Early evening prolactin rise in women with regular cycles

K. H. Tennekoon and E. A. Lenton

University Department of Obstetrics and Gynaecology, Jessop Hospital for Women, Sheffield S3 7RE, U.K.

Summary. Prolactin concentrations were measured in hourly integrated blood samples collected over 24 h in normally cyclic women during the follicular (N = 8) and the luteal (N = 7) phases of the menstrual cycle. Prolactin concentrations were increased during the evening in all the subjects when compared with the rest of the day-time wake-period. This rise was unrelated to sleep, and peak concentrations were seen at 20:00 h. During the luteal phase the magnitude of this evening rise of prolactin was significantly greater (P < 0.02 at 19:00 h and P < 0.001 at 20:00 h) when compared with the follicular phase, and was only slightly smaller than the magnitude of the sleep-induced prolactin rise. It is therefore suggested that there may be an intrinsic rhythm in prolactin secretion apart from the sleep-induced rise.

Introduction

The pulsatile nature of prolactin release and a sleep-dependent nocturnal rise in prolactin concentrations have been well documented for man (Sassin, Frantz, Weitzman & Kapen, 1972; Sassin, Frantz, Kapen & Weitzman, 1973; Parker, Rossman & Vanderlaan, 1973). These investigators observed a rise in prolactin concentrations within 90 min of sleep onset. Prolactin levels continued to rise throughout the sleep, reaching maximum concentrations in the early morning hours. On awakening prolactin concentrations decreased rapidly to reach minimum concentrations between 10:00 and 12:00 h. Studies carried out using sleep deprivation and inversion of the sleep–wake cycle confirmed this sleep-dependent nature of the nocturnal rise of prolactin. A rise of prolactin concentrations associated with day-time naps was also observed (Sassin et al., 1973; Parker et al., 1973). In addition to these findings, Sassin et al. (1973) reported a regular significant rise of prolactin at about 18:00 h and a smaller rise at 13:00 h which were unrelated to sleep. However, this observation does not appear to have been followed further. Apart from the sleep-dependent rise of prolactin, a cyclic variation in prolactin secretion throughout the menstrual cycle was reported by some investigators (Franchimont et al., 1976; Vekemans, Delvoye, L'Hermite & Robyn, 1977) although this was disputed by others (Tyson & Friesen, 1973; McNeilly & Chard, 1974). The present study was designed to examine the 24-h profile of prolactin secretion during the follicular and the luteal phases of the menstrual cycle.

Materials and Methods

Subjects. Twelve volunteers who were known to have regular, apparently ovulatory, cycles were recruited for this study and their informed consent was obtained. The length of the basal menstrual cycles varied from 26 to 31 days. The stage of the menstrual cycle was determined from basal body temperature records and menstrual dates. The mid-luteal phase was confirmed by plasma progesterone estimations. Four subjects were studied during both the follicular (between Days 3 and 10, Day 1 being the first day of menstrual bleeding) and luteal (between Days 17 and 27)
concentration.

collected
every
during
24-h
phases.

As
Sobowale
were
Biological
during
12:30
phase
and
between
With
relatively
is
shown
for
the
subjects
was
studied
and
between
06:00
07:00
and
18
11:00
and
16:00
but
then
began
to
rise,
reaching
peak
concentrations
between
20:00
and
21:00
h.
This
rise
was
separated
from
the
sleep
surge
by
a
nadir
at
23:00
h.
With
the
onset
of
sleep,
prolactin
concentrations
again
rose
rapidly
to
reach
peak
concentrations
between
06:00
and
07:00
h,
then
decreased
gradually
over
several
hours.

In
all
the
subjects
studied
the
sleep-associated
nocturnal
rise
of
prolactin
was
clearly
evident
and
this
was
generally
greater
than
the
evening
rise
although
in
2
subjects
studied
during
the
luteal
phase
the
nocturnal
prolactin
concentrations
were
only
slightly
greater
than
mid-evening
concentrations.
There
was
no
consistent
relationship
in
the
magnitude
of
the
sleep-related
rise
with
the
stage
of
the
menstrual
cycle
when
the
two
groups
were
compared
although
3
out
of
the
4
subjects
studied
during
both
phases
had
higher
prolactin
concentrations
during
the
luteal
phase.
In
the
remaining
subject
the
follicular-phase
sleep
surge
was
twice
as
great
as
the
luteal-phase
sleep
surge.

Prolactin
concentrations
over
24
h
in
the
follicular
and
the
luteal
phases
are
shown
in
Text-fig.

Friedman
two-way
analysis
of
variance
applied
to
prolactin
concentrations
over
the
interval
Text-fig. 1. Prolactin concentrations over 24 h in a normally cyclic woman during (a) the follicular phase and (b) the luteal phase. The duration of sleep is indicated.

Text-fig. 2. Geometric mean ± s.e.m. prolactin concentrations over 24 h (a) during the follicular phase (N = 8) and (b) during the luteal phase (N = 7) in normally cyclic women. The histograms indicate the sleep patterns and are directly proportional to the number of subjects asleep.

11:00–23:00 h revealed significant differences in prolactin concentrations ($P < 0.05$ and $P < 0.001$) during the follicular and luteal phases respectively. The evening prolactin rise was significantly greater during the luteal phase ($P < 0.02$ at 19:00 h and $P < 0.001$ at 20:00 h) than during the follicular phase, when the Mann–Whitney U test was used to compare the magnitude of the early evening prolactin rise between the two groups.

Discussion

The episodic nature of prolactin release and the sleep-dependent nocturnal rise in prolactin concentrations have been observed by several investigators (see 'Introduction'). However, Desir et al. (1982) observed a rise in prolactin concentrations at the time of the anticipated sleep rather than
during actual sleep when they studied prolactin concentrations after jet lag. This led them to postulate that there might be an intrinsic circadian rhythm responsible for the nocturnal rise of prolactin in addition to sleep. Sleep-unrelated diurnal peaks of prolactin have also been reported for the rhesus monkey at 08:45 and 16:30 h (Quabbe, Bumke-Vogt, Gregor, Stolz & Witt, 1982).

We have attempted to clarify the 24-h profile of prolactin during the follicular and luteal phases of normally cyclic women. Integrated hourly blood sampling was used to smooth out short-term variations in prolactin concentrations. In all our subjects a significant rise in prolactin was seen during the evening. This was unrelated to sleep, generally started between 17:00 and 18:00 h, reached peak concentrations between 20:00 and 21:00 h and decreased to a nadir by 24:00 h. The evening rise of prolactin was significantly greater during the luteal phase than during the follicular phase.

In addition to an early evening rise in prolactin concentrations, all subjects demonstrated a nocturnal sleep-associated prolactin surge (Sassin et al., 1972, 1973; Parker et al., 1973). The magnitude of this prolactin surge was generally greater than the evening rise except in a few subjects studied during the luteal phase. Maximum prolactin concentrations during nocturnal sleep were seen towards the end of the sleep period in most of the subjects. On awakening, the sleep-induced high prolactin concentrations did not return to normal immediately but declined gradually over a period of several hours. Lowest prolactin concentrations were seen between 11:00 and 18:00 h in most subjects.

Sassin et al. (1973) observed a significant rise of prolactin between 18:00 and 19:00 h whereas in our study peak concentrations of the evening prolactin surge were seen between 20:00 and 21:00 h. Sassin et al. (1973) also observed a smaller rise of prolactin between 13:00 and 14:00 h and suggested that both this and the rise of prolactin between 18:00 and 19:00 could be related to meals. Ishizuka, Quigley & Yen (1983) have demonstrated a meal-related rise in prolactin in normal men which was greater after the mid-day meal than after breakfast. Similarly, Quigley, Ropert & Yen (1981) have reported a greater increase of prolactin after meal ingestion at 12:00 h than in the evening in normally cyclic, fasting women. Ishizuka et al. (1983) observed that proteins and fats were potent stimulators of prolactin release while carbohydrates had hardly any effect on prolactin release. All our subjects received 3 main meals in the hospital and we failed to observe any significant rise of prolactin following either breakfast or lunch. The composition of the evening meal is unlikely to have been responsible for the evening rise of prolactin as this is generally a light meal and does not contain more fat or protein than either breakfast or lunch.

In the present study we observed a clear rise of prolactin during the evening both during the follicular and the luteal phases. This rise was not related to sleep, and does not appear to be related to the evening meal and it is possible that this may indicate an intrinsic circadian rhythm in prolactin secretion in normally cyclic women. Early morning blood samples, e.g. at 08:30 h are likely to have high prolactin concentrations regardless of the stress because the nocturnal sleep-related prolactin surge takes a few hours to return to normal. Similarly, evening blood samples may also have higher prolactin concentrations due to the evening prolactin surge. It is therefore necessary to choose the correct time of the day (preferably between 10:00 h and mid-day meal) when obtaining blood samples for prolactin measurement. Furthermore, if valid comparisons are to be made between prolactin concentrations between subjects or on different days within a subject it is necessary to obtain blood samples at approximately the same time each day.

We thank Kerry Cripps for technical assistance and Gill Store for secretarial assistance.

References

Received 30 July 1984