Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in merino sheep

Sheena L P Regan, James R McFarlane¹, Tim O’Shea¹, Nicholas Andronicos¹, Frank Arfuso, Arun Dharmarajan and Ghanim Almahbobi

School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia and ¹Centre of Bioactive Discovery in Health and Ageing, University of New England, Armidale, New South Wales, Australia

Correspondence should be addressed to S L P Regan; Email: sheenaregan@aapt.net.au

Abstract

The aim of the present study was to determine the direct cause of the mutation-induced, increased ovulation rate in Booroola Merino (BB) sheep. Granulosa cells were removed from antral follicles before ovulation and post-ovulation from BB (n = 5) and WT (n = 12) Merino ewes. Direct immunofluorescence measurement of mature cell surface receptors using flow cytometry demonstrated a significant up-regulation of FSH receptor (FSHR), transforming growth factor beta type 1, bone morphogenetic protein receptor (BMPR1B), and LH receptor (LHR) in BB sheep. The increased density of FSHR and LHR provide novel evidence of a mechanism for increasing the number of follicles that are recruited during dominant follicle selection. The compounding increase in receptors with increasing follicle size maintained the multiple follicles and reduced the apoptosis, which contributed to a high ovulation rate in BB sheep. In addition, we report a mutation-independent mechanism of down-regulation to reduce receptor density of the leading dominant follicle in sheep. The suppression of receptor density coincides with the cessation of mitogenic growth and steroidogenic differentiation as part of the luteinization of the follicle. The BB mutation-induced attenuation of BMPR1B signaling led to an increased density of the FSHR and LHR and a concurrent reduction in apoptosis to increase the ovulation rate. The role of BMPs in receptor modulation is implicated in the development of multiple ovulations.

Introduction

Ovarian follicular maturation relies on the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to regulate the cyclic recruitment of dominant follicle selection, which governs the ovulation rate in animals and in humans (McNatty & Henderson 1987, Ginther et al. 2005, Mihm & Evans 2008). It is commonly believed that intra-ovarian growth factors such as the transforming growth factor beta (TGFβ) family of bone morphogenetic proteins (BMPs) influences the steroidogenic activity of LH and FSH directly, and it does so indirectly downstream of the receptor (Otsuka 2010). The cellular mechanism responsible for the selection of the dominant follicle cohort remains elusive (Westergaard et al. 1986, Andersen et al. 1993, Ginther et al. 2005, Knight & Glistier 2006, Mihm & Evans 2008).

Previous studies have delineated the initial role of FSH as a stimulatory growth factor for the proliferation of follicular cells and the oocyte, which culminates in a mid-follicular peak of FSH (Thomas et al. 2005, Mihm & Evans 2008). A sharp decline in FSH causes the follicles that are still dependent on FSH to succumb to atresia, which results in a dominant follicle cohort. The follicles survive because they are mature enough to be FSH-independent, or they become more responsive to FSH because of the greater concentration of FSH receptors (FSHRs). The manipulation of FSH through the use of exogenous FSH forms the basis of artificial reproduction treatment (ART) in humans. By artificially increasing FSH in ART, the FSH concentration remains high and thereby supports the smaller FSH-dependent follicles; this results in multiple pre-ovulatory follicles for collection and fertilization. Treatment with high doses of FSH is a systemic whole-body approach to artificial stimulation, but it has associated risks, such as hyper-stimulation, hormonal disruption, and discomfort. An in-depth understanding of follicular regulation might lead to improved targeted approaches to infertility treatment.

We have known for some time that the Booroola Merino (BB) genotype, with its naturally occurring point
mutation of the TGFβ superfamily of cytokines type 1 receptor, BMPR1B, has an increased ovulation rate (Mulsant et al. 2001). The cellular mechanism responsible for this increase, however, has not been revealed (Mulsant et al. 2001, Souza et al. 2001, Wilson et al. 2001, Campbell et al. 2003, Crawford et al. 2011). Evidence from our previous findings in BB sheep has shown that the attenuation of BMP signaling produces elevated FSH levels, and the initial number of primordial follicles are reduced; yet the rate of recruitment of primary follicles is substantially lower and results in a greater retention of the ovarian reserve in the mature ewe (Xia et al. 2003, Ruoss et al. 2009). Given that FSHRs are not expressed in primordial follicles, it is unlikely that FSH plays a role in this initial recruitment (Ruoss et al. 2009). The BMP ligands have been implicated in the stimulatory regulation of primordial to primary follicle recruitment, particularly BMP4 and BMP7, which provides some explanation for the reduction reported (Ruoss et al. 2009).

The mutation in BMPR1B in BB sheep provides a unique opportunity for studying the role of BMPs in ovarian function, including follicle development, growth, ovulation, and the clinical treatment of sub-fertility in humans. The response of both the ovary and the pituitary to gonadotropic stimulation appears to be responsible for the increased ovulation rate of the BB mutation (Fry et al. 1988, Hudson et al. 1999, Campbell et al. 2003, Hampton et al. 2004). Our previous results have led us to initiate further research to delineate the direct cellular mechanism responsible for the increased response of the ovary to gonadotropins, which leads to an increased ovulation rate, and to provide further insight into the interplay between the intra-ovarian BMP ligands and the regulatory FSH and LH in terminal end folliculogenesis.

We hypothesized that if there is reduced initial primary follicle recruitment, greater survival of antral follicles would be required to deliver a greater ovulation rate. Direct measurement by flow cytometry of the protein expression of FSH, LH, and BMP mature membrane-bound receptors on granulosa cells as well as apoptosis and necrosis was undertaken to fully delineate the natural point mutation effect of the BB responsible for the increased ovulation rate. We therefore hypothesized that the attenuation of the BMP signal would provide a more direct and accurate intra-ovarian method for increasing the ovulation rate in ART.

Materials and methods

Animals, ovaries, and follicles

A total of 17 Merino sheep with an average age of 4 years 9 months ± 2 months were used (Tables 1 and 2). The animals were housed in open paddocks at the University of New England, NSW, Australia, in accordance with the NH & MRC Code of Practice for the Care and Use of Animals for Experimental Purposes. All of the experiments were approved by the University of New England Animal Ethics Committee. Five ewes were genetically confirmed to be homozygous Australian BB strain; the flock average ovulation rate was four to six during peak breeding season (Cummins et al. 1983), and the average ovulation rate was three, based on the corpus luteum (CL) formation in two BB sheep at the time of slaughter, because of mistimed ovulation. Subsequently, the remaining follicles after ovulation were classified as luteinized (Table 2). The CL formed in the post-ovulation groups were included in the total number of follicles recruited per genotype, and they were added to the largest follicle size for that genotype (Table 3). The estrus cycles of these animals were synchronized using flugesterone acetate sponges (Bio-niche Animal Health, Armidale, NSW, Australia). The sponges were removed from the animals 14 days after insertion, and the animals received an i.m. injection of 1000 IU of pregnant mare’s serum gonadotropin. The animals were euthanized approximately 36 h after sponge removal, and the ovaries were collected (Evans 2003).

Collection of granulosa cells

Follicle size was established by preparing standard blank volumes in 5 µl increments from 5 to 160 µl; these were placed in identical PCR tubes and were visually compared to the follicular fluid aspirated from each follicle based on previously published techniques (Jakimiuk et al. 2002, Andersen et al. 2010). The blank values were used as a reference to estimate the diameter of the follicle, and they were cross-referenced

Table 1 Number of individual follicles analyzed before ovulation.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Sheep before ovulation</th>
<th>Follicle</th>
<th>Dominant follicles</th>
<th>Small (1.0–2.1 mm)</th>
<th>Medium (2.2–2.9 mm)</th>
<th>Large (3.0–4.5 mm)</th>
<th>Extra large (4.6–7.0 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>8</td>
<td>64</td>
<td>8</td>
<td>25</td>
<td>28</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>BB</td>
<td>3</td>
<td>20</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2 Number of follicles analyzed post-ovulation.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Sheep post-ovulation</th>
<th>Luteinized follicles</th>
<th>CL per sheep</th>
<th>Small (1.0–2.1 mm)</th>
<th>Medium (2.2–2.9 mm)</th>
<th>Large (3.0–4.5 mm)</th>
<th>Extra large (4.6–7.0 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>4</td>
<td>35</td>
<td>1.5</td>
<td>13</td>
<td>14</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>BB</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

CL, corpus luteum.
with a direct measurement of the diameter of the follicle using a fine ruler gauge before aspiration. The follicular fluid was aspirated from all of the visible follicles using a 25-gauge needle, and it was then placed into PCR tubes. All of the visible surface follicles were harvested, and very small follicles (1–1.8 mm) of the same size were pooled in groups of three or four, whereas all of the medium, large, and extra-large follicles were analyzed individually (Tables 1 and 2).

On a follicle-by-follicle basis, an *in situ* incision was made at the exposed surface of the follicle with a scalpel; granulosa cells were gently scraped with the blunt side of the scalpel, flushed repeatedly with PBS, and resuspended in PBS. The sheets of granulosa cells were dispersed by mechanical pipetting and centrifuged at an optimized lower speed of 300 g for 5 min to protect the cells from method-induced apoptosis and to yield an uncontaminated population of granulosa cells. Collection without excision of the whole follicle prevents contamination with the theca or stroma cells and limits the amount of contamination with blood cells (Fig. 1).

Based on the hierarchical down-regulation previously reported, the sheep follicles were divided into subordinate, dominant, and luteinized post-ovulation follicles (Driancourt et al. 1985, Evans 2003). The largest follicle collected from each sheep before ovulation was classified as the dominant follicle, and the remaining follicles were classified as subordinated follicles (Gasperin et al. 2014).

Receptors

Aliquots of suspended granulosa cells (1 × 10⁶ cells in 100 μl) were immunolabeled using a double-indirect method as previously described (Cai et al. 2007, Gao et al. 2007, Abir et al. 2008). The cells were incubated separately with an optimized concentration of 4 μg/ml affinity purified polyclonal antibody to BMPR1B, FSHR, or LH receptor (LHR) for 25 min at 5°C (Millennium Science, Surrey Hills, VIC, Australia). Previously, we established the specificity in sheep by immunofluorescence detection and 3D image analysis (Al-Samerria & Almahbobi 2014). The antibodies were polyclonal goat anti-BMPR1B (sc-5679), goat anti-FSHR (sc-7798), and goat anti-LHR (sc-26341) (all from Santa Cruz Biotechnology), anti-goat second antibody conjugated with Alexa 488 (Al-Samerria & Almahbobi 2014). In addition, the antibodies have been previously reported in human studies (Hay et al. 2004, Cai et al. 2007, Gao et al. 2007, Pidoux et al. 2007, Abir et al. 2008) and using flow cytometry (Gao et al. 2007). Immunolocalization of LHR in human placental trophoblasts demonstrated positive strong staining with human chorionic gonadotropin, and no staining was observed in nonspecific isotypic negative controls (Pidoux et al. 2007). In the same study, RT-PCR products were sequenced and confirmed LHR fragments (Pidoux et al. 2007). BMPR1B, FSHR, and LHR were raised against a sequence between amino acids of human origin, with 88, 80, and 93% sequence identity to the sheep protein respectively. Donkey anti-goat IgG conjugated with Alexa 488 (Life Technologies Australia), with an excitation wave length of 495 nm and an emission wave length of 519 nm, was applied at an optimized concentration of 4 μg/ml for 25 min and was repeat washed in PBS.

Table 3 Recruitment and loss of follicles during folliculogenesis in WT and BB merino sheep.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total sheep</th>
<th>Total follicles</th>
<th>Total per sheep</th>
<th>Small (1.0–2.1 mm)</th>
<th>Medium (2.2–2.9 mm)</th>
<th>Large (3.0–4.5 mm)</th>
<th>Extra large (4.6–7.0 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small follicles</td>
<td>Medium follicles</td>
<td>Large follicles</td>
<td>Extra large follicles</td>
</tr>
<tr>
<td></td>
<td>pooled</td>
<td>collected</td>
<td>collected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.8%)</td>
<td>(20%)</td>
<td>(57%)</td>
<td>(53%)</td>
<td>(22%)</td>
<td>(14%)</td>
<td>(9.3%)</td>
</tr>
<tr>
<td>WT</td>
<td>12</td>
<td>130</td>
<td>12.5</td>
<td>42</td>
<td>80</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>5</td>
<td>49</td>
<td>9.8</td>
<td>12</td>
<td>28</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

Significantly greater number of ovulating follicles, *P*<0.011.

Including corpus luteum.
et al. (2015). The predetermined gates were established and set for all of the samples. The positive quantitative signal (mean fluorescent intensity (MFI)) for the average granulosa cell receptor density (letter ‘b’) is indicated in Fig. 1B.

Apoptosis

For the detection of apoptosis and necrosis, the assessment was applied on the same aliquots that were used for the immunolabeling of FSHR with a double-direct method, as previously described (Riccardi & Nicoletti 2006, Demchenko 2013). Briefly, after washing the cells with the prescribed annexin V phospholipid-binding, calcium-dependent buffer, a MAB to annexin V conjugated to the fluorochrome phycoerythrin (PE) and the nucleic acid dye 7-amino-actinomycin (7-AAD) (BD Biosciences, Perth, WA, Australia) were added for a final concentration of 5 µl/1 x 10⁶ cells. The solution was incubated in the dark for 15 min at room temperature as previously reported (Schmid et al. 1992, Vermes et al. 1995) and validated against propidium iodide. A combination of unstained cells, cells stained with only PE annexin V, and cells only stained with 7-AAD were used as positive and negative controls and to establish gating limits.

PE annexin V and 7-AAD were graphed into quadrants (Fig. 2). Quadrant 1 (Q1) events were positive for PE annexin V and represent a very early stage of apoptotic granulosa cells. Q2 was positive for both PE annexin V and 7-AAD and therefore represents a later stage of apoptosis and necrosis. Cell membrane integrity breakdown in Q2 allowed 7-AAD to penetrate, whereas in Q4, unchanged cells showed no externalization of the phospholipid, were receptive to the annexin stain, and were negative to 7-AAD penetration (Fig. 2). All of the graphs for apoptosis and necrosis were based on Q2, which indicates a combination of apoptosis and necrosis. Q1 was not reliable because the positive stain for early apoptosis may have been induced during cell preparation and therefore would not be a true indication of cell health status (Amsterdam et al. 2003, Demchenko 2013).

Fluorescent microscopy

Resuspended 10 µl aliquots of FSHR, BMPR1B, and LHR immunolabeled live granulosa cells were placed on slides and visualized in order to characterize and confirm receptor expression (Fig. 3) using an Olympus DP 70 camera fitted to an Olympus BX-51 upright fluorescence microscope with a 40 x UPlan N 0.4 NA objective (Olympus Imaging Australia). Pelleted aliquots of PE annexin V immunolabeled samples were similarly visualized for apoptosis. Fluorescence microscopy revealed a positive staining of the cell membrane-bound FSHR, BMPR1B, and LHR (Fig. 3E, F and G) as an intermittent, bright, ring-like pattern around the cells. Positive staining for early apoptosis was revealed by the labeling of annexin V (Fig. 3H). All of the control samples showed negative staining (data not shown).

Statistical analysis

MFI was obtained using an average of 4000 granulosa cells/follicle for the direct measurement of mature functional receptor protein density. All of the data were subject to statistical verification by one-way ANOVA with an uncorrected Fisher’s least significant difference (LSD) for follicular size and genotype using GraphPad Prism 6 (GraphPad Software, Inc., San Diego, CA, USA). Values in the graphs are presented as

Figure 2 Apoptosis and necrosis quantification by immunolabeling and flow cytometry. Flow cytometric analysis of granulosa cells stained with fluorescent antibodies for annexin V and 7-AAD to depict the viability of the cells. Quadrant 1 (Q1): positive for annexin V and negative for 7-AAD, which indicates only early apoptosis with an intact cell membrane. Q2: positive for annexin V and 7-AAD, which indicates apoptosis and necrosis. Q4: negative for annexin V and 7-AAD, which indicates an intact cell membrane with no externalization of the phospholipid phosphatidylserine and no apoptosis and necrosis. The frequency of granulosa cell apoptosis or unspecified cell death was graphed (Q2).

Flow cytometry

The samples were prepared as a single-cell suspension, stained for flow cytometric analysis, and immediately processed using an LSRII flow cytometer (BD, North Ryde, NSW, Australia). The data were analyzed using FlowJo Software (Tree Star, Inc., Ashland, OR, USA). Selective gating of the whole sample in order to identify a pure granulosa cell population with an average of 4000 granulosa was achieved by graphing forward scatter (increasing size) on the y-axis and fluorescence intensity (Alexa 488) on the x-axis. A large gating box excluded small cellular fragments along the top border (letter ‘d’) (Fig.1A and B). The resulting population was graphed on to a histogram for the number of granulosa cells and the density of receptors (letters ‘a and b’ in Fig. 1A and B). Negative control samples were assessed either as unstained samples or by the substitution of primary antibody with pre-immune goat IgG (Millennium Science) at the same concentration as the primary antibody. The fluorescence intensity threshold gate at 10³ (solid line) excludes emitted autofluorescence number 4 and nonspecific binding numbers 1, 3, and 4 (letter ‘a’ combined, Fig. 1B). The resulting population contained a uniform granulosa cell population that revealed positive staining for the FSHR, which is unique to granulosa cells (letter ‘b’ in Fig. 1A and B; Gao et al. 2007, Stilley et al. 2014). The predetermined gates were established and set for all of the samples. The positive quantitative signal (mean fluorescent intensity (MFI)) for the average granulosa cell receptor density (letter ‘b’) is indicated in Fig. 1B.

Figure 3 Immunolabeling of FSHR with a double-direct method, as previously described (Schmid et al. 1992, Vermes et al. 1995) and validated against propidium iodide. A combination of unstained cells, cells stained with only PE annexin V, and cells only stained with 7-AAD were used as positive and negative controls and to establish gating limits. Values in the graphs are presented as
means ± S.E.M., and differences were considered significant if *$P < 0.05$, **$P < 0.01$, ***$P < 0.005$, and ****$P < 0.001$. The letter ‘a’ signifies a statistical difference from the matching letter, and an attached asterisk (a*) indicates the significance level for the size follicle. The results from an analysis of a contingency table by a two-tailed Fisher’s exact test are shown in Table 3 and Fig. 4.

Results

The largest follicle in BB ovaries was 4.5 mm, whereas the largest follicle in the WT animals was 7 mm (Table 3). The percentage of small follicles, including the pooled follicles, was similar between the genotypes (53% WT and 57% BB). The medium WT follicles collected contributed to 22% of the adjusted total, whereas, the medium BB follicles were significantly less, at 14%. The large follicle numbers were reversed, with BB sheep having significantly more large ovulatory follicles as compared to the WT extra-large ovulatory follicles, 28.6 and 9.3% respectively ($P<0.011$, Table 3). The absolute relative frequency derived from the total number of follicles collected was compared to the number of ovulatory-size follicles (Fig. 4). The BB sheep did not produce any extra-large follicles, and the CL formed was included in the largest follicle group for the genotype.

Flow cytometry quantification of BMPR1B, LHR, and FSHR

The genotype effect on the density of BMPR1B expression in granulosa cells from small, medium, and large subordinate follicles of BB sheep was significantly higher than that in WT controls ($P<0.05$, $P<0.01$, and $P<0.005$ respectively, Fig. 5B).

Similarly, the density of FSHR was significantly increased in the BB sheep from the small antral follicle to the large follicle ($P<0.01$, $P<0.01$, and $P<0.005$ respectively), as shown in Fig. 5A, whereas the LHR

Figure 3 Localization of granulosa cell membrane surface receptors. Characterization of the presence of the receptors at the cell surface and early apoptosis. (A) Living un-luteinized granulosa cell (center), red blood cell (top), and white blood cell (bottom). (E) Polyclonal goat antibody FSHR anti-goat donkey IgG conjugated with Alexa 488 demonstrating specific fluorescence for cell membrane-expressed FSHR. (B and F) A granulosa cell labeled with anti-BMPR1B. (C and G) Labeled with anti-LHR. All showing cellular membrane receptor expression viewed under a fluorescence microscope and light microscope; original magnification. (D and H) Granulosa cells labeled with annexin V conjugated to PE showing cellular membrane phospholipid externalization, which is indicative of early apoptosis. Viewed under a fluorescence microscope; original magnification. Scale bar = 7.5 μm.

Figure 4 Relative frequency of ovulatory follicles for each genotype. The total number of follicles (clear section of bar) from 1 mm to the terminal end of folliculogenesis and ovulation, including corpora luteum (CL), are presented for the BB and WT sheep. The ovulatory follicles (black section of bar), which are the largest follicles for the genotype, including CL, provide evidence of the relative survival of recruited follicles for the WT and BB genotypes. The letter ‘a’ signifies a statistical difference in the retention of ovulatory follicles during folliculogenesis. Analysis of the contingency table using a two-tailed Fisher’s exact test was performed with a P value of 0.011.
density was greater only in the largest subordinate follicle \((P<0.005, \text{Fig. 5C})\).

The WT sheep had elevated levels of FSHR in the largest of the subordinate follicles \((P<0.01)\), followed by down-regulation in the leading dominant follicles \((P<0.05, \text{Fig. 6A})\). The granulosa–luteal cells revealed that the FSHR level after ovulation was significantly higher than the dominant pre-ovulatory follicle was, and this finding was maintained across the follicle sizes \((P<0.05, \text{Fig. 6A})\).

In the WT sheep, BMPR1B density was significantly decreased in a pattern of biphasic down-regulation, as was seen with the 1.8 mm subordinate follicle and the 4.4–7 mm dominant follicle \((P<0.05 \text{ and } P<0.01, \text{Fig. 6B})\).

The granulosa–luteal cells from the sheep ovaries that had ovulated and contained one or more CL revealed that the BMPR1B level after ovulation was significantly higher than the dominant pre-ovulatory follicles, and this finding was maintained across the follicle sizes \((P<0.05, \text{Fig. 6B})\).

LHR density was greater in the WT sheep, at 4.2 mm, and it was down-regulated in the 4.6 mm subordinate follicle and the 4.4 mm dominant follicles \((P<0.05)\). The largest of the dominant follicles (5–7 mm) had similar levels of LHR density to those of the granulosa–luteal cells, whereas LHR expression increased and was then down-regulated in the smaller dominant follicles \((P<0.05, \text{Fig. 6C})\).

FSHR demonstrated a trend of increasing FSHR followed by a significant down-regulation of receptors in the dominant follicle and a significant up-regulation in the granulosa–luteal cells \((P<0.05, \text{Fig. 7A})\).

There was a significant steady increase from 1 mm to 3–3.2 mm \((P<0.01)\), followed by the down-regulation of BMPR1B in the granulosa–luteal cells.

LHR density was significantly increased from 1 mm to 3–3.2 mm \((P<0.01)\), followed by the down-regulation...
of LHR density in the dominant pre-ovulatory follicles ($P<0.01$, Fig. 7C). The granulosa–luteal cells demonstrated no significant difference from the down-regulated follicles of the dominant pre-ovulatory follicles in the BB sheep (Fig. 7C).

Flow cytometry quantification of apoptosis

We report that the apoptosis and necrosis levels were significantly elevated in the largest of the subordinate follicles of the WT sheep ($P<0.01$, Fig. 8). The BB genotype did not demonstrate elevated levels in the largest of the subordinate follicles. The WT dominant follicle reported greater apoptosis and necrosis levels as compared to the BB dominant follicle of 3 mm (b, $P<0.05$, Fig. 9). An unusually large BB follicle was recorded, and the level of its apoptosis and necrosis was similar to the WT largest subordinate follicle of 40%. The level of apoptosis and necrosis in the BB 1 mm follicles was greater post-ovulation as compared to the WT subordinate follicles (c, $p<0.05$) but not as compared to the WT post-ovulation follicles (Fig. 9).

Discussion

The BMP signaling axis has been strongly associated with the gonadotropins FSH and LH in the pituitary–ovarian axis of control in the regulation of follicle recruitment, growth, and ovulation rate (Otsuka et al. 2001a, Miyoshi et al. 2006, Takeda et al. 2012). The BMP ligands 4, 6, 7, and 15 have been shown to have a stage-dependent high affinity to bind to the TGFb type 1 receptor BMPR1B (Mazerbourg & Hsueh 2006). The BB mutation that impacts the BMPR1B has been studied extensively, but the findings have mainly focused on the indirect heightened physiological responsiveness of BB sheep as compared to WT controls (McNatty et al. 1985, Campbell et al. 2006).

In the present study’s novel approach, the mature cell surface proteins for FSHR, LHR, and BMPR1B were measured by flow cytometric analysis. Immunolabeled granulosa cells were collected from individual antral follicles and were harvested in situ to reduce contamination with other ovarian or blood cells. The receptor density was quantified by the average fluorescence intensity of ~4000 isolated granulosa cells/follicle (Fig. 1). The selected antibodies were previously validated by immunolocalization in sheep by our research group (Al-Samerria & Almahbobi 2014). Positive and negative signals were used to subtract autofluorescence and nonspecific binding, whereas the uniqueness of the FSHR on granulosa cells and the relative sizes of the other cells positively identified the population of granulosa cells (Fig. 1).

The receptor density of BMPR1B, FSHR, and LHR was significantly increased in the granulosa cells of developing antral follicles of BB sheep (five) as compared to the WT sheep (12) (Fig. 5). Furthermore, the leading dominant follicle from both genotypes had reduced receptor density as compared to the subordinate follicles, which indicates a vital prerequisite down-regulation before ovulation (Figs 6 and 7). A direct in vivo quantitative analysis between the genotype for BMPR1B and LHR expression has been
previously reported, with the acknowledged limitations of follicle class and sensitivity of the technique (McNatty et al. 1986a, Mulsant et al. 2001). Previously, qualitative data reported that the level of BMPR1B mRNA in follicles from 1 to 3 mm antral follicles indicated that BMPR1B mRNA was not reduced in BB sheep (Mulsant et al. 2001). Recently, quantitative findings have shown the level of BMPR1B mRNA in 1–3 mm follicles to be equivalent in BB sheep (Estienne et al. 2015), but this is not consistent with the present findings. In the Estienne et al. (2015) study, the follicles were divided into small (1–3 mm) and large (3–5 mm) groups, which prevented an accurate comparison of the genotype effect because of the large range of development within the 1–3 mm range (McNatty et al. 1985) and because of the down-regulation of the leading dominant follicle in the 3–5 mm range (Gasperin et al. 2014). It has been reported previously (McNatty et al. 1986b) that BB follicles reach steroidogenic capacity at 2–2.5 mm as compared to the WT follicles at 4–4.5 mm. The pooling of follicles would mask the cellular changes that take place during the follicular development in this range. In addition, in the present study, translated mature FSHR, BMPR1B, and LHR proteins were measured as opposed to measuring the mRNA for the receptor. Differences may therefore have resulted, seeing as the mRNA measurement would also include immature and mature proteins that are potentially not expressed (Ascoli et al. 2002).

Pattern of biphasic down-regulation in WT sheep

An unexpected finding of the present study was the reduction in the density of BMPR1B in the WT follicles at two stages of folliculogenesis (Fig. 6B). The density of BMPR1B was elevated at the time of divergence (1–1.7 mm) and then down-regulated after dominant follicle selection (1.8 mm), which led to a steady increase in density to a peak in the largest of the subordinate follicles (3–4.6 mm) (Fig. 6B). In both the BB sheep and the WT sheep, the leading dominant follicle (4.4–7 mm) had a significantly reduced density of receptors, which demonstrated the presence of a hierarchical organization of the follicles that has been reported to be present in sheep (Figs 6Ba and 7B) (Evans et al. 2002, Gasperin et al. 2014).

Chen et al. (2009) and Estienne et al. (2015) have also reported that the WT granulosa cells have increasing BMPR1B with increased follicle size, which is consistent with the present finding of an increased density of BMPR1B in subordinate follicles from 1.8 to 4.6 mm, which was the largest size of the subordinate follicles (P<0.010, Fig. 6B).

In the present study, the high BMPR1B in the BB follicles was not present in the 1–1.7 mm follicle, possibly because of the earlier onset of development, which is typical of the BB genotype (McNatty et al. 1985). The high level of receptor density may have occurred at a smaller BB follicle size of <1 mm. In the BB, however, the down-regulation of the dominant follicle was comparable to
the WT, albeit at a reduced size (Fig. 7). It is therefore apparent that the down-regulation mechanism is independent of the mutation, seeing as it occurred in both genotypes. The BMPs 4, 6, 7, and 15 signal via the BMPR1B, and they have been previously shown to play a regulatory role in the suppression of progesterone production before ovulation (Ryan et al. 2008, Takeda et al. 2012). The up-regulation of ERK1/2 signaling (Fan et al. 2009) occurs coincident with the down-regulation of BMPR1B activity, which suppresses progesterone synthesis (Miyoshi et al. 2006, Feary et al. 2007). The failure to down-regulate BMPR1B activity would therefore impede the process of luteinization and prevent maturation of the follicle (Gordon et al. 2008).

Gonadotropin regulation and FSHR signaling

FSHR and LHR were found to be greater in follicles from another prolific breed (Romanov) as compared to Île-de-France ewes and in the Chinese prolific Small Tail Han sheep with a mutation of the BMPR1B gene (Abdennebi et al. 1999, Jia et al. 2007). The quantitative data from the present research confirm and expand these observations, and they propose that the mutation-independent down-regulation mechanism is independent of the mutation, seeing as it occurred in both genotypes. The BMPs 4, 6, 7, and 15 signal via the BMPR1B, and they have been previously shown to play a regulatory role in the suppression of progesterone production before ovulation (Ryan et al. 2008, Takeda et al. 2012). The up-regulation of ERK1/2 signaling (Fan et al. 2009) occurs coincident with the down-regulation of BMPR1B activity, which suppresses progesterone synthesis (Miyoshi et al. 2006, Feary et al. 2007). The failure to down-regulate BMPR1B activity would therefore impede the process of luteinization and prevent maturation of the follicle (Gordon et al. 2008).

BMP6 was shown to increase LHR mRNA, which indicates a direct role for BMPs in the regulation of receptor density (Ogura Nose et al. 2012, Zhu et al. 2013). Ovine granulosa cells cultured with both FSH and estrogen increased the expression of BMPR1B (Chen et al. 2009), which supports the present findings of increased BMPR1B density in the growing subordinate follicles and the reduced BMPR1B activity observed in the down-regulation of FSHR and BMPR1B in preparation for ovulation of the dominant follicle (Chen et al. 2009). In another study, FSH and BMP ligand-induced production of estrogen was significantly increased in the BB as compared to the WT, which is also supportive of the present findings of an increased density of FSHR and LHR in the BB (Fig. 5; Campbell et al. 2006).

In support of the dynamic role of BMPs, it has also been shown that BMP6 reduces post-dominant follicle selection in the rat, and this selection is reduced completely in the ovulating dominant follicle (Erickson & Shimasaki 2003). Similarly, BMP15 and BMPR1B activity in the oocyte has been shown to be down-regulated before ovulation in sheep (Feary et al. 2007). Furthermore, in cultured rat granulosa cells, BMP15 reduced the expression of FSHR mRNA (Otsuka et al. 2001a). It is therefore possible that the attenuating mutation of the BMPR1B gene may reduce the suppression and lead to the up-regulation of FSHR in the BB (Otsuka et al. 2001b).

Figure 8 WT sheep compared to BB genotype: % apoptosis and necrosis of granulosa cells from subordinate follicles. All of the follicles are subordinate follicles (i.e., the leading dominant follicle based on size was not included because of the mutation-independent down-regulation). Statistical verification using one-way ANOVA with uncorrected Fisher’s Least Significant Different (LSD). Values are presented as means ± S.E.M. *P<0.05 and **P<0.01. The letter ‘a’ signifies a statistical difference from the matching letter, and an attached asterisk (eg. a*) indicates the significance level for the size follicle.

Figure 9 (A) WT sheep comparison of % apoptosis and necrosis in granulosa cells from dominant as compared to subordinate and luteal follicles. Apoptosis and necrosis of subordinate (pre-ovulation) granulosa cells (clear), the (pre-ovulation) dominant follicle (checked), and (post-ovulation) granulosa–luteal cells (grey) of different follicle size classes for the WT genotype. (B) BB sheep comparison of apoptosis and necrosis in granulosa cells from dominant as compared to subordinate follicles and granulosa–luteal cells. Apoptosis and necrosis of subordinate (pre-ovulation) granulosa cells (clear), the (pre-ovulation) dominant follicle (checked), and post-ovulation granulosa–luteal cells (grey) of different follicle size classes for the BB genotype. Statistical verification using one-way ANOVA with uncorrected Fisher’s LSD. Values are presented as means ± S.E.M. *P<0.05, **P<0.01. The letter such as ‘a’ signifies a statistical difference from the matching letter, and an attached asterisk (eg. a*) indicates the significance level for the size follicle. The number of follicles is indicated for each follicle size class.
Down-regulation in peri-luteal and CL

In human subjects, BMP2, 6, 7, and 15 were all shown to increase FSHR mRNA (Ogura Nose et al. 2012). The granulosa cells, however, were not cultured in serum-free culture and therefore spontaneously luteinized. This was acknowledged by the authors of the paper, insofar as they suggested that the cells were not representative of granulosa cells but were rather granulosa–luteal cells. A reduction in BMP inhibition therefore seems to be an initiating change toward luteinization. The brief stage-specific, peri-ovulatory decline in estrogen production coincides with the cessation of mitogenic growth and steroidogenic differentiation (Komar et al. 2001). In the present study, the follicles that were not destined to ovulate continued to express a high density of receptors across all sizes in the WT, whereas they were inconsistent in the BB (Figs 6 and 7). The possible mechanism involved may be related to the ability of the BB to prepare multiple follicles for ovulation.

Steroidogenic differentiation and LHR earlier acquisition

In the past, it has been recognized that the increase in the ovulation rate in BB sheep is a result of the follicles being more sensitive to FSH at an earlier follicle size (McNatty et al. 1985, Baird & Campbell 1998). The previously reported increased sensitivity to both FSH and LH can be attributed to the novel findings in the present study of an increased density of the mature FSHR and LHR at the cell surface, which has not previously been reported (Fig. 5A and C). In particular, the cAMP response to FSH and LH stimulation was previously shown to increase at >3–4 and >2–3 mm respectively in the BB, which is consistent with the present findings (Fig. 5A and C; Henderson et al. 1985).

The up-regulation of LHR provides expanded evidence of an earlier acquisition of receptors with greater expression density at an earlier follicle size of 3 mm in the BB as compared to 4.2 mm in the WT genotype (Figs 6C and 7C). Furthermore, we demonstrated that LHRs are present in granulosa cells from antral follicles. This was previously reported to be first expressed in secondary follicles in humans, but it was not observed in the rodent until late antral stage (Camp et al. 1991, Yung et al. 2014).

Consistent with other authors, LHR density in the present study was accelerated in the pre-ovulatory follicle in the WT and the BB, and it was followed by a significant reduction in the leading dominant follicle of each animal (Figs 6C and 7C; LaPolt et al. 1992, Jeppesen et al. 2012, Ophir et al. 2014).

The ovine granulosa cells in the present study would have been exposed to the LH surge that initiates cytoskeletal reorganization, the cessation of proliferation, and the alteration of steroidogenic capacity. The process of luteinization appears to rely on LHR down-regulation of the leading dominant follicles (Fig. 7B; Izadyar et al. 1998, Fan et al. 2009).

Ovulation rate and apoptosis

There are several ways in which a high prolificacy breed increases ovulation rate, and it appears that BB follicles may mature early because of an increased receptor density and a reduction in atretic follicles or apoptosis, as was reported in the present study and previous studies (Driancourt et al. 1985, McNatty et al. 1986b, Estienne et al. 2015). The increased FSHR and the ability to wait up to 2 days allowed the subordinate follicles to continue to grow, which resulted in the threefold increase in the terminal end follicles that was reported in the present study (Fig. 4) and by others (Driancourt et al. 1985, McNatty et al. 1986b). It was indeed evident that post-ovulation BB sheep produced three CL and that the very large BB pre-ovulatory follicle of 4.5 mm had not ovulated, possibly because the next subordinate follicle was only 2.4 mm, which thereby delayed ovulation (Fig. 9; Driancourt et al. 1985, McNatty et al. 1986b). The prolonged delay may have initiated the exceptionally high level of apoptosis and necrosis that was observed, seeing as the size of the follicle was not typical for the genotype.

Our finding of significantly less apoptosis and necrosis in the pre-ovulatory follicles of the BB is consistent with the number of follicles that were recorded as being at the ovulatory size in the BB, which was three times the amount that remained in the WT (Table 3; Figs 8 and 9). The high level of apoptosis and necrosis in the largest of the subordinate follicles in the WT is supportive of the increased rate of follicle loss and results in fewer ovulations than the BB (Fig. 4). Moreover, the WT dominant and luteal follicles continued to have high levels of cell death, whereas in the BB, the levels were generally low pre- and post-ovulation (Fig. 9). It is important to note that in the present study, we did not exclude any follicles on the basis of estrogen production or morphological indications of programmed DNA fragmentation, because previous findings demonstrated that the LHR binding assays revealed no differences between the follicles that were determined to be atretic and those that were deemed non-atretic in the same size class (McNatty et al. 1986a). Furthermore, it has also been reported more recently that granulosa cell apoptosis (which is indicated by DNA fragmentation and cytoplasmic blebbing) can be present with functional steroidogenic mitochondria (Amsterdam et al. 2003). It is, however, acknowledged that the levels of follicle apoptosis and cell DNA fragmentation are lower in antral follicles with greater estrogen production than androgen production (Yuan & Giudice 1997). The reduction in BB apoptosis may be a result of the maintained elevated levels of FSH after divergence as compared to the declining FSH in the WT (Baird 1987) or...
a result of the increased FSHR density being more responsive to the available FSH levels.

In conclusion, these results provide further insight into the mechanism that governs the interaction between gonadotropins and intra-ovarian BMPs in the regulation of ovulation rate. These results are significant and central to the development of a new clinical approach to improve human female fertility. Rather than focusing on increasing a patient’s response to exogenous gonadotropins, in order to increase the ovulation rate, a targeted approach could be incorporated by manipulating the signaling pathways of BMPs. A new approach would be particularly beneficial to subfertile patients who respond poorly to gonadotropin stimulation.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

S L P Regan was the recipient of an Australian Postgraduate Award and a Curtin University Postgraduate Scholarship. This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Acknowledgements

We would like to thank the CSIRO in Armidale, New South Wales, Australia, for its assistance in the use of flow cytometry and other technical assistance.

References

Al-Sameria SA & Almahbobi G 2014 Three-dimensional image analysis to quantify the temporo-spatial expression of cellular receptors. *Journal of Medical and Bioengineering* 3 179–182. (doi:10.12720/jmb.3.3.179-182)

Feary E, Juengel J, Smith P, French M, O’Connell A, Lawrence S, Galloway S, Davis G & McNatty K 2007 Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMP1R and BMP2R during follicular

Komar CM, Berndtson AK, Evans ACO & Fortune JE 2001 Decline in circulating estradiol during the periovulatory period is correlated with decreases in estradiol and androgen, and in messenger RNA for P450 aromatase and P450 17α-hydroxylase, in bovine preovulatory follicles. Biology of Reproduction 64 1797–1805. (doi:10.1093/biolreprod64.6.1797)

Souza C, MacDougall C, Campbell B, McNielly A & Baird D 2001 The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. Journal of Endocrinology 169 R1–R6. (doi:10.1677/joe.0.169R001)

Westergaard L, Christensen JI & McNatty KP 1986 Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women. Human Reproduction 1 227–232.

Wilson T, Wu X-Y, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O’Connell AR et al. 2001 Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biology of Reproduction 64 1225–1235. (doi:10.1095/biolreprod64.4.1225)