Elevated heme impairs macrophage phagocytosis in endometriosis

Yu-Yin Liu1,*, Yu-Kai Liu1,*, Wen-Ting Hu1, Ling-Li Tang1, Yan-Ran Sheng1, Chun-Yan Wei1, Ming-Qing Li1,2,3 and Xiao-Yong Zhu1,2,3

1Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China, 2NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China and 3Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Correspondence should be addressed to M-Q Li or XY Zhu; Email: mqli@fudan.edu.cn or zhuxiaoyong@fudan.edu.cn

*Y-Y Liu and Y-K Liu contributed equally to this work

Abstract

Endometriosis (EMS) is a chronic inflammatory disease characterized by the presence of extrauterine endometrial tissues. It has been previously reported that the refluxed blood containing viable endometrial tissues and the defective elimination of peritoneal macrophages in the pelvic cavity may involve in EMS pathogenesis. However, the mechanism by which macrophages exhibit attenuated phagocytic capability in EMS remains undetermined. Herein, we found that heme, the byproduct of lysed erythrocytes, accumulated abnormally in the peritoneal fluid (PF) of patients with EMS (14.22 μmol/L, 95% confidence interval (CI): 12.54–16.71), compared with the EMS-free group (9.517 μmol/L, 95% CI: 8.891–10.1053). This abnormal accumulation was not associated with the color of PF, phase of the menstrual cycle or severity of the disease. The reduced phagocytic ability of peritoneal macrophages (pMφs) was observed in the EMS group. Consistently, a high-concentration (30 μmol/L) heme treatment impaired EMS-pMφs phagocytosis more than a low-concentration (10 μmol/L) heme treatment. A similar phenomenon was observed in the EMS-free control pMφs (Ctrl-pMφs) and the CD14+ peripheral monocytes (CD14+ Mos). These results indicated that a high heme concentration exhibits a negative effect on macrophage phagocytosis, which supplements the mechanism of impaired scavenger function of pMφs in EMS.

Introduction

Endometriosis (EMS) is a chronic inflammatory disease that is characterized by the presence of extrauterine endometrial-like tissue. EMS is estimated to affect approximately 5–10% of women of reproductive age who exhibit pelvic pain, dysmenorrhea, dyspareunia and infertility (Zondervan et al. 2018). To some extent, these symptoms can be alleviated via treatment including with hormonal medication or surgical lesion removal. However, patients have been revealed to exhibit undesirable side effects like contraception with progestin drug treatment and have a post-operative EMS recurrence of 30–50% after 2–5 years (Vercellini et al. 2010, Leeners et al. 2018). Hence, this disease not only causes enormous physical and psychological distress on patients (Gambadauro et al. 2019), but also imposes a heavy economic burden on their families as well as the national health care system (Soliman et al. 2018).

The most widely accepted hypothesis for the etiology of EMS is Sampson’s theory of retrograde menstruation (Sampson 1927). Menstrual blood from the uterine cavity is refluxed through the fallopian tubes and releases erythrocytes, endometrial tissue and cell debris into the peritoneal environment, and subsequently viable endometrial stromal cells (ESCs) implant and grow. Sampson’s theory helps to explain the increased prevalence of EMS in women with congenital menstrual outflow tract obstruction (Dietrich et al. 2014) and asymmetrical distribution of endometriotic lesions in the abdominopelvic cavity (Vercellini et al. 2007). However, this theory fails to explain why retrograde menstruation occurs in 61–90% women (Halme et al. 1984, Symons et al. 2018) but only 10% develop EMS.

It has also been suggested that the impaired immune surveillance may result from the dysfunction of immune cells, including Foxp3+ regulatory T (Treg) cells, natural-killer (NK) cells and macrophages, and this may contribute to the formation and development of endometriotic lesions (Wei et al. 2016, Yang et al. 2017, Symons et al. 2018). Macrophages, as the predominant immune cells in peritoneal cavity, serve a role in...
exacerbating inflammation and sustaining EMS, and the mechanism by which this occurs has gained increased attention in recent years. An accumulation of studies have revealed that macrophage populations are significantly increased in the PF and eutopic endometrium, and pro-inflammatory cytokines secretion increases (Berbic et al. 2009, Zhang et al. 2018). However, macrophages have also presented decreased phagocytic ability and failure to remove endometriotic tissue from the peritoneal cavity (Riccio et al. 2018), facilitating tissue adhesion to extraterine structures (Shao et al. 2016, Chan et al. 2017). In previous studies, Mei et al. have linked the impaired phagocytosis with the activation of IL-33 and overexpression of indoleamine 2,3-dioxygenase-1 (IDO1) in ecticite ESCs. Chuang and Wu focused on the suppressive effect of prostaglandin E$_{2}$, which was revealed to reduce scavenger receptor CD36 and matrix metalloproteinases expression (Wu et al. 2005, 2013, Chuang et al. 2009, 2010).

Heme is a complex of iron with protoporphyrin IX (PPIX) and is the prosthetic group of many essential biological proteins. Specially, it participates in the formation of hemoglobin (Hb) and erythrocytes (Immenschuh et al. 2017). During hemolysis, ruptured erythrocytes release Hb. After exhausting the corresponding scavenging proteins haptoglobin (Hp), cell-free Hb is rapidly oxidized and further releases free heme. Without being chelated, heme can cause oxidative damage and inflammation (Chiabrando et al. 2018). To prevent this harmful effect, heme scavenger hemopexin (Hx) binds to heme and forms a heme–Hx complex, which is subsequently taken up by cells through receptor-mediated endocytosis. Once incorporated into the cell, heme is degraded by heme oxygenase-1 (HO) into equimolar amounts of CO, iron and biliverdin (Vijayan et al. 2018). However, under pathological conditions, the capacity for the organism to scavenge heme may saturate and the increased heme can cause tissue damage via pro-oxidant and immunoregulatory effects (Martins & Knapp 2018).

Previous studies have demonstrated that women with EMS exhibit shorter menstrual cycles and higher volumes of refluxed menstrual blood compared with healthy women (Parazzini et al. 2017, Shafrir et al. 2018). In patients developing EMS, bleeding from red endometrial lesions may further increase the number of erythrocytes. Therefore, it is reasonable to assume that heme, as a byproduct of lysed erythrocytes, may accumulate in the peritoneal cavity of patients with EMS. This causes a high level of free heme that can exert its oxidative effect and immunoregulatory effect, which may help to build the defective peritoneal disposal system in EMS. Herein we aimed to verify the existence of abnormal heme accumulation in the pelvic cavity of patients with EMS and further assess the association between heme and macrophages. This study revealed the potential effect of heme on pMψs phagocytosis.

Materials and methods

Patients and samples collection

The current study was approved by The Human Ethics Committee of Obstetrics and Gynecology Hospital, Fudan University. All donors provided written informed consents. The patients included in the current study were premenopausal women (aged 22–49 years) who attended the Obstetrics and Gynecology Hospital of Fudan University between January 2018 and April 2019. No patients received hormonal therapy within 6 months prior to surgery. Endometriosis stage was diagnosed according to the revised American Society for Reproductive Medicine Staging (1997). Endometriotic tissues and endometriotic PF were collected from women who had undergone laparoscopic surgery for ovarian endometriosis (n = 45), which was confirmed by pathological assessment. Control endometrial tissues were obtained from premenopausal women who had undergone fractional curettage but exhibited no abnormalities after pathological examination (n = 35). Control PF was collected from premenopausal women undergoing laparoscopic surgery but exhibited no evidence of endometriosis, including patients exhibiting uterine fibroid, mature teratoma or ovarian simple cyst (n = 45). PF samples were divided into two groups by color and included a reddish and yellowish group. Peripheral blood samples were obtained from healthy volunteers (n = 20). All samples were collected under sterile conditions.

ESCs isolation and culture

Human endometrial and endometriotic tissues were purified as previously described (Wei et al. 2016). Tissues were cut into 1 mm pieces and digested into single-cell suspensions using collagenase type IV (0.001 g/mL, Sigma-Aldrich) for 30 min at 37°C with a constant agitation. Nylon strainers (100, 300 and 400 μm) were subsequently used to filter the resulting suspension. The filtrate was collected and centrifuged at 288g for 8 min at 4°C. Later the supernatant was discarded and the cell sedimentation was resuspended in Dulbecco’s Modified Eagle Medium (DMEM)/F12 complete medium with 10% fetal bovine serum (FBS; Hyclone) and 100 U/mL of penicillin and 100 mg/mL of streptomycin. Finally, the suspended cells were plated into culture flask in 5% CO$_{2}$ at 37°C. The culture medium was replaced every 3 days. Flow cytometry (FCM) analysis was used to verify the purity of vimentin$^+$ cytokertatin7$^+$ ESCs (>95%). Additionally, the HESC cell line (human ESCs derived from a uterine myoma) was used in the experiments, which was a generous gift from Professor Zhao Dong (Shanghai First Maternity and Infant Hospital, Tongji University). This cell line was maintained in the same condition as the ESC isolated from tissues.

Treatment of PF and peripheral blood

PF was centrifuged at 450g for 8 min at 4°C. The supernatant was collected and stored at −80°C. The cell pellet was treated with Red Blood Cell Lysis Buffer (BioLegend, San Diego, USA) for 10 min at 4°C and washed with PBS twice. Subsequently human anti-CD14 microbeads (Miltenyi Biotec,
Bergisch Gladbach, Germany) were used to select peritoneal macrophages (pMøs), according to the manufacturer’s protocol. Peripheral blood mononuclear cells (PBMCs) were firstly isolated from peripheral blood samples using Ficoll-Hypaque density gradient centrifugation. CD14+ monocytes (CD14+ Mos) were subsequently purified from PBMCs using human anti-CD14 microbeads. The purity of pMøs or CD14+ Mos was >95% as determined by FCM.

Heme measurement

Peritoneal heme concentration was measured by using the Heme Assay kit (MAK316, Sigma-Aldrich). A total of 250 μL of water was added into wells in a 96-well plate to create a blank well, while 50 μL of heme calibrator and 200 μL of water was mixed to create a standard well. A total of 50 μL of samples were pipetted from each PF supernatant and subsequently mixed with 200 μL of reagent respectively. After 5-min incubation at room temperature, the absorbance of well contents was determined at 400 nm. All samples and standards were performed in duplicate. Total heme concentration of a sample was determined using the following equation:

\[
\text{Heme concentration (μmol/L)} = \frac{\text{OD}_{\text{sample}} - \text{OD}_{\text{blank}}}{\text{OD}_{\text{calibrate}} - \text{OD}_{\text{blank}}} \times 62.5 (\mu\text{mol/L}).
\]

Heme

Heme (hemin, Sigma-Aldrich) was first dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich) to create a stock concentration of 20 mM, filtered through a 0.02 mm syringe filter unit to assure sterility and subsequently stored at −20°C. This was then diluted to different concentrations (10, 30 μmol/L) in complete RPMI 1640 medium with 10% FBS immediately prior to use. Heme concentrations of the ultimate solution were verified by a Heme Assay kit based on the potential scavenging proteins, including hemopexin and albumin). The DMSO concentration of the ultimate solution was kept lower than 0.1% in all experiments.

Quantitative real-time PCR

Total RNA was extracted from cells using RNAiso Plus reagent (TaKaRa Biotechnology), according to the manufacturer’s protocol. Total RNA (500 ng) was reverse transcribed into first-stand cDNA (RR036A, TaKaRa Biotechnology) following the manufacturer protocol. cDNA was subsequently amplified with TB Green (RR820A, TaKaRa Biotechnology) and specific primers (detailed sequences listed in Table 1) (Sangon Biotech, Shanghai, China) using the ABI PRISM 7900 Sequence Detection System (Applied Biosystems). PCR was performed for 40 cycles using the following conditions: denaturizing at 95°C for 30 s, annealing at 55°C for 5 s and elongation at 60°C for 34 s. The mRNA expression of the samples was normalized using the 2^−ΔΔCT method. All measurements were performed in triplicate.

Phagocytosis assay

To assess phagocytosis efficiency, 10^5 macrophages were plated into 96-well low attachment plates and treated with different concentration of heme (10, 30 μmol/L) or DMSO for 20 h. CFSE-labeled (BioLegend) HESCs were then incubated with Møs at a ratio of 1:1 at 37°C for 4 h. After a 4-h coculture, cells in the 96-well plates were transferred to 1.5 mL EP tubes, washed by PBS and stained with allophycocyanin(APC)-conjugated anti-CD45 (BioLegend) to mark Møs. The phagocytosis ratio was determined using FCM and was calculated as follows: CD45^+CFSE^±cells/CD45^−cells × 100%.

Flow cytometry (FCM)

Fluorochrome-conjugated antibodies of human antigens were used for flow cytometry analysis and included allophycocyanin(APC)-conjugated anti-CD45 (BioLegend), Percp/cy5.5-conjugated anti-CD45 (BioLegend), APC/Cy7-conjugated anti-CD14 (BioLegend). Cells were washed with PBS on ice and then incubated with the corresponding fluorescent-labeled antibody for 30 min at 4°C, according to the recommended dosage. Isotype controls were used. Following incubation, cells were washed in PBS and analyzed immediately. Sample data were collected in a CyAn ADP analyzer (Beckman Coulter) and analyzed using FlowJo version10 software for Windows (Tree Star).

Statistical analyses

Data collected from at least three independent experiments were analyzed using the Graphpad Prism statistical package (GraphPad Software). Data normality was tested using the Shapiro-Wilk test. Comparisons were performed using an

Table 1 The sequences of primers used for qRT-PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Size (bp)</th>
<th>Forward primer (5’−3’)</th>
<th>Reverse primer (5’−3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>281</td>
<td>CTAACCTATGAAGATCTTACCC</td>
<td>AGTTGAAAGTGTTTCTTGAGT</td>
</tr>
<tr>
<td>CD163</td>
<td>127</td>
<td>GCCAACAACAGCTGCTACCC</td>
<td>CAAGGCCTGTCTCCTCTTG</td>
</tr>
<tr>
<td>CD91</td>
<td>154</td>
<td>TTGTCGCTGCTGCTGCTTCTG</td>
<td>GCCTCGGCGTCGCTACATCCT</td>
</tr>
<tr>
<td>HCP1</td>
<td>106</td>
<td>GCTCCTGCTGATACCTACCTTC</td>
<td>CAATTGTGCTGCGTGCGGAC</td>
</tr>
<tr>
<td>FLVR1</td>
<td>122</td>
<td>GCTCCTGCTTCTGCTTCTTCT</td>
<td>GTGGACCAAGAGCAGCAGAG</td>
</tr>
<tr>
<td>FLVR2</td>
<td>84</td>
<td>TGGTCTGCTGCTGCTGCTTCTG</td>
<td>GGCGACATCGCATGCGGAT</td>
</tr>
<tr>
<td>ABCC1</td>
<td>128</td>
<td>GGCATCACAGCAGATCACGAGT</td>
<td>ATCGAAGGATCACGAGGAAT</td>
</tr>
<tr>
<td>HRG1</td>
<td>195</td>
<td>TCTCCTGCTGAGGCTGCTGC</td>
<td>CGCAAGACGCGGCGGAAGA</td>
</tr>
<tr>
<td>HO-1</td>
<td>118</td>
<td>TGGCGTCAGGGACAGGTACC</td>
<td>TGTTGCGACAGGAGGCGGAT</td>
</tr>
<tr>
<td>BARCH1</td>
<td>154</td>
<td>GTGGACAGCGAGAAGGGCGAAG</td>
<td>TACCACACGGCGACACTAGG</td>
</tr>
<tr>
<td>NRF2</td>
<td>124</td>
<td>ACGGTATGCAACAGGACATAGG</td>
<td>TGTCCTGCTGAGTTGGAACAG</td>
</tr>
</tbody>
</table>

https://rep.bioscientifica.com

Reproduction (2019) 158 257–266

Downloaded from Bioscientifica.com at 01/15/2022 08:30:35AM via free access
unpaired t-test or Mann–Whitney, one-way ANOVA with Turkey’s multiple comparisons or Kruskal–Wallis test followed by Dunn’s test as indicated in the corresponding figure legends. Data that were normally distributed are presented as the mean ± S.E.M., while non-normal data are presented as the median ± 95% confidence interval (CI). Statistical significance is indicated by \(P < 0.05 \).

Results

The concentration of heme is higher in PF in EMS patients

The concentration of heme was 14.22 μmol/L (95% CI: 12.54–16.71) in the supernatant of the PF of patients with endometriosis. This was higher than 9.517 μmol/L (95% CI: 8.891–10.1053) in the control group (Fig. 1A). The PF samples were divided into a reddish group and a yellowish group. After centrifugation, all the supernatant became yellow transparent liquid but reddish PF contained more erythrocytes in the pellets. Considering that the number of erythrocytes in PF may interfere with the concentration of heme, the heme level in the reddish PF and yellowish PF was assessed and no significant differences were exhibited (Fig. 1B). The heme level of the EMS and control group was also examined in relation to the PF color. This revealed that heme level in the EMS group was always higher than that in control group, irrespective of PF color (Fig. 1C). Samples were subsequently classified by menstrual cycle and disease severity but no differences were exhibited between groups (Fig. 1D and E).

Heme metabolism molecules are elevated in both ectopic ESCs and the pMps of EMS

To explore if heme exhibited an effect on ESCs, qRT-PCR was used to evaluate the expression of the molecules associated with heme metabolism. CD163 and CD91 are the receptors that mediate the Hb–Hp complex internalization and heme–Hx complex internalization respectively. This results in cellular heme uptake (Ponka et al. 2017). The cytoplasmic heme importer, named heme carrier protein 1 (HCP1), is expressed in the cytoplasmic membrane of duodenal epithelial cells and is believed to participate in dietary heme absorption. Feline leukemia virus subgroup C receptor (FLVCR) 2 is an additional protein that has been revealed to mediate heme uptake (Fujiwara & Harigae 2015). HRG1 has been demonstrated to be a special heme transporter due to the fact that it localizes to the phagolysosomal membranes and transports heme from the phagolysosome to the cytoplasm during erythrophagocytosis (White et al. 2013). Once delivered inside cells, heme is used to generate new hemoproteins or is catabolized by HO-1. The activation of HO is regulated via a heme-dependent pathway that is associated with the downregulation of the nuclear transcriptional repressor BTB domain and CNC homolog 1 (BACH1) and the upregulation of

![Figure 1](https://rep.bioscientifica.com)
nuclear transcription erythroid 2-related factor (NRF2) (Chiang et al. 2018). Excess heme, produced subsequent to the degradation system being overwhelmed, is transported out of the cell via cell-surface heme exporter FLVCR1 and PPIX exporter ATP-binding cassette protein (ABCG2) (Immenschuh et al. 2017) (Model graph seen in Fig. 2A).

We found that compared with normal ESCs (NESCs), ectopic ESCs (EESCs) upregulated the expression of CD91, FLVCR2, HO-1 and NRF2 and downregulated BACH1, suggesting that an increased amount of heme was transported into cells and catabolized. Heme exporter ABCG2 was also upregulated (Fig. 2B). The expression of these molecules in the peritoneal macrophages of endometriotic patients (EMS-pMϕs) was also compared with patients who did not exhibit EMS (Ctrl-pMϕs). Similar trends were demonstrated in the peritoneal macrophage. However, only HO-1 and HRG1 expression exhibited significant differences when compared with the control and the EMS group had significant differences (Fig. 2C).

Impaired phagocytosis of pMϕs in patients with EMS

To further assess the phagocytosis of macrophage from EMS patients, firstly the purity of macrophages isolated from PF was investigated and the result revealed that macrophage purity was above 95% (Fig. 3A). FCM data revealed that the phagocytosis ratio of peritoneal macrophages in EMS was lower compared with the control group (Fig. 3B and C), which was consistent with results of previously published studies (Wu et al. 2013).

High level of heme impairs the phagocytic ability of macrophage

To investigate whether the effect of heme on macrophage phagocytosis was universal or not, three types of macrophages, including peritoneal macrophage from patients with EMS (EMS-pMϕ) or without EMS (Ctrl-pMϕ) and CD14+ peripheral monocyte (CD14+Mo) were used. Subsequent to the isolation from the PF or PBMC by anti-CD14 microbeads, three kinds of macrophages were treated with different concentration of heme or DMSO in 96 wells for 20h respectively, prior to coculture. Medium with a 10 μmol/L heme concentration was used to mimic the low heme peritoneal environment of the control group, while medium with 30 μmol/L heme was used to mimic the high heme peritoneal environment in the EMS group.

The results revealed that a higher heme concentration impaired the phagocytic ability of EMS-pMϕ when compared with the low heme concentration treatment (Fig. 4A and B). A similar phenomenon has been observed in Ctrl-pMϕ and CD14+Mo (Fig. 4C, D and E). However, when compared with the DMSO treatment, the effect of a low heme concentration was varied in different macrophages. In the CD14+Mo group, the negative effect of heme on the phagocytic ratio was dose dependent (Fig. 4F). In relation to EMS-pMϕ or Ctrl-pMϕ, the dose-dependent phenomenon was not observed (Fig. 4B and D).

Discussion

This study has found that women with EMS had significantly higher heme levels in the PF compared with the control group. Heme level was not correlated with the differences in PF color, phase of menstrual cycle or disease severity. However, it should be noted that previous work performed by Wolfler revealed no significant differences in peritoneal heme concentration between an endometriosis group or control group (Wolfler et al. 2013). Possible explanations for the discrepancies between the studies may be due to different methods of centrifugation (not mentioned in Wolfler’s article) and PF sample size. Wolfler verified lower Hx level in the PF of patients with EMS, Hx exhaustion, being the scavenger protein with highest binding affinity to heme, usually indicates the presence of increased heme (Hahl et al. 2017).

There is an abundance of indirect evidence in previous research implying a heme overload in the peritoneal environment of patients with EMS. The increased Hb concentration has been revealed in the PF (Van Langendonckt et al. 2002), providing possibilities for the accumulation of its byproduct, heme. It is well known that HO-1, the inducible HO isoform, is highly upregulated by heme to protect cells against oxidative damage and apoptosis (Immenschuh et al. 2017). In the results gained in the present study, HO-1 overexpression was revealed in EESC and EMS-pMϕ, indicating that cells may live in a high heme environment. Additionally, cells exhibiting FLVCR2 overexpression were demonstrated to exhibit a heightened sensitivity to heme overload (Duffy et al. 2010). The results of the current study identified the upregulation of FLVCR2 and an additional heme importer CD91, in EESC. Notably, EESC also increased the expression of heme exporter ABCG2, which may indicate that the intracellular heme degradation system is overwhelmed and excess heme requires exportation out of cell to avoid heme toxicity. The differential gene expressions of heme metabolism molecules further sustains the assumption that heme is accumulated in the peritoneal cavity of EMS patients.

Many studies have concluded that heme serves a role as an oxidant in the pathogenesis of EMS (Van Langendonckt et al. 2002, Iwabuchi et al. 2013, Vitale et al. 2018). Heme can trigger reactive oxygen species (ROS) production, exacerbating the oxidant/antioxidant imbalance in EMS (Donnez et al. 2016). Excess ROS can cause oxidative damage in the peritoneal mesothelium, inducing adhesion for ESC. On the other hand, the metabolism of heme by HO-1 can generate
Iron overload has been revealed in endometriotic endometrial tissues, endometriotic cyst fluid and the PF of patients with EMS (Asghari et al. 2018). Free iron produces ROS via the Fenton reaction and also increases endometrial cells proliferation and angiogenesis in EMS (Scutiero et al. 2017). Until now, most previous

Figure 2 Heme metabolism molecules are elevated in both the ectopic ESCs and the pMφs of EMS. (A) A schematic diagram shows the molecules that are associated with heme metabolism. ‘↑’: the direction of heme transport. (B and C) Relative mRNA expression of heme metabolism molecules in (B) ESCs (n = 8) and (C) pMφ (n = 6). Data are presented as the mean ± S.E.M.; two-tailed, unpaired t-test; *P < 0.05, **P < 0.01.
studies have focused on the oxidative function of heme. However, these studies did not assess the immunological function which may facilitate the intense inflammatory response and may be involved in the impaired immune surveillance in EMS.

Emerging evidences has demonstrated how heme affects the function of various immune cells including macrophages (Martins & Knapp 2018, Zhong & Yazdanbakhsh 2018). Heme can activate macrophages and induce the pro-inflammatory cytokines or chemokines including tumor necrosis factor (TNF), leading to neutrophil migration. Heme has also been revealed to activate the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome and upregulate TLR-dependent pro-inflammatory responses in murine macrophages (Vijayan et al. 2018). Additionally, heme can regulate the phagocytic potential of macrophages. In Martins research, human and murine macrophages undergoing heme treatments exhibited strongly impaired bacterial phagocytosis, allowing for unrestrained bacterial proliferation and an impaired outcome of E. coli sepsis. This process requires the activation of the GTP-binding Rho family protein Cdc42 using the guanine nucleotide exchange factor DOCK8 (Martins et al. 2016). Hualin also demonstrated that heme-activated murine macrophages appeared to enhance phagocytosis (Hualin et al. 2012), the opposite result to those recorded by Martins et al. The dose of heme for the former experiment was 3, 10 and 30 μmol/L and subjects were human monocyte-derived and mice peritoneal macrophages. However, the latter experiment used 5 μmol/L of heme to treat primary rat alveolar macrophages. This indicated that the effect of heme on macrophages may vary across a variety of cell types and concentrations of heme treatment.

In our research, the existence of heme accumulation was demonstrated in patients with endometriosis, and the efficiency of macrophage phagocytosis was assessed under different heme concentration, indicating the association between heme accumulation and decreased macrophage function in EMS. Despite the vague effect of low heme concentrations, high heme treatment, which mimics the peritoneal environment in EMS patients, impaired macrophage phagocytosis and thus provides a novel perspective in the explanation of the dysfunction of macrophage in EMS. Combined with the measurement of the concentration in the PF, the results suggest that in normal situations, viable ESCs reflux into the peritoneal cavity with retrograded blood, red blood cells rupture and a small amount of heme is released into the peritoneal cavity. Both peritoneal macrophages and recruited CD14+Mos could eliminate excess heme and shed ESCs. In patients exhibiting EMS, a high level of heme accumulates due to the large amount of menstrual blood that is refluxed into the peritoneal cavity and the repeated hemorrhage from endometriotic lesions.

Figure 3 Phagocytosis of pMφs is reduced in patients with EMS. (A) Representative image of the purity of magnetically isolated pMφs using FCM. The number is the percentage of CD14+CD45+ cells. (B) Representative image of phagocytosis ratio of pMφs in women with or without EMS verified by flow cytometric analysis. Phagocytosis ratio = CFSE−CD45+cells/CD45+cells. (C) Quantification of phagocytosis ratio of pMφs of women with or without EMS; n = 12. Data are presented as the mean ± S.E.M.; two-tailed, unpaired t-test; ***p < 0.001.

https://rep.bioscientifica.com
High concentrations of heme can significantly impair the phagocytic potency of the recruited CD14⁺Mos and resident pMφs and can lead to shed endometriotic cells remaining and finally causing endometriosis (Fig. 5).

According to previous studies, the increase of IDO1, PGE2 and IL-33, and the decrease of CD36, MMP9 and annexin A2 are associated with impaired phagocytosis of the peritoneal macrophage in EMS (Wu et al. 2005, 2013, Chuang et al. 2009, 2010, Mei et al. 2014). In particular, CD36 has been found to be regulated by heme in Alzheimer’s disease, where it mediates the impaired astrocytic capacity of scavenging β-amyloid (Sankar et al. 2018). IDO1 is a heme-dioxygenases enzyme that catalyzes the metabolism of L-tryptophan. L-tryptophan is also stimulated by heme and the heme byproduct iron in *Mycobacterium leprae* (de Mattos Barbosa et al. 2017). This study proposes the possibility that CD36 and IDO1 may be downstream molecules of heme that participates in the regulation of macrophage phagocytic function. The effects of heme on other molecules, including PGE2, IL-33 and MMP9, are quite ambiguous (Ma et al. 2017, Min et al. 2017, Lv et al. 2018) and cannot extend directly to EMS. Therefore, further work is required. Besides, the mechanisms by which EMS-pMφ and CD14⁺ Mo behave differently in low heme concentration remains to be established.

To summarize, our data revealed that an excess of heme exists in the pelvic cavity of patients with EMS and this causes impaired phagocytosis of the peritoneal macrophages. This finding not only provides support for the theory of immune dysfunction in the
pathogenesis of EMS, but also provides new perspective in the development of improved treatments in this refractory disease.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC, No. 81671457 and No. 81871143) to Xiao-Yong Zhu, the NSFC 31671200, 91542108, 81471513, the Shanghai Rising-Star Program 16QA1400800 and the Innovation-oriented Science and Technology Grant from NPFPC Key Laboratory of Reproduction Regulation (CX2017-2) to Ming-Qing Li.

Acknowledgements

The authors thank Rongmin Wang for the collection of tissue. They also acknowledge the gynecologists at the Obstetrics and Gynecology Hospital of Fudan University for the provision of endometrial tissues and peritoneal fluid.

https://rep.bioscientifica.com

References

Reproduction (2019) 158 257–266
Y.-Y Liu, Y.-K. Liu and others

Received 17 January 2019
First decision 29 March 2019
Revised manuscript received 10 June 2019
Accepted 2 July 2019

Reproduction (2019) 158 257–266
https://rep.bioscientifica.com