A TECHNIQUE FOR PERFUSION OF RAT TESTES IN SITU THROUGH THE INTERNAL SPERMATIC ARTERIES

P. M. FREDERIK AND L. G. VAN DOORN

Department of Biochemistry, Division of Chemical Endocrinology, and Department of Cell Biology and Genetics, Medical Faculty, Erasmus University, Rotterdam, The Netherlands

(Received 11th September 1972)

For studying the action of hormones on the testis, perfusion techniques have certain advantages (Eik-Nes & Hall, 1965), such as minimal peripheral conversion or dilution of a labelled compound before it reaches the testes. Techniques for the perfusion of rabbit testes (VanDemark & Ewing, 1963) and the testes of sheep and goats have been described. Unlike the rat testis (see Christensen & Mason, 1965; Cooke, de Jong, van der Molen & Rommerts, 1972; Rommerts, van Doorn, Galjaard, Cooke & van der Molen, 1973), however, the rabbit, sheep and goat testes have the disadvantage that after the perfusion, they cannot be dissected into seminiferous tubules and interstitial tissue. This paper describes a technique for the perfusion of rat testes in situ and the evidence derived by this procedure for an oestradiol-17β-binding macromolecule in isolated interstitial tissue.

A schematic outline of the perfusion apparatus is shown in Text-fig. 1. Providing a normal flow of 1.5 to 3 ml/min was maintained, the temperature of the testis tissue measured with an NTC thermometer probe was 31° C.

The perfusion medium used was a Krebs-Ringer bicarbonate buffer, pH 7.4, containing 1 mmol glucose and 10 i.u. heparin/ml. Labelled oestradiol ([2,4,6,7-3H4]oestradiol-17β, specific activity 100 Ci/mmol; Radiochemical Centre, Amersham, England) was checked for radiochemical purity by paper and thin-layer chromatography. Oestradiol-17β (10 μCi) was dissolved in 0.5 ml Krebs-Ringer bicarbonate buffer and perfused into the testes as described below.

The mature Wistar rats used were allowed free access to food and water up to the moment of ether anaesthesia. The abdomen was opened by a mid-line incision and the intestines were displaced to the right. The peritoneum was stripped from the aorta between the level of the left renal vein and the common iliac arteries (see Text-fig. 2), and 200 i.u. heparin were injected into the liver. The retrograde cannula (a hypodermic needle 40 mm long × 1.2 mm o.d., with a slightly blunted tip) was inserted at the bifurcation of the aorta. The tip of the cannula was moved cranially close to the origin of the left internal spermatic artery and then fixed with a ligature placed cranial to the origin of the ileo-lumbar arteries. By means of the roller pump, the pressure in the perfusion
system was kept at the level of the blood pressure in the aorta (about 80 mm Hg). The jaws of an arterial clamp were modified (Text-fig. 2) to allow clamping of the aorta in the small region between the branching of the left renal artery and the aortic crossing of the left renal vein. After clamping the aorta, the internal spermatic arteries were perfused with medium. When the testes were brought into the peritoneal cavity through the inguinal canals, they appeared pale, indicating the replacement of blood by buffer in the testis circulation.

Text-fig. 1. Perfusion apparatus. The perfusion medium was pumped from the storage flask (1) by a roller pump (2) to the bubble trap (3). The flow rate in the perfusion system was determined by counting the droplets falling into the bubble trap. The perfusion pressure was measured by a mercury-filled U-tube (4) connected to the infusion line coming from the bubble trap. A three-way stopcock (5) was interposed at a short distance from the end of the infusion line. Through this stopcock, the contents of a syringe (6) could be added to the perfusion medium under a controlled pressure. As many parts as possible of the perfusion apparatus were placed in a temperature-controlled water bath (7) kept at 40°C.

After perfusion of buffer for 5 min, the roller pump was stopped and 3H-labelled oestradiol-17β was injected into the perfusion system by means of a syringe (6, Text-fig. 1) under controlled pressure. Perfusion by means of the roller pump was restored and continued for 1 min. The clamp on the aorta was then released and the testes were flushed with blood for less than 1 min, after which they were removed from the animal and kept at 0 to 4°C during the isolation of the oestradiol-17β receptor.

To prevent direct transfer of the infused compounds to the general circulation, perfusion has to take place only through the internal spermatic arteries. The outlet of the cannula was moved up the aorta close to the origin of the left internal spermatic artery (Text-fig. 2), thus excluding the lumbar arteries from
supply of blood or perfusion medium. The origin of the left ilio-lumbar artery is variable (Greene, 1963). The artery was excluded from the perfusion by fixing the cannula with a ligature cranial to its origin. With some animals, it was only possible to clamp the aorta cranial to the origin of the left renal artery. The left renal artery and vein were then also clamped near the hilus. With these precautions, perfusion will take place almost exclusively through the internal spermatic arteries. Before entering the general circulation, a small amount of the medium enters organs other than the testes through tiny branches of the internal spermatic artery which are difficult to clamp and which run to the epididymal fat and to the caput epididymidis. Anastomoses were also observed between the epididymal branch of the internal spermatic artery and the deferential artery which supplies the cauda epididymidis (Niemi & Kormano, 1965).

Electron microscope pictures of testis were obtained after glutaraldehyde (2.5%, in sodium cacodylate buffer at pH 7.4) perfusion according to the method described, followed by post-fixation in OsO₄ and routine dehydration, embedding and staining of thin sections. There was no ultrastructural evidence for hypoxia (Trump, Goldblatt & Stowell, 1965) or for tubular damage due to
the perfusion conditions (Linzell & Setchell, 1969), since the tubular structure appeared normal and Leydig cell mitochondria had matrix granules.

Perfusion in situ has greatly contributed to the characterization of oestradiol-17β-binding in the testis, because the radioactive oestradiol infused through the internal spermatic arteries was readily taken up by the cytosol in the testicular interstitial tissue. Far less radioactivity was found in the cytosol of the seminiferous tubules (Text-fig. 3).

The sedimentation profile of the interstitial cell cytosol showed a sharp peak of radioactivity in the 8S region. Only a small elevation in the corresponding region of the sedimentation profile was found for the tubular cytosol. The
Perfusion of rat testes in situ

specificity and affinity of this binding principle have been discussed by Brinkmann, Mulder, Lamers-Stahlhofen, Mechielsen & van der Molen (1972).

REFERENCES


