Update on mammalian sperm capacitation: how much does the horse differ from other species?

Bart Leemans1, Tom A E Stout2,3, Catharina De Schauwer1, Sonia Heras1, Hilde Nelis1, Maarten Hoogewijs1, Ann Van Soom1 and Bart M Gadella3,4

1Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium, 2Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 3Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands and 4Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

Correspondence should be addressed to B Leemans; Email: baleeman.leemans@ugent.be

Abstract

In contrast to various other mammalian species, conventional \textit{in vitro} fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under \textit{in vitro} conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.

Introduction

Conventional \textit{in vitro} fertilization (IVF), that is co-incubation of mature oocytes with capacitated sperm in a petri dish, is a standard procedure for producing embryos \textit{in vitro} in a range of species, including man (Steptoe \& Edwards 1978), the cow (Perry 2013), the pig and various laboratory animals (Galli et al. 2003, Betteridge 2006). By contrast, conventional IVF has to date been very poorly successful in the horse. Equine IVF is hampered by the inability of stallion spermatozoa to penetrate the zona pellucida \textit{in vitro} (Tremoleda et al. 2003). In theory, this failure could be attributed to deficiencies in either \textit{in vitro} prepared sperm and/or \textit{in vitro} matured oocytes. Given that \textit{in vitro} matured oocytes placed in the oviduct can be fertilized \textit{in vivo} (Hinrichs et al. 2002), while \textit{in vivo} matured oocytes harvested from pre-ovulatory follicles cannot be fertilized \textit{in vitro} (Palmer et al. 1991), the inability of sperm cells to penetrate the zona pellucida \textit{ex vivo} is most likely the result of deficient capacitation, that is activation of spermatozoa (Tremoleda et al. 2003). Although current equine IVF conditions do support the binding of stallion sperm to the oocyte’s zona pellucida, this does not result in subsequent initiation of the acrosome reaction mandatory to penetrate the oocyte (Tremoleda et al. 2003). In contrast to sperm cells from other mammalian species, stallion sperm incubated under typical IVF conditions, that is in medium containing HCO\textsubscript{3}–, Ca2+ and albumin, also fail to display other capacitation-related characteristics, such as hyperactivated motility, increased plasma membrane fluidity and protein tyrosine phosphorylation (Tremoleda et al. 2003) (Fig. 1).

Capacitation is the maturation process that sperm cells undergo after ejaculation, during their passage through the female genital tract (Suarez 2002). These biochemical changes enable the sperm to bind to and penetrate the zona pellucida and subsequently fuse with the oocyte (Fig. 1) (Yanagimachi 1994). The sperm...
plasma membrane fuses with the outer acrosomal membrane, resulting in the exocytotic event known as the acrosome reaction that involves the release of lytic enzymes which locally dissolve the zona pellucida. The sperm cells also acquire hyperactivated motility in order to ‘drill’ through the zona pellucida (Yanagimachi 1994). Equids are one of the exceptions, in which capacitation does not appear to progress as described above. Using an oviduct epithelial explant model, we identified physiological triggering of three important capacitation parameters, namely increased intracellular pH (Leemans et al. 2014), protein tyrosine phosphorylation in the sperm tail (Leemans et al. 2014, 2015b) and hyperactivated motility (Leemans et al. 2015b). However, this approach was not sufficient to induce the acrosome reaction and fertilization during co-incubation with oocytes. Hence, our understanding of sperm activation in the oviduct, the ability of these spermatozoa to achieve fertilizing competence, and in particular, the intracellular pathways involved in this process needs to improve. This review focuses on what is currently known about capacitation pathways in sperm cells of non-equine species, the provision of fuel to support the highly energy-dependent capacitation events and how much these events differ to capacitation-related events observed in stallion spermatozoa.

Energy metabolism in stallion spermatozoa to support energy-demanding, fertility-related processes such as capacitation

Sperm capacitation and other fertility-related pathways require large quantities of energy. To fuel these crucial capacitation events, individual sperm cells must generate relatively large amounts of ATP. In various mammalian species including man and the mouse, sperm motility and the maintenance of membrane integrity rely predominantly on ATP generated by non-aerobic glucose metabolism via glycolysis (Mukai & Okuno 2004, Storey 2008, du Plessis et al. 2015), as demonstrated by the fact that mitochondrial oxidative chain uncouplers did not affect sperm motility or membrane integrity in sperm suspended in glucose-containing media. By contrast, the proportion of membrane intact and motile stallion sperm, and the velocity of that motion, in glucose-enriched media were all significantly reduced after exposure to mitochondrial uncouplers (Gibb et al. 2014, Davila et al. 2016). Inhibiting complex IV or ATP synthase, two proteins on the inner mitochondrial membrane critical to electron flow during oxidative phosphorylation, had similar effects on stallion sperm (Davila et al. 2016). Moreover, subsequent uncoupling of mitochondria or inhibition of mitochondrial respiration led to a massive...
drop in cytoplasmic ATP concentrations in stallion spermatozoa. Overall, this indicates that maintenance of stallion sperm membrane integrity and motility, two important requirements for fertility, are highly dependent on aerobic production of ATP (Gibb et al. 2014, Plaza Davila et al. 2015). As a consequence of the requirement for stallion sperm to generate mitochondrial ATP aerobically, increased cytoplasmic concentrations of reactive oxygen species (ROS), such as superoxide anions and their reduced form, hydrogen peroxide, are observed during stallion sperm incubation and activation. In turn, this cytoplasmic ROS accumulation leads to increased production of metabolic by-products, and the combination of accumulating ROS and cytotoxic lipid aldehydes (acrolein, 4-hydroxynonenal and malondialdehyde) ultimately leads to massive lipid peroxidation and DNA damage and thereby accelerated cell death (Gibb et al. 2016). To counteract the adverse effect of endogenous ROS production, and enable ROS homeostasis (Jones 2006) or defense against oxidative stress, stallion seminal plasma contains relatively high concentrations of antioxidants such as catalase (Ortega Ferrusola et al. 2009), superoxide dismutase (Ball et al. 2000, Ortega Ferrusola et al. 2009), glutathione (Hemachand & Shaha 2003, Jones 2006) and ergothioneine (Mann 1975). Moreover, mitochondrial aldehyde dehydrogenase 2 has been identified in stallion sperm cells and proposed to serve as a detoxifier of aldehydes generated either endogenously or exogenously (Gibb et al. 2016). However, ROS defense mechanisms will eventually become exhausted and are not thus completely protective against sperm cell degeneration.

In this aspect, an interesting observation has been made with respect to stallion sperm oxidative stress and fertility. Spermatozoa from matings that did result in conception (and therefore considered ‘more fertile’) had lower percentages of membrane intact and higher percentages of cells displaying ROS-induced damage than spermatozoa from matings that did not result in conception (Gibb et al. 2014). It has been proposed that this can be explained by the fact that fertile stallions produce metabolically more active sperm cells that exhibit higher levels of oxidative phosphorylation. This will result in higher concentrations of ROS, leading to increased lipid peroxidation and, in turn, impaired sperm motility and membrane integrity in more fertile stallions. This has led to the suggestion that spermatozoa from highly fertile stallions ‘live fast and die young’. It should also be borne in mind that a modest degree of cytoplasmic ROS production plays an important physiological role in sperm capacitation. These aspects are discussed below.

How to trigger capacitation in vitro?

In vivo, capacitation is initiated when a sperm cell is exposed to the environment within the female genital tract, that is the uterus and oviduct, close to the time of ovulation (reviewed by Leemans et al. (2016a)); capacitation events can be mimicked in vitro by incubating sperm cells in medium containing HCO$_3^−$, Ca$^{2+}$ and albumin, after performing density gradient centrifugation (e.g. Percoll) to separate the sperm cells from the seminal plasma. HCO$_3^−$, Ca$^{2+}$ and albumin are three capacitation factors known to induce the sperm changes required for the acquisition of fertilizing potential across many species (mice: Visconti et al. 1995a,b; hamster: Visconti et al. 1999b; man: Osheroff et al. 1999; pig: Flesch & Gadella 2000). In addition, species-specific factors have been identified. In cattle, for example, heparin-like molecules such as glycosaminoglycans are an essential capacitation trigger (Parrish et al. 1988). Unfortunately, the species-specific capacitation triggers required to establish a repeatable, effective equine IVF system have yet to be identified. In various studies of stallion sperm capacitation, ‘capacitating medium’ has included the three general capacitation triggers (HCO$_3^−$, Ca$^{2+}$ and albumin) even though it is known that full capacitation is not accomplished; non-capacitating medium, lacking these three triggers, is used as control medium (McPartlin et al. 2008, Leemans et al. 2016b). In Table 1, an overview of molecules frequently used as capacitation triggers in mammals, including the horse, is shown.

Capacitation events

Although capacitation was described for the first time in 1951 (Chang 1951, Austin 1952), the process is still not completely understood. It is known that capacitation involves a series of changes including (1) the removal of seminal plasma and surface-adhered decapacitation factors from the sperm plasma membrane, (2) reorganization of the sperm plasma membrane and (3) activation of intracellular pathways (Fig. 1).

After the removal of seminal plasma, a rapid increase in membrane fluidity (within 10 min) is induced by an increasing intracellular HCO$_3^−$ concentration and the activation of second messenger systems, including soluble adenyl cyclase and a rise in intracellular Ca$^{2+}$ (pig: Flesch & Gadella 2000, Gadella et al. 2008; horse: Rathi et al. 2003). The activation of soluble adenyl cyclase and the concomitant production of cAMP results in depletion of cholesterol from the sperm plasma membrane via a cholesterol acceptor such as albumin (>1 h), which is followed by a slower series of functional membrane changes in which lipid ordered microdomains aggregate at the apical ridge of the sperm head (>1 h) (pig: van Gestel et al. 2005a). These microdomains contain functional zona pellucida-binding protein complexes (pig: van Gestel et al. 2007) and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which play an important role in the induction of the acrosome

https://rep.bioscientifica.com
reaction (pig: Tsai et al. 2010, 2012). Simultaneously, the production of cAMP enables the activation of protein kinase A which is required to phosphorylate the tyrosine residues on sperm proteins (Rathi et al. 2003, Ijiri et al. 2012, Signorelli et al. 2012). In various species, this cAMP-dependent protein tyrosine phosphorylation, especially in the sperm tail, has been associated with the acquisition of hyperactivated sperm motility and is considered a marker for some essential elements of the capacitation process (mouse: Visconti et al. 1995a, b; pig: Flesch et al. 1999, Harayama et al. 2012).

Plasma membrane changes

Spermatozoa have a highly polarized morphology with a heterogenic surface differentiated into at least four surface membrane domains: the apical ridge and the pre-equatorial, equatorial and post-equatorial surface areas, respectively. Each of these regions plays a specific role in fertilization: (1) the apical ridge facilitates zona pellucida-binding (rabbit: O’Rand & Fisher 1987), (2) the apical ridge, together with the pre-equatorial surface area, is involved in the acrosome reaction while (3) the equatorial surface area initiates binding to the oolemma and the subsequent fertilization fusion. These events occur in the region of the sperm head where the sperm plasma membrane, including the lipid rafts (microdomains), covers the acrosome and plays an essential role in the dynamics of sperm capacitation (Gadella et al. 2008).

Cholesterol depletion

A redistribution of phospholipids in the surface of the sperm head is an essential step in the capacitation process. HCO₃⁻/soluble adenylyl cyclase/cAMP mediate

Table 1 Overview of capacitation triggers and their in vitro capacitation effect in different mammalian species.

<table>
<thead>
<tr>
<th>Capacitating trigger</th>
<th>Capacitation effect</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺</td>
<td>Membrane fluidity</td>
<td>Mouse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td>Protein tyrosine phosphorylation</td>
<td>Man</td>
<td>Osheroff et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Hyperactivated motility</td>
<td>Pig</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td>Acrosome reaction</td>
<td>Cow</td>
<td>Visconti et al. (1999b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>McPartlin et al. (2008)</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>Membrane fluidity</td>
<td>Mouse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td>Protein tyrosine phosphorylation</td>
<td>Hamster</td>
<td>Visconti et al. (1999b)</td>
</tr>
<tr>
<td></td>
<td>Hyperactivated motility</td>
<td>Man</td>
<td>Osheroff et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Acrosome reaction</td>
<td>Pig</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cow</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>McPartlin et al. (2008)</td>
</tr>
<tr>
<td>Albumin</td>
<td>Cholesterol depletion</td>
<td>Mouse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pig</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cow</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>McPartlin et al. (2008)</td>
</tr>
<tr>
<td>Methyl β-cyclodextrin</td>
<td>Cholesterol extraction</td>
<td>Mouse</td>
<td>Visconti et al. (1999a)</td>
</tr>
<tr>
<td>Heparin</td>
<td>Membrane fluidity</td>
<td>Cow</td>
<td>Visconti et al. (1999a)</td>
</tr>
<tr>
<td></td>
<td>Hyperactivated motility</td>
<td>Pig</td>
<td>van Gestel et al. (2005b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>Visconti et al. (2010)</td>
</tr>
<tr>
<td>Progesterone</td>
<td>Acrosome reaction</td>
<td>Horse</td>
<td>Cheng et al. (1998a, b)</td>
</tr>
<tr>
<td></td>
<td>Hyperactivated motility</td>
<td>Man</td>
<td>Lishko et al. (2011)</td>
</tr>
<tr>
<td>Ca²⁺ ionophore A23187</td>
<td>Acrosome reaction</td>
<td>Mouse</td>
<td>Tateno et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Man</td>
<td>Bielfield et al. (1994), Liu et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pig</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cow</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td>Lyposphospha-tidylcholine</td>
<td>Acrosome reaction</td>
<td>Horse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td>cAMP and caffeine</td>
<td>Protein tyrosine phosphorylation</td>
<td>Horse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td>Hyperactivated motility</td>
<td>Pig</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td>ROS</td>
<td>Protein tyrosine phosphorylation</td>
<td>Cow</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td>Hyperactivated motility</td>
<td>Horse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td>Alkaline medium pH</td>
<td>Protein tyrosine phosphorylation</td>
<td>Horse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td>Procaine</td>
<td>Hyperactivated motility</td>
<td>Guinea pig</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horse</td>
<td>Visconti et al. (1995a, b)</td>
</tr>
</tbody>
</table>
an increase in membrane fluidity, detected as enhanced merocyanine 540 binding (Gadella & Harrison 2000, 2002), that enables the redistribution of cholesterol from the equatorial area to the apical part of the sperm plasma membrane, while seminolipids move retrogradely (pig: Gadella et al. 1994, 1995). Both molecules are considered to be plasma membrane stabilizers, which prevent membrane fusion prior to capacitation. The HCO$_3^-$-mediated repacking of the sperm surface lipids is also essential in enabling the efflux of cholesterol which further increases plasma membrane fluidity by allowing the aggregation of lipid rafts, another essential step in the reorganization of the plasma membrane.

In vitro, the extraction of cholesterol from the sperm plasma membrane can be achieved by the oxidation of membrane sterols (Boerke et al. 2013), or active cholesterol transporters that deliver free cholesterol to the hydrophobic pocket of albumin (Flesch et al. 2001). Brouwers et al. (bull: 2011) showed that the production of ROS is an essential step in oxytomy formation. ROS production at low levels during sperm capacitation was first demonstrated in 1993, and indicates that sperm capacitation should be considered an oxidative process dependent on the active generation of ROS (man: de Lamirande & Gagnon 1993). This process may also help to regulate protein tyrosine phosphorylation, another important capacitation marker, by increasing cAMP production (Aitken et al. 2004, Aitken 2011) and suppressing tyrosine phosphatase activity (Takakura et al. 1999). Since oxysterols are more hydrophilic than intact cholesterol, they can more easily move through the plasma membrane to bind to sterol acceptor molecules like albumin. Indeed, the presence of bovine serum albumin in capacitating medium is essential because of its unique ability to scavenge hydrophilic oxidation products and facilitate cholesterol extraction (Boerke et al. 2008). An alternative macromolecule not of animal origin (important in terms of risk of disease transmission) is methyl β-cyclodextrin. Whereas albumin extracts only 20% of the cholesterol from the non-raft sperm plasma membrane fraction, methyl β-cyclodextrin extracts 50% of the cholesterol from the entire sperm plasma membrane, including the lipid rafts (pig: van Gestel et al. 2005b). However, methyl β-cyclodextrin might have a deteriorative effect on sperm cells, even in low concentrations. A deteriorative effect of methyl β-cyclodextrin on mouse oocytes has also been reported (Buschiazzo et al. 2013). In stallion sperm, however, standard capacitating conditions, that is inclusion of Ca$^{2+}$, HCO$_3^-$ and bovine serum albumin (individual or in combination), does not facilitate cholesterol removal from the sperm plasma membrane. Indeed, while HCO$_3^-$ induces an increase in ROS, this is abolished by the addition of Ca$^{2+}$ or albumin (Macías García et al. 2015). These observations suggest a species-specific difference in the regulation of plasma membrane changes during stallion sperm capacitation.

Aggregation of lipid rafts

As demonstrated in pig spermatozoa, increased membrane fluidity and cholesterol depletion are followed by a redistribution of the laterally segregated molecules, that is lipid ordered microdomains aggregate at the apical ridge area of the sperm head (Boerke et al. 2008). The proteins and lipids which make up these microdomains also show a capacitation-dependent change to include higher proportions of cholesterol, sphingomyelin, gangliosides and phospholipids with saturated long-chain acyl chains and lipid-modified proteins such as GPI-anchored proteins (Simons & Toomre 2000, van Gestel et al. 2005a). Moreover, caveolin-1 and flotillin-1 are lipid raft-specific markers (van Gestel et al. 2005a) that accumulate in these microdomains along with functional zona pellucida-binding protein complexes. In man, angiotensin-converting enzyme and protein disulfide isomerase A6 were identified in the microdomains as proteins able to interact with heat shock protein A2, which plays a pivotal role in the remodeling of the sperm surface during capacitation and the recognition of human oocytes (Bromfield et al. 2016). In pigs, it has been shown that isoforms of AQN-3 (spermadhesin), P47 (porcine homologue of SED-1), fertilin β and peroxiredoxin 5 are key proteins regulating the primary binding between capacitated spermatozoa and the zona pellucida (van Gestel et al. 2007). However, it is not known whether these proteins reside in microdomains.

Hyperactivated motility

General sperm motility

A specific cytoplasmic pH is crucial to allow sperm motility. For de-membranated sperm, maximal percentages of motile sperm were recorded between pH 7.0 and 8.1 for bull (Ho et al. 2002), pH 7.8 for human (Giroux-Widemann et al. 1991) and between pH 7.5 and 8.0 for ram (Ishijima & Witman 1987) spermatozoa. For comparison, the maximum percentage of motile stallion spermatozoa was observed in medium at pH 7.0 (Loux et al. 2014). An appropriate cytoplasmic pH enhances symmetrical flagellar, and therefore, progressive sperm motility, which requires the activation of dynein ATPases on phosphorylated dynein molecules and their interaction with Ca$^{2+}$ which, in turn, results in the sliding of the adjacent outer axonemal doublet microtubules (Shingyoji et al. 1977). When the doublets slide along one another, the sliding force is translated into a bend in the sperm tail (Tash 1989). The normal flagellar waveform requires an asynchronous phosphorylation and dephosphorylation of the dynein arms along the complete axonemal length (Wargo & Smith 2003). In mammals, sperm motility is mostly initiated and maintained by ATP, Ca$^{2+}$ and HCO$_3^-$-driven cAMP-dependent phosphorylation of flagellar proteins
Like HCO$_3^-$, Ca$^{2+}$ also directly regulates soluble adenyl cyclase, which results in cAMP generation and activation of protein kinase A (Fig. 1) (Liguori et al. 2004, Hess et al. 2005). An important downstream target of cAMP in the sperm flagellum is serine/threonine kinase protein kinase A (Visconti et al. 1997). The phosphorylation of serine/threonine activates protein kinase A which results in the downstream phosphorylation of tyrosine kinases whose targets are primarily located in the sperm tail (man: Leclerc et al. 1996; mouse: Sti & Olds-Clarke 2000). On the other hand, dynein dephosphorylation is evoked by the calmodulin-dependent protein serine/threonine phosphatase, calcineurin, which is necessary to balance the cAMP-driven serine/threonine kinases in the sperm tail. The resulting net phosphorylation represents the sperm motility status well (Tash & Bracho 1994). If serine/threonine phosphatase activity is dominant, spermatozoa are mainly immotile whereas serine/threonine kinase activity correlates with increased motility (man and Rhesus monkey: Smith et al. 1996; bull: Vijayaraghavan et al. 1996).

Relationship between Ca$^{2+}$, pH and hyperactivated sperm motility?

Sperm cells must acquire hyperactivated motility to (1) detach from their oviduct epithelial cell binding and leave the oviductal reservoir (Suarez & Pacey 2006), (2) migrate through the viscous lumen of the oviduct (Suarez & Dai 1992) and (3) penetrate the cumulus matrix and zona pellucida of the mature oocyte in order to fuse with the oolemma (Stauss et al. 1995). In many species, hyperactivated motility is characterized by a highly asymmetrical and high-amplitude flagellar beating pattern that gives rise to a whip-like motion of the sperm tail which, in vitro, results in circular, figure of eight or zigzag swimming trajectories (Yanagimachi 1994, Ishijima et al. 2006). The onset and maintenance of hyperactivated motility is associated with an influx of Ca$^{2+}$ into the cytosol of the sperm tail (Suarez et al. 1993, Suarez 2008). Ho et al. (2002) showed in de-membranated bull sperm that a symmetrical, progressive sperm movement was maintained when the intracellular Ca$^{2+}$ concentration was ~50 nM. When hyperactivated motility was initiated, the intracellular Ca$^{2+}$ concentration increased to 400 nM. By contrast, Loux et al. (2014) reported that the degree of hyperactivated motility was inversely related to the cytoplasmic Ca$^{2+}$ concentration in stallion spermatozoa. Using a similar de-membranated sperm model, they demonstrated that an increasing Ca$^{2+}$ concentration did not induce hyperactivated motility in stallion spermatozoa at any pH. Moreover, cytoplasmic alkalization induced both a hyperactivated motility response and cytoplasmic Ca$^{2+}$ rise in intact sperm cells (Loux et al. 2013). Loux et al. (2013) observed an intracellular pH increase from 7.1 to 7.3–7.4 in hyperactivating conditions. A pH effect on the motility of de-membranated stallion spermatozoa was not apparent. However, an extremely low Ca$^{2+}$ concentration (27 pM) was sufficient to maintain motility in de-membranated stallion sperm at pH 7.4 (Loux et al. 2014). Moreover, procaine which is considered a potent inducer of hyperactivated motility in intact stallion spermatozoa, acts independently to extracellular Ca$^{2+}$ influx (Loux et al. 2013). Overall, a species-specific relationship between Ca$^{2+}$ sensitivity and hyperactivated motility is apparent in the horse.

In vitro, Ca$^{2+}$ ionophores such as A23187 or ionomycin can induce and maintain hyperactivated motility in mouse spermatozoa for several hours (Suarez et al. 1987, Tateno et al. 2013). Besides the reliable induction of the acrosome reaction in stallion spermatozoa, Ca$^{2+}$ ionophore A23187 exposure results in a complete loss of sperm motility and membrane integrity within 1 h (Christensen et al. 1996, Rathi et al. 2001). It is possible that these adverse effects of Ca$^{2+}$ ionophore on sperm motility and membrane integrity are related to the fact that stallion sperm, in contrast to other mammals, are dependent on mitochondrial ATP (as discussed above). In this respect, excessive mitochondrial Ca$^{2+}$ concentration can lead to mitochondrial failure and initiate cell death (Contreras et al. 2010). Moreover, Ca$^{2+}$ ionophores uncouple oxidative phosphorylation by inhibiting mitochondrial ATPase activity (Humes & Weinberg 1980, Krumschnabel et al. 1999). As mentioned above, other inhibitors that uncouple oxidative phosphorylation adversely affect stallion sperm motility and membrane integrity (Gibb et al. 2014, Davila et al. 2016). This is because production of mitochondrial ATP to support stallion sperm motility and membrane integrity is severely compromised soon after exposure. This is a cause for concern with respect to a capacitation induction protocol, because sperm viability and motility would need to be conserved over a period of hours during *in vitro* fertilization. Other pharmacological agents such as caffeine (Ho & Suarez 2001b), thimerosal (Ho & Suarez 2001b, Marquez & Suarez 2004) and thapsigargin (Ho & Suarez 2001b, Ho & Suarez 2003) also trigger an intracellular Ca$^{2+}$ rise and initiate asymmetrical flagellar beating in mouse spermatozoa. The effect of these molecules on the cytoplasmic Ca$^{2+}$ concentration and hyperactivated motility have yet to be studied in the horse.

In mammals such as man, cattle and mice, CATSPER channels present on the principal piece of the sperm tail’s need be activated to induce hyperactivated motility. There are four CATSPER genes coding for proteins that are structurally similar to subunits of conventional voltage-gated cation channels. When a mouse single CATSPER gene knock-out was created, males were infertile because the spermatozoa were not able to achieve hyperactivated motility (Carlson et al. 2005, Qi et al. 2007). The general trigger of these CATSPER
channels is alkaline depolarization evoked by a change in the oviductal ionic environment, which results in an elevated pH of the oviduct fluid (Carlson et al. 2003, Navarro et al. 2008). Contact between spermatozoa and the alkaline oviductal environment increases the intracellular pH and activates the CATSPER channels. In stallion sperm, CATSPER1 mRNA has been identified, and CATSPER1 protein was localized to the principal piece of the sperm tail. However, analysis of the equine CATSPER1 protein revealed species-specific differences in the structure in the pH sensor region (Loux et al. 2013). This indicated that, despite the presence of a CATSPER channel in stallion sperm, the relationship between hyperactivated motility and Ca\(^{2+}\) influx is likely to be weak.

A clear increase in oviduct pH and, as a consequence, in sperm cytoplasmic pH likely to activate the CATSPER channels, was observed in Rhesus monkeys approaching ovulation (7.1–7.3 to 7.5–7.8) (Maas et al. 1977). In the mouse, a Na\(^+\)-dependent Cl\(^{-}/\text{HCO}_3^{-}\) exchange controls the intracellular pH of the sperm (Zeng et al. 1996), while in man, an outflow of H\(^+\) is initiated by activating a voltage-gated proton channel (Lishko et al. 2010). To maximize the subsequent Ca\(^{2+}\) entry through the CATSPER channels, both a pH-sensitive efflux of K\(^+\) by KSPER (Navarro et al. 2007) and an activation of Cl\(^{-}\) channels by closing Na\(^+\) channels might support capacitance-related sperm plasma membrane hyperpolarization (mouse: Hernandez-Gonzalez et al. 2007). Hyperpolarization also plays a central role in the acrosome reaction. In human spermatozoa, it has been demonstrated that CATSPER channels can be alternatively activated by progesterone and, to a lesser extent, prostaglandins (Lishko et al. 2011). Other Ca\(^{2+}\) metabolism-related pathways identified in the mammalian sperm tail, include the following: (1) a transient receptor potential Ca\(^{2+}\) channel, which may affect sperm motility and re-sequestration of Ca\(^{2+}\) into sperm stores (Castellano et al. 2003), (2) cyclic-nucleotide-gated Ca\(^{2+}\) channels (Wiesner et al. 1998) and (3) voltage-gated Ca\(^{2+}\) channels (Benoff 1998, Darszon et al. 2006). However, the role of the various Ca\(^{2+}\) regulatory pathways in the physiological activation of hyperactivated motility is unclear.

Besides the extracellular Ca\(^{2+}\) influx through the CATSPER channels, there are also intracellular Ca\(^{2+}\) stores, in the so-called redundant nuclear envelope (RNE) located at the base of the sperm tail, which are able to provide Ca\(^{2+}\) to the sperm cytoplasm (Ho & Suarez 2001b, 2003). Inositol 1,4,5-triphosphate (IP\(_3\))-gated channels on the RNE membranes trigger Ca\(^{2+}\) release to the sperm cytoplasm whereas calreticulin, a Ca\(^{2+}\) binding protein, sequesters Ca\(^{2+}\) in the RNE (bull: Ho & Suarez 2001b, 2003; man: Naaby-Hansen et al. 2001). In the mouse, it has been shown that ryanodine receptors on the RNE membrane also play a role in intracellular Ca\(^{2+}\) release (Trevino et al. 1998).

As such, both Ca\(^{2+}\) sources contribute to initiation and maintenance of high Ca\(^{2+}\) concentrations during sperm hyperactivation (Ho & Suarez 2001b, 2003). More specifically, the Ca\(^{2+}\)-induced Ca\(^{2+}\) release from the RNE amplifies the intracellular Ca\(^{2+}\) rise resulting from CATSPER activation (Costello et al. 2009, Olson et al. 2010). Furthermore, this activation of CATSPER and IP\(_3\)-gated channels is clearly involved in induction of the acrosome reaction (Quill et al. 2003, Ren et al. 2001). So far, a role of intracellular Ca\(^{2+}\) stores in the induction of hyperactivated motility in stallion spermatozoa is purely theoretical.

Hypermotility is induced by HCO\(_3^{-}\) and Ca\(^{2+}\)-driven pathways

So far, it has not been elucidated how sperm cells modify the beat of their tail, at the molecular level. It is known that the Ca\(^{2+}\) rise and the subsequent onset of hyperactivated motility changes the sliding of the microtubules (Lindemann & Lesich 2010). Furthermore, it has been demonstrated in primates (Mahony & Gwathmey 1999), pigs (Harayama et al. 2012) and rodents (Si & Okuno 1999) that hyperactivated motility is associated with a highly increased cAMP-dependent tyrosine phosphorylation of the flagellar proteins. The generator of tyrosine phosphorylation events, protein kinase A, is connected to the fibrous sheath of the sperm tail by A-kinase-anchoring proteins, and it has been suggested that these proteins play an important role in hyperactivated sperm motility (Hamster: Si 1999). Moreover, A-kinase-anchoring proteins could attach protein kinase A to specific subcellular regions in close proximity to motility-related targets in the axoneme (Carrera et al. 1994, Mandal et al. 1999). A-kinase-anchoring protein 3 and A-kinase-anchoring protein 4 play a central role in activating tyrosine kinases to cause extensive tyrosine phosphorylation of sperm tail proteins (hamster: Si 1999; man: Ficarro et al. 2003). This altered tail protein tyrosine phosphorylation status is required for the acquisition of hyperactivated sperm motility (hamster: Si 1999; man: Leclerc et al. 1996). Changes in A-kinase-anchoring protein-mediated protein targeting might also play an essential role in this process.

Independent of protein kinase A, Ca\(^{2+}\) is involved in pathways regulating sperm motility. Calmodulin, located in the principal piece of the sperm tail (Schlingmann et al. 2007), is a Ca\(^{2+}\)-binding protein essential to the Ca\(^{2+}\)-dependent modulation of mammalian sperm motility (Ho & Suarez 2001a, Ignotz & Suarez 2005). It has been suggested that this pathway progresses in parallel with cAMP/protein kinase A activity, although the two act independently (Litvin et al. 2003, Schlingmann et al. 2007). Binding of Ca\(^{2+}\) to calmodulin activates Ca\(^{2+}\)/calmodulin-dependent kinases (Marin-Briggler et al. 2005) which phosphorylate a specific axonemal protein, resulting in hyperactivated motility.
Calmodulin kinases present in the flagellum of bull (Ignotz & Suarez 2005) and human (Marin-Briggiler et al. 2005) sperm were associated with hyperactivated motility. On the other hand, phosphatase activities are also directly involved in axonemal function because they reverse the latter effect by regulating dynein ATPase activities (Tash et al. 1988, Carrera et al. 1996) (Fig. 2).

Is hyperactivated motility linked to protein tyrosine phosphorylation during stallion sperm capacitation?

As indicated above, in various mammalian species it has been shown that hyperactivated motility is associated with a marked increase in cAMP/protein kinase A and Ca\(^{2+}\)/calmodulin-dependent kinase activity that induces tyrosine phosphorylation of the flagellar proteins that, in turn, alter the sliding of the microtubules within the sperm axoneme (mouse: Visconti et al. 1995a,b; pig: Flesch et al. 1999, Harayama et al. 2012). Surprisingly, hyperactivated motility and protein tyrosine phosphorylation can also occur independently (mouse: Olds-Clarke 1989; cow: Marquez & Suarez 2004). This latter observation certainly seems to be true for stallion sperm. For example, type 10 sAC induced protein tyrosine phosphorylation in stallion sperm, without initiating hyperactivated motility (McPartlin et al. 2011). An increased PKA activity and protein tyrosine phosphorylation without hyperactivation was also observed after incubating stallion spermatozoa in vitro with membrane-soluble cAMP analogues or a phosphodiesterase inhibitor (caffeine) (Pommer et al. 2003). ROS (Baumber et al. 2003) and modified-Whitten’s capacitating medium with higher alkalinity (pH=7.8–8.0) (Gonzalez-Fernandez et al. 2012, 2013) also induce protein tyrosine phosphorylation in the absence of, or only a mild, hyperactivated motility response. Similarly, binding of stallion sperm to late pre-ovulatory stage oviduct epithelium induces protein tyrosine phosphorylation without hyperactivated motility. This protein tyrosine phosphorylation was regulated primarily by a high pH within oviductal secretory cells (Leemans et al. 2014). When stallion sperm are incubated in capacitating conditions at pH 7.4, a Ca\(^{2+}\)-mediated inhibitory effect on protein tyrosine phosphorylation occurs due to the formation of a Ca\(^{2+}\)/calmodulin complex that supports sperm phosphatase activity (Gonzalez-Fernandez et al. 2012). Under alkaline-capacitating conditions (pH=7.8–8.0) however, Ca\(^{2+}\)/calmodulin-dependent kinases dominate and play a downstream role in protein kinase A-dependent protein tyrosine phosphorylation. As such, Ca\(^{2+}\)-induced protein tyrosine kinases activate protein tyrosine phosphorylation in stallion spermatozoa downstream of protein kinase A (Gonzalez-Fernandez et al. 2013).

Interestingly, after cryopreservation a premature induction of protein tyrosine phosphorylation is observed, commonly referred to as ‘cryocapacitation’ (Bailey et al. 2000, Watson 2000). The increased osmolality associated with cryopreservation may induce a ROS-dependent increase in protein tyrosine phosphorylation in stallion sperm (Aitken et al. 1983, Burnaugh et al. 2010). After cryopreservation, sperm cells display an increased intracellular Ca\(^{2+}\) concentration, increased ROS generation and a reduced antioxidant capacity. Recently, Ortega-Ferrusola et al. (2017) examined the effect of cryopreservation on both apoptosis and

![Figure 2 Schematic representation of signaling pathways involved in the regulation of mammalian sperm (hyper)motility. Progressive motility is regulated by low-level activity of the AC/CAMP/PKA pathway, while hyperactivated motility is induced when the latter pathway is activated to a much higher level, in combination with the activation of the calmodulin kinase (CaMK) pathway. Image modified from Turner (2006).](https://rep.bioscientifica.com)
premature capacitation-like changes simultaneously, to investigate the reduced longevity of frozen/thawed stallion sperm. In general, cryopreservation induced an increase in caspase 3 activity, translocation of phosphatidylserine from the inner to outer layer of the plasma membrane lipid bilayer, a reduction in mitochondrial membrane potential and an increased cytoplasmic Na$^+$ concentration, all of which indicate the occurrence of an apoptotic-like process in frozen/thawed stallion sperm cells. Additionally, a small subpopulation of cryopreserved sperm showed capacitation-like characteristics after thawing, such as increased membrane fluidity and protein tyrosine phosphorylation. To avoid the negative effects of cooling and cryopreservation on stallion sperm, Gibb et al. (2015) recently described a promising approach to store stallion spermatozoa at room temperature. Taking into account that stallion spermatozoa rely heavily on mitochondrial ATP production which generates ROS (as discussed previously), combined supplementation of sperm storage medium with 10 mM pyruvate and 50 mM l-carnitine was found to counteract the adverse effects of ROS production during room temperature storage. Much improved preservation of sperm total and progressive motility after 72 h incubation and significantly higher acetyl-l-carnitine concentrations were observed using this antioxidant-enriched sperm storage medium.

In contrast to other mammalian species, no intracellular Ca$^{2+}$ rise and activation of hyperactivated motility is observed when stallion sperm are exposed to progesterone or prostaglandin E$_1$ (Loux et al. 2013). Other hyperactivation triggers for stallion sperm have been described, but do not support protein tyrosine phosphorylation in the sperm tail. For example, three parameters of progressive motility (straight line velocity, straightness and linearity) were decreased when stallion sperm was incubated in 10% follicular fluid, indicating the acquisition of hyperactivated motility (Lange-Consiglio & Cremonesi 2012). Similarly, Leemans et al. (2015b) demonstrated the induction of hyperactivated motility when stallion spermatozoa were exposed to an alkaline follicular fluid fraction, while progesterone also effectively induced hyperactivated motility in stallion spermatozoa; however, both did so in the absence of protein tyrosine phosphorylation (McPartlin et al. 2009, Leemans et al. 2015a).

Acrosome reaction

The Ca$^{2+}$-dependent release of the acrosomal contents is an essential step in mammalian fertilization because it facilitates penetration through the acellular glycoprotein coat of the oocyte. After traversing the zona pellucida, the sperm cell will fuse with the oolemma of the mature oocyte (Yanagimachi 1994). In vivo, the acrosome reaction takes place in the female genital tract, at the site of fertilization. The acrosome reaction is a multipoint membrane fusion event between the sperm plasma membrane and the outer acrosomal membrane (Vigil 1989, Tsai et al. 2010), which results in the generation of mixed vesicles containing both plasma membrane and outer acrosomal membrane material. The remaining unfused acrosomal membranes, that is the equatorial area of the outer acrosome and the sperm plasma membrane connected to the inner acrosomal membrane covering the apical part of the nucleus, subsequently function as the sperm plasma membrane surface (Kim & Gerton 2003, Vjugina & Evans 2008). This re-designed outer sperm membrane contains a hairpin structure that is able to bind to the oolemma to enable gamete fusion and oocyte activation (Yanagimachi 1994). In boar sperm, it has been demonstrated that soluble N-ethylmaleimide- SNARE protein interactions play a fundamental role in the fusion of the sperm plasma membrane and the outer acrosomal membrane, because a trans ternary-soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is formed during capacitation. Key factors involved in this process are syntaxin 1B and VAMP 3 from the plasma membrane, and SNAP 23 from the outer acrosomal membrane (Tsai et al. 2010). Additionally, the entry of Ca$^{2+}$ (in vitro by use of Ca$^{2+}$ ionophores; in vivo after ZP binding) is required to facilitate the conversion to cis-soluble N-ethylmaleimide-SNARE complexes which will result in acrosomal exocytosis and penetration of the zona pellucida (Roggero et al. 2007).

In mice, one of the main molecules triggering the acrosome reaction in capacitated spermatozoa is zona pellucida glycoprotein 3 (ZP3) present on mature oocytes (Bleich & Wassarman 1990, Yanagimachi 1994, Arnout et al. 1999). More recently, it has been shown that only contact with the intercellular matrix of the cumulus cell complex was able to induce the acrosome reaction and allow mouse spermatozoa to pass through the zona pellucida (Inoue et al. 2011, Jin et al. 2011). In many other mammals, including the horse, it has been demonstrated that capacitated, acrosome-intact spermatozoa initiate zona pellucida binding (Yanagimachi 1994), although stallion spermatozoa showed a low incidence of acrosome reaction after 1 h of in vitro binding to the zona pellucida (Ellington et al. 1993, Cheng et al. 1996, Meyers et al. 1996). Progesterone, present in follicular fluid or cumulus cell secretions, is another factor that might be responsible for inducing the acrosome reaction in horse spermatozoa (Saarinen et al. 1993, Cheng et al. 1998a, Lange-Consiglio & Cremonesi 2012) (Fig. 1). Interestingly, the progesterone-induced acrosome reaction did not proceed in a protein kinase A, but rather in a protein kinase C and protein tyrosine kinase-dependent manner (Rathi et al. 2003), which is very similar to the zona pellucida-mediated induction of the acrosome reaction. Indeed, Breitbart and Naor (1999) showed that zona pellucida protein 3 activates a sperm protein tyrosine...
kinase coupled to phospholipase C (PLC), which in turn stimulates protein kinase C by generating diacylglycerol (DAG) from phosphatidylinositol-biphosphate (PIP2) (Fig. 1). How the generation of diacylglycerol eventually results in the onset of the acrosome reaction is not yet known. By contrast, when stallion spermatozoa are incubated in vitro in HCO3−-enriched conditions, the acrosome reaction is mainly supported by a protein kinase A instead of a protein tyrosine kinase and protein kinase C-dependent pathway (Rathi et al. 2003) (Fig. 1), indicating that progesterone and HCO3− induce the acrosome reaction in different ways. In vitro, the acrosome reaction can also be reliably induced by non-physiological triggers, such as Ca2+ ionophore in combination with HCO3− (Rathi et al. 2001).

In mice and pigs, it has been demonstrated that several neurotransmitter receptor/ion channels are present in sperm cell membranes. At least two of these channels, the glycine receptor/Cl− channel and a nicotinic acetylcholine receptor, are important for the ZP-initiated acrosome reaction, but not for the progesterone-initiated acrosome reaction (mouse: Meizel 2004; pig: Melendrez & Meizel 1995). In general, the glycine receptor/Cl− channel is involved in inhibiting neurotransmission in the central nervous system, where glycine inhibits transmission by increasing Cl− influx through the glycine receptor/Cl− channel to induce hyperpolarization (Betz & Becker 1988). However, in some neurons, neutrophils, and glycerol kinase pseudogene 3 cells, glycine appears to cause depolarization by activating the glycine receptor/Cl− channel (presumably stimulating Cl− efflux), resulting in an increased cytoplasmic Ca2+ concentration (Boehm et al. 1997, Tapia et al. 1997, Weaver et al. 1998). The latter has also been demonstrated in sperm cells which came into contact with zona pellucida proteins. The depolarizing effect was evident as Ca2+ influx through voltage-gated Ca2+ channels (Arnoult et al. 1996, Florman et al. 1998). This event initiated the onset of the acrosome reaction. In the horse, the potential role of a glycine receptor/Cl− channel and/or a nicotinic acetylcholine receptor in the onset of the acrosome reaction has not been studied. McPartlin et al. (2011) showed that the CAMP-driven activation of guanine-nucleotide exchange factors (RAPGEF3/ RAPGEF4) induced a sperm membrane depolarization in capacitated stallion spermatozoa. Depolarization-dependent Ca2+ influx subsequently initiated acrosomal exocytosis. However, the activation of these factors did not play any role in the activation of protein kinase A or in protein tyrosine phosphorylation (Fig. 1).

Equine IVF: an update

Worldwide, only two IVF foals have been born, both more than 25 years ago in 1990–1991 (Palmer et al. 1991, Bézard et al. 1992). The success of IVF in these cases was attributed to in vitro co-incubation of equine oocytes with calcium ionophore-treated stallion spermatozoa. Unfortunately, neither this nor other equine IVF protocols have proven to be reproducible. Indeed, subsequent attempts have yielded extremely poor equine IVF results, with reported cleavage rates varying from 0 to 33% (Zhang et al. 1990, Choi et al. 1994, Li et al. 1995, Dell’aquila et al. 1996, 1997a, b, Alm et al. 2001, Hinrichs et al. 2002, Tremoleda et al. 2003, Roasa et al. 2007, Mugnier et al. 2009a, b, Lange-Consiglio & Cremonesi 2012). A detailed overview of the published equine IVF studies was produced by Leemans et al. (2016a).

During the last decade, the utility of procaine in equine IVF media has been a topic of discussion. As mentioned previously, procaine is a potent inducer of hyperactivated motility in stallion spermatozoa (McPartlin et al. 2009, Leemans et al. 2015a). Indeed, procaine-induced hyperactivation of stallion spermatozoa can even be induced in non-capacitating medium in the absence of external Ca2+ (Loux et al. 2013), with CATSPER channels apparently not participating in procaine-induced hyperactivation (Loux et al. 2013). Initial reports further suggested that procaine promoted equine in vitro fertilization by inducing hyperactivated motility while other requisite sperm capacitation events, such

![Figure 3](https://rep.bioscientifica.com)
as protein tyrosine phosphorylation, were proposed to have been triggered by other medium constituents or a high pH (McPartlin et al. 2009, Ambruosi et al. 2013). Cleavage rates exceeding 60% of co-incubated oocytes were reported. However, none of these cleaved oocytes developed to the blastocyst stage. Leemans et al. (2015a) subsequently demonstrated that, although procaine did indeed trigger sperm hyperactivation, procaine-induced oocyte cytoplasmic cleavage also occurred in the absence of sperm. Moreover, gamete fusion induced oocyte activation, indicated by cytoplasmic Ca²⁺ oscillations, was not observed in the presence of procaine. It transpired that procaine acted further downstream in the oocyte-activation process, and only induced cytokinesis-like events via pH-dependent depolymerization of F-actin, whereas nuclear activation was not triggered. Moreover, the procaine concentration used to induce sperm hyperactivated motility and oocyte cytokinesis was DNA toxic (Leemans et al. 2015a). Rather than true fertilization, procaine-induced DNA fragmentation with degeneration of the cleaving blastomeres occurring at the 8–16 cell stage, that is stage of genome activation in horse embryos (Brinsko et al. 1995).

As a result of the initial misinterpretation, more stringent evaluation methods are clearly needed to confirm fertilization in horse oocytes. For various mammals, the presence of two pronuclei after 20–24 h gamete co-incubation, as visualized by nuclear chromatin stains such as Hoechst or propidium iodide, is considered valid proof of fertilization because of the low incidence of parthenogenesis (around 5%) in current farm animal IVF systems (Beek et al. 2012, Heras et al. 2014, 2015). However, the presence of two pronuclei is not sufficient to distinguish normal fertilization from parthenogenesis in the horse. Using techniques such as pre-labeling sperm with MitoTracker Green FM/Hoechst, and lacoedm post-fixation, Leemans et al. (2015a) were able to differentiate fertilization (two polar bodies within the perivitelline space, two pronuclei and a sperm tail within the ooplasm) from parthenogenesis (one polar body, one or two pronuclei and no sperm tail) (Fig. 3). Recently, a staining technique to differentiate the paternal from the maternal pronucleus in equine zygotes produced by intracytoplasmic sperm injection (ICSI) was established (Heras et al. 2015), based on different histone 3 methylation (H3K9me3) patterns. This staining technique could, however, not be used in the procaine experiments because the procaine-exposed oocytes did not form normal pronuclei but instead produced condensed DNA fragments (Fig. 3).

Conclusion

For more than 25 years, co-incubation of mature oocytes with capacitated sperm has been the standard method for producing *in vitro* embryos in several species including man, cattle, pigs and many laboratory animals. In the horse, however, conventional IVF still does not work. Inadequate capacitation of stallion spermatozoa under *in vitro* conditions is probably the major obstacle. It appears that several factors required to induce capacitation in other mammalian species are not involved in equine sperm capacitation. However, biological and chemical capacitation triggers have been identified to facilitate tail-associated protein tyrosine phosphorylation and hyperactivated motility in stallion sperm. However, since the acrosome reaction cannot be induced reliably using these factors, further research should focus on capacitation-related changes that prepare the sperm plasma and outer acrosomal membranes for fusion. It will be necessary to verify that ‘improved’ capacitation conditions support (1) cholesterol depletion from the sperm plasma membrane, (2) lateral redistribution of lipid rafts in the apical region and ultimately (3) the zona pellucida-induced acrosome reaction. It is likely that the induction of appropriate sperm plasma membrane changes will support the acrosome reaction. Only fully capacitated stallion spermatozoa will be able to penetrate the cumulus and zona pellucida barriers to accomplish fertilization.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartially of this review.

Funding

This work was supported by the Research Foundation – Flanders (FWO-Flanders; grant number 1210517N) and EU COST Action 16119 CellFit.

References

https://rep.bioscientifica.com

Arnault C, Cardullo RA, Lemors JR & Flormann HM 1996 Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida. PNAS 93 13004-13009. (https://doi.org/10.1073/pnas.93.23.13004)

Arnault C, Kazam IG, Visconti PE, Kopf GS, Villaz M & Flormann HM 1999 Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. PNAS 96 6577-6572. (https://doi.org/10.1073/pnas.96.12.6577)

Austin CR 1952 The capacitance of the mammalian sperm. Nature 170 126. (https://doi.org/10.1038/170126a0)

Downloaded from Bioscientifica.com at 03/28/2019 04:23:06AM via free access
Sperm capacitation in the horse

Downloaded from Bioscientifica.com at 03/28/2019 04:23:06AM via free access

https://rep.bioscientifica.com
Sperm capacitation in the horse

Mahony MC & Gowthauxy T 1999 Protein tyrosine phosphorylation during hyperactivated motility of cynomolgus monkey (Macaca fascicularis) spermatozoa. *Biology of Reproduction* 60 1239–1243. (https://doi.org/10.1095/biolreprod60.5.1239)

Marquez B & Suarez SS 2004 Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. *Biology of Reproduction* 70 1626–1633. (https://doi.org/10.1095/biolreprod70.3.162476)

Marquez B & Suarez SS 2007 Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2+ influx. *Biology of Reproduction* 76 660–665. (https://doi.org/10.1095/biolreprod76.4.653038)

Plazibat DA, Martin-Munoz P, Tapia JA, Ortega-Ferrusola C, Balao da Silva CC & Pena FJ 2015 Inhibition of mitochondiral Complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. *PloS One* 10 e0138777. (https://doi.org/10.1371/journal.pone.0138777)

Pommier AC, Ruttllant J & Meyers SA 2003 Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions. *Biology of Reproduction* 60 1208–1214. (https://doi.org/10.1095/biolreprod60.2.11106)

Intracellular calcium increases with 1995 Regulation of sperm motility: emerging 2010 How pig 2000 Evidence for the involvement of calmodulin b

Suarez SS, Vincenti L & Ceglia MW
Suarez SS & Pacey AA
Suarez SS
Stauss CR, Votta TJ & Suarez SS
Smith GD, Wolf DP, Trautman KC, da Cruz e Silva EF, Greengard P & Si Y & Olds-Clarke P
Si Y
Shingyoji C, Murakami A & Takahashi K
Saaranen MJ, Calvo L, Dennison L, Banks S, Bustillo M, Dorfmann AD, Roggero CM, De Blas GA, Dai H, Tomes CN, Rizo J & Mayorga LS
Roasa LM, Choi YH, Love CC, Romo S, Varner DD & Hinrichs K
Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL & Clapham DE

Tateno H, Kropf D, Hino T, Sanchez-Cardenas C, Darszon A, Yanagimachi R & Visconti PE 2013 Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. PNAS 110 18543–18548. (https://doi.org/10.1073/pnas.1311111110)

Tsai PS, Brewis IA, van Maaren J & Gadella BM 2012 Involvement of complexin 2 in docking, locking and unlocking of different SNARE complexes during sperm capacitation and induced acrosomal exocytosis. PLoS One 7 e32603. (https://doi.org/10.1371/journal.pone.0032603)

Visconti PE, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P & Kopf GS 1995b Capacitation of mouse spermatozoa. II.

https://rep.bioscientifica.com
Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121 1139–1150.

Wargo MJ & Smith EF 2003 Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. PNAS 100 137–142. (https://doi.org/10.1073/pnas.0135800100)

Weaver CD, Partridge JG, Yao TL, Moates JM, Magnuson MA & Verdoorn TA 1998 Activation of glycine and glutamate receptors increases intracellular calcium in cells derived from the endocrine pancreas. Molecular Pharmacology 54 639–646.

Received 15 October 2018
First decision 10 December 2018
Revised manuscript received 25 December 2018
Accepted 4 February 2019