SPECIES DIFFERENCES IN THE LECTIN-BINDING SITES ON THE ZONA PELLUCIDA OF RODENT EGGS

T. OIKAWA,* R. YANAGIMACHI* AND G. L. NICOLSON†

*Department of Anatomy and Reproductive Biology, University of Hawaii
School of Medicine, Honolulu, Hawaii 96822, and †Cancer Council and
Electron Microscopy Laboratories, The Salk Institute for Biological Studies,
San Diego, California 92112, U.S.A.

(Received 12th September 1974)

Mammalian eggs are surrounded by a moderately thick transparent coat, the zona pellucida, which is believed to be an important site of sperm recognition and of the block to polyspermy (Braden, Austin & David, 1954; Austin, 1961; Dickmann, 1962; Yanagimachi, 1964; Barros, 1968; Barros & Yanagimachi, 1972; Hanada & Chang, 1972; Hartmann, Gwatkin & Hutchison, 1972; Yanagimachi, 1972; Gwatkin, Williams, Hartmann & Kniazuk, 1973; Hartmann & Hutchison, 1974). Little is known of the molecular structure of the zona pellucida, but available evidence indicates that it is composed of glycoproteins or glycopeptides or glycoproteins that bind to specific saccharide determinants (Oikawa, Yanagimachi & Nicolson, 1973; Oikawa, Nicolson & Yanagimachi, 1974; Nicolson, Yanagimachi & Yanagimachi, 1975). Some of these lectins can bind to the zona pellucida and induce egg agglutination and/or cause changes in the ability of the exterior region of the zona to scatter visible light (Oikawa et al., 1973, 1974; Oikawa, Nicolson & Yanagimachi, 1975). We report here that rodent eggs show species-specific differences in lectin-induced agglutination and light scattering properties of their zonae pellucidae when treated with Ricinus communis agglutinin I (RCAI), which recognizes β-linked β-galactose residues (Nicolson & Blaustein, 1972; Nicolson & Lacorbier, 1973), or wheat germ agglutinin (WGA), which recognizes N-acetyl-d-glucosamine and sialic acid residues (Burger & Goldberg, 1967; Greenaway & Levine, 1973).

Unfertilized eggs of the golden hamster, rat (Fisher) and mouse (Swiss albino) were obtained as follows. Adult hamster females were injected intraperitoneally with 20 to 30 i.u. PMSG (Ayerst, New York) on the morning of ovulation. This was followed by an intraperitoneal injection of 20 to 30 i.u. HCG (Ayerst) in the evening 2 days later. Adult mice were injected with 5 to 10 i.u. PMSG regardless of the stage of their oestrous cycle followed by an injection of 5 to 10 i.u. HCG 48 hr later. Prepubertal rats were injected with 20 to 30 i.u. PMSG.
followed by an injection with 20 to 30 i.u. HCG 48 to 56 hr later. Between 15 and 18 hr after injection of HCG, the animals were killed and their oviducts were flushed with Tyrode’s solution to collect eggs. The eggs were freed from the surrounding cumulus cells by treating them for 10 to 15 min at 25°C with Tyrode’s solution containing 0-1% crystalline bovine serum albumin (Reheis Chem. Co., Chicago, Illinois) and 0-1% bovine testicular hyaluronidase (300 USP units/mg; Nutritional Biochem., Cleveland, Ohio). After they had been rinsed with Tyrode’s solution containing 0-1% serum albumin, the eggs were placed in albumin-saline (0-01 M-tris-HCl: 0-9% NaCl: 0-1% serum albumin, pH 7-4) with various concentrations of RCA1 or WGA. The RCA1 (mol. wt 120,000) was prepared from Hale hybrid strain castor beans by affinity chromatography according to procedures of Nicolson & Blaustein (1972). The WGA was prepared from an impure wheat germ lipase preparation (Sigma Chem. Co., Saint Louis, Missouri) by affinity chromatography as described by Nicolson & Lacorbier (1973). After incubation in these solutions for 30 min at 25°C,

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of females from which eggs were recovered</th>
<th>Experiment</th>
<th>No. of eggs used</th>
<th>Concentration of RCA1 (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Hamster</td>
<td>4</td>
<td>Agglutination</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light scattering</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Mouse</td>
<td>4</td>
<td>Agglutination</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light scattering</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Rat</td>
<td>4</td>
<td>Agglutination</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light scattering</td>
<td>25</td>
<td>-</td>
</tr>
</tbody>
</table>

the eggs were tested for their ability to agglutinate and for changes in the light scattering properties of their zonae pellucidae. For agglutination experiments, the eggs in a lectin solution were aggregated by pushing about ten of them together with a needle. The dishes were then agitated to disperse the aggregates. Agglutination was qualitatively scored from 0 to 4+ as follows: 0, agitation caused the aggregates to disperse completely; 1+, aggregates containing two eggs each remained; 2+, aggregates contained about three to four eggs each; 3+, aggregates contained four to six eggs each; 4+, the egg aggregates remained completely agglutinated. Light scattering of the zona pellucida was qualitatively scored under dark field illumination from − to ++++ as follows: −, light scattering equivalent to untreated control eggs; +, light scattering slightly greater than controls; ++, moderate light scattering; ++++, strong or intense light scattering of the exterior region of the zona. Lectin-treated controls contained 0-1 M concentrations of appropriate saccharide inhibitors (lactose for RCA1 and N-acetyl-d-glucosamine for WGA).

Treatment of rodent eggs with RCA1 demonstrated species differences in the lectin-induced agglutination and light scattering properties of the zona (Table 1). Only 3 µg RCA1/ml was required to produce 4+ agglutination of hamster
lectin-binding sites on hamster, mouse and rat eggs

eggs, but 10 µg/ml were required for mouse eggs and 30 µg/ml for rat eggs to produce an equivalent agglutination. The hamster zona pellucida also showed the strongest RCAi-induced scattering of visible light (+ + + at 100 µg/ml), while the rat zona pellucida showed intermediate light scattering (+ + at 100 µg/ml). Mouse eggs failed to show light scattering of their zonae pellucidae after treatment with 100 µg RCAi/ml in spite of being maximally agglutinated at this lectin concentration. The egg agglutination and light scattering of the zonae pellucidae mediated by RCAi were specific because inclusion of an appropriate saccharide inhibitor (0·1 M-lactose or D-galactose) in RCAi solution completely abolished the effects.

In contrast to RCAi, WGA proved to be a poor agglutinin for rodent eggs (Table 2). Only rat eggs were appreciably agglutinated with WGA (1+ at 100 µg/ml). Both hamster and rat eggs showed strong WGA-induced light scattering of their zonae pellucidae (+ + + at 100 µg/ml), and mouse zonae showed moderate WGA-induced light scattering (+ + at 100 µg/ml) (Table 2). The agglutination and light scattering of the zonae pellucidae mediated by WGA were specific because inclusion of an appropriate saccharide inhibitor (0·1 M-N-acetyl-D-glucosamine) in WGA solution abolished the effects.

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of females from which eggs were recovered</th>
<th>Experiment</th>
<th>No. of eggs used</th>
<th>Concentration of WGA (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>4</td>
<td>Agglutination</td>
<td>40</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light scattering</td>
<td>24</td>
<td>— — ± ++ ++ ++</td>
</tr>
<tr>
<td>Mouse</td>
<td>4</td>
<td>Agglutination</td>
<td>42</td>
<td>0 0 0 0 0 ++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light scattering</td>
<td>25</td>
<td>— — — ++ ++</td>
</tr>
<tr>
<td>Rat</td>
<td>4</td>
<td>Agglutination</td>
<td>39</td>
<td>0 0 0 0 1+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light scattering</td>
<td>20</td>
<td>— — + ++ +++</td>
</tr>
</tbody>
</table>

These results indicate that there are species differences in the oligosaccharide lectin receptors on the zonae pellucidae of rat, mouse and hamster eggs. Although the significance of the receptor differences is unknown, it is tempting to speculate that the oligosaccharides on the mammalian zona pellucida are important in species recognition by gametes. It is possible that oligosaccharide residues of the zona glycopeptides have species-specific differences in sequence as well as in the relative amounts of each component, and that these differences are recognized by sperm surface receptors as a means of species recognition at fertilization.

This work was supported by grants from the Population Council, the Ford Foundation and U.S. Public Health Service (HD-03402) (R.Y.) and National Science Foundation (GB-34178) to one of us (G.L.N.). We thank Mrs C. A. Mahi for her assistance in preparation of the manuscript.
REFERENCES


