binding was blocked using Protein Block Serum Free (Dako Japan, Tokyo, Japan). The sections were incubated overnight at room temperature with the primary antibodies. To detect cleaved caspase-8 and cleaved caspase-3, the sections were incubated with the Histofine Simple Stain MAX-PO (Nichirei Bioscience, Tokyo, Japan) for 1 h at room temperature. To detect cleaved caspase-9, the sections were immunostained by Mach 3 Rabbit HRP Polymer Detection (Biocare Medical LLC, Concord, CA) according to the manufacturer’s instructions. The reaction products were visualized with diaminobenzidine (Liquid DAB+ substrate chromogen system; Dako Japan), and counterstained with Mayer’s hematoxylin.

The percent of cleaved caspase-3-positive germ cells was calculated in each tissue section by counting the number of cleaved caspase-3-positive cells and total number of cells in selected seminiferous tubules under a light microscope (×400). In each tissue section, ~1000 germ cells were counted. To avoid selection bias, five fields that included the most remarkable number of cleaved caspase-3-positive germ cells were selected in each sample. Cleaved caspase-8-positive cells and cleaved caspase-9-positive cells were counted in the same area where cleaved caspase-3-positive germ cells were observed in the serial sections. Regarding distinction between germ cell and Sertoli cell within seminiferous tubule, Sertoli cells were identified by the morphological characteristic; non-spherical-shaped cell, irregular nucleus, and one or two clear nucleoli (Russell et al. 1990).

The double immunostaining was performed to confirm co-expression of cleaved caspase-8 and cleaved caspase-3, or cleaved caspase-9 and cleaved caspase-3. Heat-induced epitope retrieval was performed in 10 mM Tris base containing 1 mM EDTA (pH 9.0) solution for cleaved caspase-8 and in 10 mM citrate buffer (pH 7.0) for cleaved caspase-9. After blocking nonspecific binding (Super Block; ScyTek Laboratories, West Logan, UT, USA), the sections were incubated overnight with the anti-cleaved caspase-8 antibody or anti-cleaved caspase-9 antibody. Bound primary antibodies were detected with Histofine Simple Stain AP (Nichirei Bioscience) for cleaved caspase-8 or Mach 3 Rabbit AP Polymer Detection (Biocare Medical LLC) for cleaved caspase-9 according to the manufacturer’s instructions. The reaction products were visualized with Fuchsin+ Substrate-Chromogen System (Dako, Glostrup, Denmark). Then to recover antigenicity of cleaved caspase-3 and to block antibody cross reactivity, heat treatment was performed in 1 mM EDTA (pH 9.0) solution for 3 min. After blocking nonspecific binding, the sections were incubated overnight with anti-cleaved caspase-3 antibody followed by incubation with Histofine Simple Stain AP. The reaction products were visualized with PermaBlue Plus/AP (Diagnostic BioSystems, Pleasanton, CA, USA). The double-immunostained sections failed to discriminate between germ and Sertoli cells due to a lack of nuclear staining, and thus were not used for counting the positive cells.

ELISA and FACSArray

 Plasma IL18 levels were assessed with an ELISA kit specific for the 18 kDa bioactive form of IL18 (MBL, Nagoya, Japan), according to the manufacturer’s instructions. IL6 and TNF-α were assayed using Cytometric Bead Array (CBA) Flex Sets (BD Pharmingen, Franklin Lakes, NJ, USA). Flow cytometric analysis was performed using BD FACSAria flow cytometer (BD Immunocytometry Systems, Franklin Lakes, NJ, USA) according to the method reported by Aoyama et al. (2009).

Statistical analysis

All data are presented as the mean ± s.d. The survival rate was evaluated using the Kaplan–Meier method and a log-rank test. Mouse behavior score was evaluated by two-factor ANOVA. Other comparisons were evaluated by ANOVA followed by a Tukey–Kramer post hoc test. A probability level of P<0.05 was considered statistically significant.

Results

LPS administration to model the acute and recovery phases of endotoxemia

To investigate the acute phase and the recovery phase of systemic inflammation, we examined survival and behavior in WT mice after administration of either 20 mg LPS/kg (LPS-20) or 40 mg LPS/kg (LPS-40). WT mice injected with 40 mg LPS/kg showed higher mortality than mice injected with 20 mg LPS/kg, beginning ~18 h after LPS injection (Fig. 1A). In the LPS-20 group, 50% survived 48 h after LPS injection, while only 33% survived in the LPS-40 group. All of the mice given PBS instead of LPS survived.

There was increased morbidity, as indicated by the behavior score, in the LPS-40 group 18 h after injection, which remained high throughout the remainder of the 48-h observation period (Fig. 1B). The mice given the lower dose of LPS (LPS-20) experienced similar morbidity early after LPS injection, as indicated by the behavior score 12 h after LPS injection, but were behaving normally with no signs of morbidity during the later portion of the 48-h observation period (Fig. 1B). All of the mice given PBS instead of LPS exhibited normal behavior (score of 0) during the observation period (data not shown). These results indicate that the LPS-40 group did not recover from systemic inflammation induced by LPS injection, whereas the LPS-20 group recovered within 2 days.

To assess activation of inflammatory cascades typical of endotoxemia, we measured plasma IL18, IL6, and TNF-α levels in the LPS-40 and LPS-20 mice. Plasma IL6 and TNF-α levels were significantly increased 12 h after administration of either dose of LPS (P<0.01). In the
LPS-40 group, expression decreased to baseline within 24 h (Fig. 1C). In the LPS-20 group expression decreased to baseline within 48 h. In the LPS-40 group, plasma IL18 levels increased in a time-dependent manner for 24 h after treatment (Fig. 1C). Plasma IL18 levels also increased significantly 12 h after LPS administration in the LPS-20 group, albeit to a lesser degree than in the LPS-40 mice (Fig. 1C and D). Forty-eight h after LPS administration, plasma IL18 levels returned to baseline in the LPS-20 mice (Fig. 1D). Based on the mortality, morbidity, and plasma cytokines profiles observed, we used injection of 40 mg LPS/kg examined 12 h after administration to model the acute phase of endotoxemia and 20 mg LPS/kg examined 48 h after injection to model the recovery phase of endotoxemia when analyzing changes in the testes.

Testicular germ cell apoptosis during the acute phase of endotoxemia

To investigate whether endogenous IL18 influences testicular germ cell apoptosis during the acute phase of endotoxemia, we examined caspase-3 cleavage 12 h after administration of 40 mg LPS/kg. In the WT mice, LPS administration significantly increased apoptosis in the testes from 2.8±1.0% to 10.6±4.4% (Fig. 2A, B, and F). Cleaved caspase-3-positive germ cells were observed in spermatogonia and spermatocytes along the basal membrane of the seminiferous tubules. In IL18 KO mice, LPS administration did not significantly increase apoptosis during acute phase of endotoxemia, and the percentage of cleaved caspase-3-positive cells was significantly lower in the KO mice than in WT mice 12 h after LPS administration (P<0.01; Fig. 2F). These results suggest that endogenous IL18 promotes testicular germ cell apoptosis via caspase-3-dependent pathways during acute inflammation.

Induction of apoptosis via the death receptor pathway during the acute phase of endotoxemia

Knowing that apoptosis was induced in the testes in an IL18-dependent fashion during the acute phase of endotoxemia, we wished to examine activation of the death receptor pathway to understand the underlying mechanisms. We examined cleaved caspase-8 expression (a hallmark of death receptor-mediated apoptosis) and cleaved caspase-3 expression using serial sectioning and double immunostaining techniques to

![Figure 1](image1.png)

Figure 1 Establishing mouse models of acute-phase and recovery-phase endotoxemia. (A) Survival. LPS-40, 40 mg LPS/kg-injected mice; LPS-20, 20 mg LPS/kg-injected mice. n=6–10 mice per group. (B) Behavior scores of surviving LPS-injected WT mice. n=6–10 mice per group. Expression of inflammatory mediators in the LPS-40 (C) and LPS-20 (D) groups. Plasma IL18 (open circle), IL6 (closed circle), and TNF-α (square). n=3–7 mice per group. **, ##, ††: significant difference between at 0 h and at 12 h (P<0.01).

![Figure 2](image2.png)

Figure 2 Testicular germ cell apoptosis during acute inflammation. (A) WT/PBS; (B) WT/LPS; (C) KO/PBS; and (D) KO/LPS. Cleaved caspase-3-positive cells are stained brown. (E) Negative control (NC). Magnification: 400×. Scale bar: 50 μm. (F) Percent cleaved caspase-3-positive germ cells in seminiferous tubules. n=6–7 mice per group. **P<0.01.
IL18 regulates testicular germ cell apoptosis

Induction of apoptosis via the mitochondrial apoptosis pathway during the acute phase of endotoxemia

Next, we examined activation of the mitochondrial, or intrinsic, apoptotic pathway. The mitochondrial apoptotic pathway is regulated by members of the BCL-2 protein family: anti-apoptotic proteins inhibit cytochrome c release, whereas pro-apoptotic members stimulate cytochrome c release and promote caspase-9 cleavage/activation (Borner 2003, Tsujimoto 2003). In the testes, the BCL-2 family member BID is expressed (Tripathi et al. 2009). To investigate the impact of IL18 on mitochondrial-mediated apoptosis, the protein levels of BID and truncated BID (tBID) proteins were examined. tBID protein was significantly higher in the WT mice group than in the KO mice after LPS administration (Fig. 5). The total level of BID protein (truncated and untruncated) did not differ between the groups (Fig. 5).

Expression of mRNAs encoding important regulators of death receptor-mediated apoptosis (Tnf-α, Tnfr1, Fas, Fasl, and Fadd) was assessed by quantitative real-time RT-PCR. The mRNAs for Tnf-α, Tnfr1, and Fas were significantly induced by LPS in WT mice but not in KO mice, indicating IL18-dependent upregulation of these genes in response to LPS (Fig. 4A, B, and C). The mRNAs for Fasl (Fig. 4D) and Fadd (Fig. 4E) were significantly decreased following LPS exposure, and this decrease was significantly greater in the IL18 KO mice (Fig. 4D and E).

Identifying dual-positive cells indicative of apoptosis via activation of the death receptor pathway. In the WT mice, LPS administration increased the number of dual-positive cells approximately eightfold, indicating death receptor-mediated apoptosis during LPS-induced acute phase of endotoxemia (Fig. 3A, B, and G). LPS administration did not increase the number of dual-positive cells in the IL18 KO mice suggesting an IL18-dependent process (Fig. 3C, D, and G).

Figure 3 Cleaved caspase-8-dependent apoptosis in the testes during acute inflammation. Immunohistochemical staining for cleaved caspase-8 in (A) WT/PBS, (B) WT/LPS, (C) KO/PBS, and (D) KO/LPS. Cleaved caspase-8-positive cells are stained brown. Cleaved caspase-8-positive germ cells (arrows) are identified in the same area where cleaved caspase-3-positive germ cells are observed (see also Fig. 2). (E) Negative control (NC). (F) The typical double immunostaining of cleaved caspase-8 (red) and cleaved caspase-3 (blue). A number of germ cells show co-expression of cleaved caspase-8 and cleaved caspase-3, visualized in purple color. A blue-colored germ cell expressing cleaved caspase-3 alone is also seen. Magnification: 400×. (inset, magnification: 1000×) Scale bar: 50 μm. (G) Percent cleaved caspase-8/cleaved caspase-3 double positive germ cells in the seminiferous tubules. n=6–7 mice per group. **P<0.01.

Figure 4 Death receptor mediated apoptosis in the testes during acute inflammation. Expression of the mRNAs for (A) Tnf-α, (B) Tnfr1, (C) Fas, (D) Fasl, and (E) Fadd. n=6–7 mice per group. **P<0.01.

www.reproduction-online.org
Caspase-9 cleavage and caspase-3 cleavage were examined using serial sectioning and double immunostaining techniques. Administration of 40 mg LPS/kg significantly increased the number of cleaved caspase-9/cleaved caspase-3 dual-positive cells in the testes of WT mice (Fig. 6A, B, and G). IL18 KO mice showed no increase in dual-positive cells (Fig. 6C, D, and G).

Because excessive NO activates the mitochondrial apoptotic pathway (Ranjan et al. 2004, Chan et al. 2005) and increased iNOS expression has been observed in autoimmune orchitis (Jarazo-Dietrich et al. 2012), we also measured iNos mRNA expression in the testes after LPS treatment. The mRNA expression of iNos was significantly induced by LPS injection in the WT mice but not in the IL18 KO mice (Fig. 7). Taken together, these results indicate that IL18 induced mitochondrial-mediated apoptosis during acute inflammation and suggest that IL18 may enhance the expression of tBID and iNOS.

Testicular germ cell apoptosis during the recovery phase of endotoxemia

To investigate whether endogenous IL18 affected testicular germ cell apoptosis during the recovery phase of endotoxemia, we examined caspase-3 cleavage 48 h after injection of 20 mg LPS/kg. In the WT mice, increased apoptosis was not observed during the recovery phase (Fig. 8A, B, and F). In contrast, in the IL18 KO mice, apoptosis was detected during the recovery phase (Fig. 8C, D, and F). Additionally, the absence of germ cells was observed in KO mice during recovery from LPS-induced endotoxemia (Fig. 8D). These results suggested that endogenous IL18 suppresses testicular germ cell apoptosis via caspase-3-dependent pathways during the recovery from endotoxemia.

Induction of apoptosis via the death receptor pathway during the recovery phase of endotoxemia

To investigate the influence of IL18 on the death receptor-mediated apoptotic pathway during the recovery phase of endotoxemia, expression of cleaved caspase-8 and the mRNAs for TNF-α, Tnfr1, Fas, Fasl, and Fadd were examined. More cleaved caspase-8/
differences in the expression of iNos (mRNA and protein) among the groups during recovery from endotoxemia (data not shown). These results suggest that IL18 suppresses caspase-8-activated apoptosis in testicular germ cells and reduces expression of Tnfr1, Fas, and Fadd during recovery from endotoxemia.

Discussion

This study demonstrated that IL18 was required for testicular germ cell apoptosis via both death receptor-mediated, caspase-8-dependent pathways and mitochondrial-mediated, caspase-9-dependent pathways during the acute phase of endotoxemia. In contrast, during recovery from acute inflammation, IL18 was required to prevent germ cell apoptosis. These results suggested that IL18 has both pro-apoptotic and anti-apoptotic effects on testicular cells, depending on the inflammation stage.

We began our study by establishing a mouse model for endotoxemia. We used mortality, morbidity (as indicated by behavior score), and plasma cytokine levels to define acute and recovery phases of endotoxemia. In our model, mortality ranged from 50 to 67% depending on the dose of LPS administered. Mortality of patients with severe sepsis ranges from 30.6 to 80.4% (Silva et al. 2012); thus, we believe that the severity of sepsis in the model mimicked the severity of clinical sepsis.

Using this model, we observed cleaved caspase-3-positive apoptotic germ cells (both spermatogonia and spermatocytes) in WT mice during acute inflammation. This is in agreement with the data in several publications on germ cell apoptosis induced by LPS (O’Bryan et al. 2000), microcystins (Xiong et al. 2009), or mild heat (Sinha Hikim et al. 2003). In contrast, cleaved caspase-3-positive apoptotic germ cells were scarce in LPS-treated IL18 KO mice during acute phase of endotoxemia. IL18 is known to induce apoptosis via caspase-8-dependent pathway through up-regulation of FAS/FASL and TNF/TNFR in several mammalian cell types including renal tubular cells and cardiac microvascular/liver endothelial cells (Marino & Cardier 2003, Chandrasekar et al. 2004, Zhang et al. 2011). Our results suggest that a similar mechanism is utilized in the testes following LPS treatment. TNF-α, which was released from testicular macrophages, causes apoptosis in germ cells (Theas et al. 2008). Moreover, IL18 induces macrophage activation resulting in release of TNF-α by the macrophages (Bastos et al. 2007). Our study suggests that endogenous IL18 enhances TNF-α and FASL expression in the testes, leading to TNFR1-, FAS-, and FADD-induced caspase-8 activation. As a result, IL18 leads to germ cell apoptosis via caspase-8-dependent pathways during acute inflammation. Cleaved caspase-8 expression was also increased in spermatids after LPS stimulation. During terminal differentiation of sperm, apoptotic proteins are used for elimination of intercellular bridges between spermatid and the spermatid cytoplasm (Shaha et al. 2010). Thus we thought caspase-8 signal was important to hypoplasia of spermatids. However, we could not elucidate the effect of IL18 on spermatid apoptosis in this study.

Endogenous IL18 also enhanced expression of tBID. BID is cleaved by caspase-8, following activation of caspase-8 by FAS. tBID induces mitochondrial cytochrome c release (Clohessy et al. 2006). Therefore, up-regulation of FAS and FASL by IL18 may influence BID activation. IL18 was also required for iNOS expression.
induction, in accordance with the findings of a previous study (Ueno et al. 2005). The upregulation of iNOS increases cellular NO levels, which leads to the breakdown of mitochondrial membrane potential and caspase-9 activation (Chan et al. 2005). Thus, IL18 may promote germ cell apoptosis during acute phase of endotoxemia through multiple, convergent pathways that result in caspase-9 cleavage.

In contrast to the IL18-dependent germ cell apoptosis seen in response to LPS treatment during acute phase of endotoxemia, deletion of IL18 promoted apoptosis during recovery from endotoxemia. Our data suggest that IL18 suppresses testicular germ cell apoptosis via caspase-8-dependent pathway during the recovery phase.

In mouse testes, endogenous IL18 is produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.

Bamias et al. (2012) reported that the role of IL18 depends on which cells secrete it. In the intestine, monocyte-derived IL18 induced epithelial reconstitution during acute inflammation, but during chronic inflammation, lymphocyte-derived IL18 induced epithelial injury. In the testes, endogenous IL18 is continuously produced in germ cells, Leydig cells, and resident macrophages and may regulate testicular function via autocrine/paracrine signaling (Abu Elhija et al. 2008a). IL18 may also regulate spermatogenesis (Strand et al. 2005, Abu Elhija et al. 2008a, Komsky et al. 2011). Moreover, Strand et al. (2005) suggested that endogenous IL18 derived from testicular cells may mitigate the harmful effects of infection/inflammation on spermatogenesis. Therefore, we speculate that testicular function during the recovery phase of endotoxemia in our mouse model was not regulated appropriately in the absence of IL18 and as a result germ cell apoptosis increased.
produced by the testicular cells (Strand et al. 2005, Abu Elhija et al. 2008b, Komsky et al. 2011). After infection, macrophages, dendritic cells and lymphocytes migrate to the testes (Jacob et al. 2011). The IL18 that promotes apoptosis during the acute phase of endotoxemia may be released from inflammatory cells that have migrated to the testes rather than by the testicular cells. We speculate that the role of IL18 in testicular cell apoptosis may shift from pro-apoptotic to anti-apoptotic, depending on the inflammatory stage-dependent on which cells secrete IL18.

The use of LPS-injected mice as a model of sepsis is one limitation of this study, as administration of LPS does not mimic all aspects of clinical sepsis. However, the model was highly reproducible. Therefore, even though our results may not completely explain testicular cell apoptosis during sepsis, they should be helpful in elucidating the underlying mechanisms. Another limitation was that we could not identify the contributions of individual cell types in our analyses of apoptotic pathways because whole testes were used for the expression assays. Future studies investigating the effects of IL18 on distinct testicular cell types, such as germ cells, Sertoli cells, and Leydig cells, during endotoxemia are planned.

In conclusion, the role of endogenous IL18 in testicular germ cell apoptosis may shift from pro-apoptotic to anti-apoptotic depending on the inflammatory stage by regulating expression of apoptotic mediators and controlling activation of caspase-3, caspase-8, and caspase-9. Taken together, these results suggest that IL18 may be a new therapeutic target for acute orchitis. The risk of azoosperma or oligosperma after orchitis may be mitigated by controlling IL18.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Acknowledgements

We thank Shannon Wyszomierki for editing the manuscript.

References

Abu Elhija M, Lunenfeld E & Huleihel M 2008a LPS increases the expression levels of IL-18, ICE and IL-18 R in mouse testes. American Journal of Reproductive Immunology 60 361–371. DOI:10.1111/j.1600-0897.2008.00636.x

Abu Elhija M, Lunenfeld E, Eldar-Geva T & Huleihel M 2008b Over-expression of IL-18, ICE and IL-18 R in testicular tissue from sexually immature as compared to mature mice. European Cytokine Network 19 15–24. DOI:10.1111/j.1600-0897.2008.00607.x

Anyama M, Kotani J & Usami M 2009 Gender difference in granulocyte dynamics and apoptosis and the role of IL-18 during endotoxin-induced systemic inflammation. Shock 32 401–409. DOI:10.1097/SHK.0b013e31819c358a

Berner C 2003 The Bcl-2 family protein: sensors and checkpoints for life-or-death decisions. Molecular Immunology 39 615–647. DOI:10.1016/S0161-5890(02)00252-3

Chandrasekar B, Vemula K, Surabhi RM, Li-Weber M, Owen-Schaub LB, Jensen LE & Mummidi S 2011 The IL18 that promotes apoptosis in heart tissue is secrete IL18. Circulation Research 109 336–342. DOI:10.1161/01.RES.0b013e3181d920f6

Jacob O, Guazzzone VA, Theas MS & Lustig L 2011 Testicular autoimmunity. Autoimmunity Reviews 10 201–204. DOI:10.1016/j.autrev.2010.09.026

www.reproduction-online.org

IL18 regulates testicular germ cell apoptosis

Abu Elhija M, Lunenfeld E, Eldar-Geva T & Huleihel M 2008b Over-expression of IL-18, ICE and IL-18 R in testicular tissue from sexually immature as compared to mature mice. European Cytokine Network 19 15–24. DOI:10.1111/j.1600-0897.2008.00607.x
T Inoue and others

O’Bryan MK, Schlatt S, Phillips DJ, de Kretser DM & Hedger MP 2000
Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology 141 238–246. (doi:10.1210/endo.141.1.238)

Silva E, Cavalcanti AB, Bugano DD, Janes JM, Vallet B, Beale R & Vincent JL 2012 Do established prognostic factors explain the different mortality rates in ICU septic patients around the world? Minerva Anestesiologica 78 1215–1225.

Xiong Q, Xie P, Li H, Hao L, Li G, Qiu T & Liu Y 2009 Involvement of Fas/Fasl system in apoptotic signaling in testicular germ cells of male Wistar rats injected i.v. with microcystins. Toxicon 54 1–7. (doi:10.1016/j.toxicon.2009.01.035)

Received 18 August 2014
First decision 29 September 2014
Revised manuscript received 23 April 2015
Accepted 1 May 2015