Culture of horse oocytes in vitro

J. Fulka, Jr and A. Okolski*

Research Institute of Animal Production, 251 61 Uhříněves, Prague 10, Czechoslovakia and
*Institute of Applied Animal Physiology, Academy of Agriculture Al. Mickiewicza 24–28,
Krakow, Poland

Summary. Oocytes were removed from follicles 5–30 mm in diameter. The germinal
vesicle was present in 69.6% (23/33) of the oocytes at the start of culture, but after
20–24 and 40 h 70.5% (12/17) and 68.2% (43/63) of the oocytes were in
metaphase I and metaphase II with first polar body extruded, respectively.

Introduction

Pincus & Enzmann (1935) were the first to observe that rabbit oocytes resume meiosis when
cultured outside the follicle. Since that time oocyte maturation has been investigated in many
mammals, including farm animals (for review, see Thibault, 1977). However, there is limited
knowledge of oocyte maturation in horses and the present study of horse oocytes in vitro was
therefore undertaken.

Materials and Methods

Oocytes were aspirated from antral follicles of different sizes (5–30 mm) in the ovaries of
slaughtered mares. The ovaries of 8–12 mares were usually taken at each collection. Oocytes in
the follicular fluid were transported to the laboratory in a container at 30°C. There they were
removed from the follicular fluid under a stereomicroscope and only those (80) with a compact
cumulus were used. The oocytes were washed 3 times in medium and cultured in 0.1 ml medium
under paraffin oil in 5% CO₂ in air at 37.5°C. The composition of medium was that described
by Pavlok & McLaren (1972) and modified by Motlik & Fulka (1974).

Two culture intervals, 20–24 h and 40 h, were chosen, and 33 oocytes served as a control of
nuclear stage at the start of culture. The cumulus cells were removed by gently sucking the
oocytes through a narrow pipette and the oocytes were mounted, fixed in acetic alcohol (1:3
v/v), stained with orcein and evaluated under a phase-contrast microscope.

Results

Approximately 30 oocytes were obtained in each collection, i.e. 3–5 oocytes per mare. Most
control oocytes (Table 1) were at the germinal vesicle stage with a clearly visible nucleolus, finely
granulated nucleoplasm and distinct nuclear membrane. Chromatin, intensively stained in a
horseshoe pattern, was detected at the periphery of the nucleolus (Pl. 1, Fig. 1), or as an
orcein-positive material distributed in the nucleoplasm.
Table I. Maturation of horse oocytes in culture

<table>
<thead>
<tr>
<th>Duration of culture (h)</th>
<th>No. of oocytes cultured</th>
<th>Germinal vesicle</th>
<th>Stage of meiosis reached</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metaphase I</td>
</tr>
<tr>
<td>0</td>
<td>33</td>
<td>23 (69-6%)</td>
<td>5</td>
</tr>
<tr>
<td>20–24</td>
<td>17</td>
<td>0</td>
<td>12 (70-5%)</td>
</tr>
<tr>
<td>40</td>
<td>63</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

After culture for 20–24 or 40 h, more oocytes were in metaphase I (Pl. 1, Fig. 2) and metaphase II (Pl. 1, Figs 3 and 4), respectively. Oocytes for which the stage of development was difficult to identify were classed as abnormal.

Discussion

The results presented here show that horse oocytes need a relatively long period for their nuclear maturation in vitro. In most mammalian species the sequence of chromosomal changes continues more rapidly, but pig (Motlik, 1972), human (Jagiello, Ducayen, Miller, Graffeo & Fang, 1975) and sheep (Quirke & Gordon, 1971) oocytes also have a longer maturation. The use of more oocytes for detailed studies would be desirable but in horses this possibility is limited by the low number of antral follicles in the ovaries, particularly in the autumn when these experiments were carried out and the sexual activity of mares is very low (Bielaniski, 1972; Driancourt, 1979).

The relatively large numbers of oocytes classified as abnormal are probably due to the derivation of the oocytes from atretic follicles, in spite of the selection before culture and the use of oocytes with cumulus cells. McGaughey, Montgomery & Richter (1979) showed that oocytes from pig follicles at different stages of atresia resume but do not complete meiosis.

Further studies of horse oocyte maturation should also consider the controversy about development in the preovulatory follicles; Hamilton & Day (1945) claimed that dictyate oocytes are normally ovulated and that maturation is completed in the oviduct, while Van Niekerk & Gerneke (1966) consider that metaphase II occurs shortly before ovulation. According to Webel, Franklin, Harland & Dziuk (1977) both observations are correct. These authors found freshly ovulated oocytes at metaphase II in pony mares and also oocytes which had not yet completed maturation. These oocytes were examined 42–52 h after hCG injection. It means that the time necessary for maturation in vivo and in vitro, observed in our experiments, is very similar.

J. Fulka thanks Professor W. Bielanski and Dr M. Tischner who made it possible to carry out this study and provided valuable discussion. The investigation was supported by grant No. MR 2.10 from the Agriculture Academy in Wroclaw, Poland.

References


McGaughey, R.W., Montgomery, D.H. & Richter, J.D.
Fig. 1. The nucleus of the oocyte at the start of culture. The nucleolus with condensed chromatin is visible. The nucleoplasm is finely granulated and surrounded by a nuclear membrane. Phase contrast, ×1900.

Fig. 2. Oocyte after 24 h of culture. The chromosomes are in metaphase I. Phase contrast, ×1900.

Figs 3 and 4. Oocytes after 40 h of culture, showing formation of the first polar body. Phase contrast, ×1200.

(Facing p. 214)
Germinal vesicle configurations and patterns of polypeptide synthesis of porcine oocytes from antral follicles of different size, as related to their competency for spontaneous maturation. J. exp. Zool. 209, 239–254.


Received 16 June 1980