Active immunization of ewes against prostaglandin F$_{2\alpha}$ to control ovarian function

C. M. V. Bettencourt*, R. J. Moffatt and D. H. Keisler†

160 Animal Sciences Department, University of Missouri, Columbia, MO 65211, USA

The hypothesis that pregnancy success could be improved in early postpartum ewes by prolonging the lifespan of the corpus luteum via active immunization against prostaglandin F$_{2\alpha}$ (PGF$_{2\alpha}$) was tested. Further experiments in ewes immunized against PGF$_{2\alpha}$ investigated the effects of exogenous PGF$_{2\alpha}$ on the preovulatory follicle and the effects of PGF$_{2\alpha}$ and oestradiol benzoate on corpus luteum function. Four weeks prepartment, 39 ewes bred to lamb during seasonal anoestrous received either 5 mg PGF$_{2\alpha}$-ovalbumin conjugate (n = 20; immunized) or ovalbumin (n = 19; control). Treatments were repeated on day 5 post partum with reagents emulsified in Freund’s incomplete adjuvant. On day 17 post partum, ewes received 500 μg pregnant mares’ serum gonadotrophin (PMSG) and 48 h later 50 μg gonadotrophin-releasing hormone (GnRH). Laparoscopy was performed 36 h after GnRH to assess ovarian activity and ewes with recent ovulations were inseminated into the uterus. No immunized ewes had ovulated, but ten had follicles that luteinized and secreted progesterone during the 8 weeks studied. Eighteen of 19 control ewes ovulated and 15 of 18 had increased progesterone concentration for at least 21 days. By day 70 post partum, progesterone had returned to basal values in all control ewes. In a second study, 24 immunized ewes bearing persistent corpora lutea, and for which the interval from the previous parturition was greater than 90 days, received 15 mg PGF$_{2\alpha}$ and 500 μg PMSG followed 48 h later by 50 μg GnRH. PGF$_{2\alpha}$ induced corpus luteum regression in all ewes. PMSG and GnRH treatments resulted in oestrus in 21 of 24 ewes. Sixteen hours after GnRH, 10 ewes received a second injection of 15 mg PGF$_{2\alpha}$. PGF$_{2\alpha}$ induced follicular rupture in eight of ten immunized ewes, whereas only two of 14 ewes not receiving PGF$_{2\alpha}$ ovulated (P < 0.01). All anovular ewes had large cystic follicles that luteinized. In a third study, 22 ewes immunized against PGF$_{2\alpha}$ and having persistent corpora lutea, received, on two consecutive days, either oestradiol benzoate (750 μg; n = 11) in oil or oil (n = 11). Laparoscopy was performed on all ewes immediately before injections and four of the 11 ewes in each group possessed uterine horns that were filled with fluid. No fluid was judged to be in the horns of the remaining seven ewes in each group. On the basis of serum concentrations of progesterone and laparoscopies, oestradiol benzoate induced luteal regression in those ewes with uterine fluid and failed to induce luteal regression in those ewes lacking uterine fluid. Luteal function was unaffected in ewes that received the oil vehicle. These data suggest that premature luteal regression was not the reason for failure of occurrence of pregnancy. Immunization against PGF$_{2\alpha}$ was effective in blocking ovulation, but not in inhibiting oestrous behaviour or the formation of persistent luteal tissue. Treatment of immunized ewes with exogenous PGF$_{2\alpha}$ restored the ability of ewes to ovulate, providing further evidence for the involvement of PGF$_{2\alpha}$ in ovulation. The ability of oestradiol to induce luteolysis in immunized ewes was associated with the presence of uterine fluid.

Introduction

Theoretically, ewes could lamb twice a year if they conceived within 35 to 40 days post partum. The duration of postpartum anoestrous is a constraint in establishing accelerated lambing programmes. Factors influencing the duration of this period include: season of the year and breed (Whiteman et al., 1972), degree of mammary stimulation (Kann and Martinet, 1975), gestation (Al-Gubory and Martinet, 1986) and nutritional status (Dunn et al., 1969).

Although the first preovulatory surge of luteinizing hormone (LH) and first ovulation occur early post partum (Shirar et
al., 1989), they are generally not accompanied by oestrous behaviour and are associated with inadequate luteal function (Hunter, 1968; Land, 1971). Corpora lutea formed at first ovulation post partum can develop and actively secrete progestosterone, but regress prematurely as a consequence of the uterine luteolytic agent prostaglandin $\text{F}_2\alpha$ (PGF$_{2\alpha}$) (Shirar et al., 1989). Postpartum luteal dysfunction appears to result from increased release of, or corpus luteum sensitivity to, PGF$_{2\alpha}$ (Troxel and Kesler, 1984). The lifespan of corpora lutea can be extended by intratracheal administration of indomethacin (Lewis and Warren, 1977), hysterectomy (Anderson, 1977) or by immunization against PGF$_{2\alpha}$ (Scaramuzzi and Baird, 1976), all of which support a role for the uterus and its luteolytic agent PGF$_{2\alpha}$ in controlling luteal function. Although inadequate luteal support is a major factor determining embryo viability in early postpartum ewes (Land, 1971), fertilization failure and inappropriate uterine environment also contribute to the poor pregnancy rates observed when breeding early postpartum ewes (Dawe and Fletcher, 1976; Wallace et al., 1989a).

In ewes, uterine involution has been described as complete between days 17 and 45 post partum (Call et al., 1976; Honnmode, 1977; Shirar and Martinet, 1982). The involuting uterus may disrupt sperm transport causing infertility. By depositing semen directly into the uterine horns via laparoscopy, very high fertilization rates have been achieved (McKelvey et al., 1985). However, when this was done in ewes induced to ovulate on day 28 post partum, no pregnancies were maintained despite the fact that fertilization occurred (McKelvey et al., 1989). Pregnancy failure also occurred in early postpartum ewes that served as recipients for embryo transfer (Wallace et al., 1989a). In both cases, while premature luteal regression was obviously associated with embryo loss, ewes exhibiting normal luteal function also failed to maintain pregnancies beyond the time of a normal luteal phase (McKelvey et al., 1989; Wallace et al., 1989a). These observations support the hypothesis that inadequate luteal support is not the only factor involved in ensuring embryo viability in early postpartum ewes (Wallace et al., 1989a, b). It has been suggested that early postpartum ewes fail to maintain pregnancy as a result of the inability of the embryo to prevent luteolysis or an inappropriate uterine environment, or both (Wallace et al., 1989a, b).

Active immunization against PGF$_{2\alpha}$ has been described as an efficient method to induce persistent corpora lutea in ewes and cows (Scaramuzzi and Baird, 1976; Copelin et al., 1989). Since first postpartum ovulations in these species are frequently associated with short-lived corpora lutea, which compromise embryo survival, we tested the hypothesis that pregnancy success could be enhanced in ewes destined to form short-lived corpora lutea by prolonging the lifespan of the corpus luteum.

During the course of the first experiment, we observed that gonadotrophin treatment, applied to ewes immunized against PGF$_{2\alpha}$, resulted in the formation of large cystic follicles that subsequently luteinized and secreted progestrone during the experimental period. A second set of experiments was therefore conducted to determine the effects of exogenously administered PGF$_{2\alpha}$ on the function of the pre-ovulatory follicle and the effects of exogenous PGF$_{2\alpha}$ and oestradiol benzoate on corpus luteum function in ewes immunized against PGF$_{2\alpha}$.

Materials and Methods

Experiment 1

Animals. Thirty-nine crossbred Rambouillet ewes bred to lamb during seasonal anoestrum were managed on range conditions and supplemented with hay and grain as required to maintain body condition. All ewes lambed within one week without experiencing any type of difficulty and had a gestation of normal duration. All ewes were lactating throughout the period of study and lambs (1 or 2) had free access to ewes at all times.

Antigen preparation. Forty millilitres of Lutalyse (5 mg PGF$_{2\alpha}$ ml$^{-1}$; Upjohn Co., Kalamazoo, MI) was lyophilized and redissolved in 1.5 ml of double distilled water. PGF$_{2\alpha}$ was conjugated to chicken ovalbumin using the carbodiimide method described by Bauminger and Wilchek (1980). Briefly, 400 mg of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC; Sigma Chemical Co., St Louis, MO) was added to PGF$_{2\alpha}$ while stirring. Chicken ovalbumin (164 mg; Grade V; Sigma Chemical Co.) was then dissolved in 5 ml double-distilled water, adjusted to pH 5.1 and added, while stirring, to the PGF$_{2\alpha}$–EDC solution. Stirring continued for 3 h at 4°C after which an additional 70 mg of EDC was added. The solution was stirred for another 4 h at room temperature and dialysed against double-distilled water for 24 h. After dialysis, the PGF$_{2\alpha}$–ovalbumin conjugate was lyophilized and stored at room temperature.

Immunization protocol. Four weeks before the expected date of lambing, ewes received primary immunizations of either PGF$_{2\alpha}$–ovalbumin conjugate ($n = 20$; immunized) or ovalbumin ($n = 19$; control) emulsified in Freund’s complete adjuvant (Sigma Chemical Co.). Treatments were repeated 5 days after parturition (secondary immunizations) with reagents emulsified in Freund’s incomplete adjuvant. Each ewe was injected intradermally in at least six sites on the inside of the rear leg with an emulsion of 5 mg PGF$_{2\alpha}$–ovalbumin or ovalbumin dissolved in 0.5 ml of physiological saline and 1.5 ml of Freund’s complete (primary immunization) or incomplete (secondary immunization) adjuvant.

Experimental procedures. All ewes received an i.m. injection of 500 µg of pregnant mares’ serum gonadotrophin (PMSG 6000: Intervet Inc., Millsboro, Delaware) on day 17 post partum and 48 h later an injection of 50 µg GnRH i.m. (Cystorelin: Ceva Laboratories, Overland Park, KS). Ovarian structures (corpora lutea and follicles) were assessed by laparoscopy 36 h after injection of gonadotrophin releasing hormone (GnRH). All laparoscopies were performed under xylazine hydrochloride (10 mg; Rompun, Haver, Shawnee, KS) anaesthesia. Ewes with recent ovulations underwent intratracheal insemination by laparoscopy (McKelvey et al., 1989) with 0.1 ml of neat semen. Laparoscopies of the immunized group were repeated 1 and 8 weeks later to assess ovarian function. Blood samples were collected via jugular venepuncture every three days to assess serum concentrations of progesterone and antibody titres against PGF$_{2\alpha}$.

Assay procedures. Concentrations of progesterone were determined in duplicate samples of 50 and 200 µl serum per
tube by radioimmunoassay procedures described by Sheffel et al. (1982) and established in our laboratory (Keisler and Keisler, 1989). Minimum detectable concentrations were 5 pg per tube; recoveries averaged 89% and inter- and intra-assay coefficients of variation were 6% (n = 12) and 11% (n = 5), respectively. Assay blanks were less than 1 pg per tube.

Antibody titration. Specific binding of \[^3H\]PGF\(_{2\alpha}\) was assessed in duplicate aliquots of serum samples taken every week and defined as the percentage of \[^3H\]PGF\(_{2\alpha}\) that was specifically bound by serum at a 1:200 dilution. Samples were incubated for 24 h at 4°C with 20,000 d.p.m. [5,6,8,9,11,12,14,15(\(n\))-\[^3H\]PGF\(_{2\alpha}\) (100 µl per tube; New England Nuclear, Boston, MA). After incubation, a neutralized charcoal-dextran suspension (700 µl per tube; Sigma Chemical Co.) was used to separate free from bound \[^3H\]PGF\(_{2\alpha}\). After centrifugation at 1400 g for 10 min, the supernatant was decanted into 7 ml vials and 5 ml scintillation cocktail was added. Radioactivity in vials was counted in a Beckman LS1275 liquid scintillation counter for 2 min per sample.

Crossreactivity of antisera with PGE\(_1\), PGE\(_2\), and 15-keto-13,14-dihydroprostaglandin \(\mathrm{F}_{2\alpha}\) (PGFM) was tested and defined as the capacity of a 100-fold mass addition of these compounds to displace \[^3H\]PGF\(_{2\alpha}\) at an amount equivalent to 50% displacement (Abraham and Odell, 1970). No significant displacement was observed (i.e. crossreactivity <1%).

Statistical analysis. Where appropriate, differences among treatment groups were tested by one-way analysis of variance or \(X^2\) analysis.

Experiment 2

Twenty-four seasonally anoestrous ewes immunized against PGF\(_{2\alpha}\) and having persistent, induced, functional luteal structures (as assessed by serum concentrations of progesterone and laparoscopy) received 15 mg PGF\(_{2\alpha}\) (Lutalyse) and 500 iu PMSG congruently, followed 48 h later by 50 µg GnRH. Follicular rupture was expected to start 24 h after injection of GnRH (Roberts et al., 1985). Ewes were given a second injection of either PGF\(_{2\alpha}\) \((n = 10; 15 \text{ mg})\) or saline \((n = 14)\) 16 h after the injection of GnRH. On the basis of observations of Murdoch et al. (1986), exogenous PGF\(_{2\alpha}\) when given 16 h after GnRH, could reverse the inhibition of ovulation induced by indomethacin. Vasectomized rams, with painted briskets, were joined with ewes for detection of oestrus. Serum concentrations of progesterone and laparoscopies, performed one week after injections of PGF\(_{2\alpha}\) were used to assess ovarian activity.

Follicular fluid and serum from immunized \((n = 5)\) and control ewes \((n = 5)\) were collected 1 h before injection of GnRH to assess antibody titres. Ovaries from five immunized ewes, which subsequently had serum concentrations of progesterone indicative of luteal function for 50 days, were collected for histology. Ovaries were fixed in 10% neutral buffered formalin and processed for standard haematoxylin and eosin histology. Eight serial sections from each ovary were individually examined under light microscopy for integrity of the follicle wall and presence of luteal tissue.

![Fig. 1. Temporal changes in (mean ± SEM) \[^3H\]PGF\(_{2\alpha}\) bound to a 1:200 dilution of serum from ewes immunized against PGF\(_{2\alpha}\) (○; \(n = 20\)) and from controls (◼; \(n = 19\)). Primary immunizations were given at week 0 and lambing occurred between weeks 4 and 5.](image-url)
Experiment 1

None of the immunized ewes \((n = 20)\) ovulated in response to the PMSG and GnRH treatments. However, ten ewes had large cystic follicles, occupying most of the ovarian surface, which appeared smooth, with prominent blood vessels and an absence of the ovulatory stigma (Fig. 2a). These unruptured follicles underwent subsequent luteinization, as determined from serum concentrations of progesterone throughout the period studied (Fig. 3), and by laparoscopies performed 1 and 8 weeks after the hormonal treatments. No significant ovarian structures were observed in the remaining ten immunized ewes.

Most of the ewes in the control group ovulated \((18 \text{ of } 19)\) as determined by laparoscopy performed 36 h after the GnRH (Fig. 2b). At that time, all ewes having ovarian follicles with ovulatory stigma were inseminated into the uterus. Mean ovulation rates were \(3.3 \pm 0.42\) (mean \(\pm\) SEM). Fifteen of the 18 ewes that ovulated had subsequent periods of at least 21 days duration of increased serum concentrations of progesterone, indicative of luteal function (Fig. 4). By seventy days post partum, serum concentrations of progesterone had returned to basal values in all ewes. Luteal function was characterized in control ewes by concentrations of progesterone which: (a) remained at basal values despite the presence of corpora lutea confirmed by laparoscopy \((n = 3)\), (b) remained high for 21–23 days \((n = 4)\) or (c, d, e) remained high for at least 30 days, but had reached basal values by day 70 (i.e. day 50 after insemination; \(n = 4, 4\) and 3, respectively; Fig. 4).

Experiment 2

Exogenous PGF\(_{2\alpha}\) induced functional and structural luteal regression in all immunized ewes as determined from serum concentrations of progesterone and laparoscopy. Subsequent PMSG and GnRH treatments induced oestrus in 86% of treated ewes. Exogenous PGF\(_{2\alpha}\) given 16 h after GnRH to immunized ewes, induced follicular rupture in eight of ten ewes, whereas only two of 14 ewes not receiving PGF\(_{2\alpha}\) ovulated \((P < 0.01)\). All ewes not ovulating formed large follicles, similar in appearance to those in Expt 1, which subsequently luteinized. The immunized ewes, which did not receive a second injection of PGF\(_{2\alpha}\) and yet ovulated, had antisera titres of PGF\(_{2\alpha}\) similar to those of ewes that formed unruptured follicles \((i.e. 35–40\%\) binding).

Ovaries from five ewes that had high serum concentrations of progesterone for 50 days without a defined ovulatory stigma were collected for histological examination. Integrity of the follicle wall and presence of luteal cells were observed. Two of these ewes had enlarged uterine horns filled with fluid.

Experiment 3

Serum concentrations of progesterone remained high in ewes that received oestradiol benzoate and lacked fluid-filled uterine horns as well as in those ewes that received the oil vehicle (Fig. 5). By the third day after the final injection of oestradiol, concentrations of progesterone had returned to basal values in all of four ewes that received oestradiol and possessed fluid-filled
uterine horns. Luteal regression and apparent reabsorption of the uterine fluid was verified by laparoscopy.

Discussion

The results obtained were unexpected in regard to the initial objectives of this study. First, early postpartum ewes were predicted to have a greater incidence of short-lived corpora lutea than observed in this study (Wallace et al., 1989a; Shirar et al., 1989). Second, immunization against PGF₂α was not expected to block ovulation but to result in corpora lutea with long life-spans (Scaramuzzi and Baird, 1976; Ronayne et al., 1990). Both findings compromised the initial objective of this study which was to improve pregnancy rates in early postpartum ewes by extending the lifespan of corpora lutea that were anticipated to be short lived.

Short-lived corpora lutea in sheep have been associated with endocrine events that occur during the follicular phase or luteal phase of the oestrous cycle (Hunter 1991). Early postpartum
ewes induced to ovulate by administration of PMSG after a period of progestagen treatment will result in a high incidence of short-lived corpora lutea (McKelvey et al., 1989; Wallace et al., 1989a). In the studies conducted by McKelvey, Wallace, and co-workers the high incidence of short-lived corpora lutea in early postpartum ewes was observed after these ewes were used as recipients for transferred embryos or were not inseminated into the uterus. In Expt 1, we used a combination of PMSG and GnRH which was effective in inducing ovulation and a subsequent period of prolonged luteal function. In this experiment, intrauterine inseminations were followed by a period of at least 21 days of high progesterone secretion in 15 of the 18 ewes. We suggest that luteolysis was prevented from occurring at the expected time following ovulation owing to the antiluteolytic effects of the embryo. Premature luteal regression and embryo loss in early postpartum ewes has been associated with the inability of the embryo to prevent luteolysis (Wallace et al., 1989a).

The role of prostaglandin in the mechanism of follicular rupture has been documented in several species including rats (Orczyk and Behrman, 1972), rabbits (O’Grady et al., 1972), pigs (Ainsworth et al., 1979), sheep (Murdoch and Dunn, 1983), monkeys (Wallach et al., 1975) and women (Priddy et al., 1990). In ewes, this role is supported by observations that (i) preovulatory follicles synthesize PGF2α, PGE2, and progesterone in response to the surge of LH (Murdoch et al., 1981; Murdoch and Dunn, 1982); (ii) ovulation can be prevented by administration of the cyclooxygenase inhibitor indomethacin (Murdoch and Dunn, 1983); and (iii) exogenous prostaglandins can reverse the blockade of ovulation by indomethacin (Murdoch et al., 1986). Recently, it has been suggested that PGF2α might not be as essential to ovulation as was previously thought (Espey et al., 1986; Murdoch and McCormick, 1991; Tanaka et al., 1991). Follicular rupture can occur in the absence of a preovulatory rise in ovarian PGF2α (Murdoch, 1988). Tanaka et al. (1991) suggested that products of the lipoxygenase pathway may be more important for ovulation than prostanooids; however, this could not be demonstrated in sheep, as an inhibition of leukotriene synthesis did not block ovulation (Carvalho et al., 1989). Murdoch and McCormick (1991) suggested that the anti-ovulatory effects of indomethacin in sheep may be unrelated to its ability to inhibit prostaglandin synthesis, but may interfere with leucocyte chemotraction by inhibition of follicular collagenolysis. A role for systemic PGF2α in ovulation in sheep has also been questioned because active and passive immunization against PGF2α resulted in the formation of persistent luteal structures that were morphologically similar to those that formed during the normal oestrous cycle (Fairclough et al., 1981; Ronayne et al., 1990). In our study, immunization against PGF2α blocked ovulation as determined by the absence of ovulatory stigma and by histological examination of the luteal structures. The observed unruptured follicles were similar to those described by Murdoch and Dunn (1983) and underwent subsequent luteinization, which supports the concept that formation of luteal tissue is not dependent on PGF2α (Murdoch and Dunn, 1983). Titres of antibodies against PGF2α in follicular fluid were similar to those observed in serum, which was not surprising in light of the fact that leakage of proteins with molecular weights as large as 900 000 into the follicular fluid can occur (Edwards, 1974). The fact that other researchers failed to block ovulation in PGF2α immunized cows (Copelin et al., 1989) and ewes (Scaramuzzi and Baird, 1976; Ronayne et al.,

![Fig. 5. Serum concentrations of progesterone in relation to the time of injection of (a, b) oil and (c, d) oestradiol benzoate injections. (a) \(n = 4 \) and (c) \(n = 4 \) refer to ewes with uterine horns filled with fluid and (b) \(n = 7 \) and (d) \(n = 7 \) refer to ewes without uterine fluid.](image-url)
1990) may be related to antibody titres. In work conducted by Copelin et al. (1989), cows ovulated while PGF$_{2\alpha}$ antibody titres were increasing. It is possible that the titres achieved by the time that follicular rupture occurred were not sufficient to block ovulation but were adequate to prevent luteal regression. Ronayne et al. (1990) described the induced corpora lutea in immunized ewes as morphologically similar to those that formed during the normal oestrous cycle, and persisted for the approximate duration of the corpus luteum of pregnancy. They suggested that the corpora lutea may have a predetermined lifespan that is species specific.

In a different study, we observed that pregnancy could be established in ewes immunized against PGF$_{2\alpha}$ (two out of three ewes) when the inhibitory effects of immunization were reversed by administration of a second injection of PGF$_{2\alpha}$ given as reported in Expt 2. These ewes did not experience any difficulties at parturition (C. Betancourt and D. Keisler, unpublished).

The presence of fluid within the uterine horns of immunized ewes has been described by other investigators and could be due to a prolonged period of progesterone exposure (Fairclough et al., 1981; Ronayne et al., 1990). Studies performed in ovariectomized progesterone-treated ewes have identified PGF$_{2\alpha}$ as the primary prostaglandin present in uterine fluid (Moffatt et al., 1987). Bazer et al. (1979) observed an accumulation of uterine fluid very rich in PGF$_{2\alpha}$ in the nongravid uterine horn of unilaterally pregnant ewes, when they restricted the conceptus to the contralateral uterine horn. Oestadiol benzoate, given to immunized ewes possessing persistent luteal structures and fluid-filled uterine horns, resulted in luteal regression and reabsorption of the uterine fluid. In contrast, the luteolytic effects of oestadiol were not observed in immunized ewes possessing persistent luteal structures and lacking fluid-filled uterine horns. Treatment of ewes possessing or lacking fluid-filled uterine horns with oil also did not affect luteal function. On the basis of these observations, it is suggested that the presence of uterine fluid may be associated with the ability of oestadiol to facilitate luteolysis.

Since short-lived corpora lutea were observed in three of 18 control ewes in Expt 1, we suggest that an inadequate uterine environment was the major cause of pregnancy failure. Inappropriate uterine environment has been described as a major factor influencing pregnancy rates in postpartum ewes (Wallace et al., 1989a, b). In addition, first ovulation in early postpartum ewes was frequently associated with short luteal phases (Sharir et al., 1989). In the present study, the incidence of short-lived corpora lutea was much lower than was reported by other researchers (Land, 1971; Shirar et al., 1989). Because 83% of control ewes secreted progesterone for at least 21 days after intrauterine insemination, we suggest that fertilization may have occurred, but owing to an inappropriate uterine environment, no pregnancies were maintained. McKelvey et al. (1985, 1989) described uterine insemination as a good method for obtaining viable embryos and for achieving high fertilization rates in day 28 postpartum ewes. However, for those embryos to develop, they had to be transferred to the uterus of a cycling ewe (Wallace et al., 1989b).

The syndrome of unruptured preovulatory follicles has been extensively investigated in sheep by Murdoch and co-workers who used nonsteroidal anti-inflammatory agents, such as indomethacin, to block ovulation. To our knowledge, there are no publications reporting the same type of cystic follicles as a result of immunoneutralization against PGF$_{2\alpha}$. Murdoch et al. (1986) reported that PGF$_{2\alpha}$ and PGF$_{2\beta}$ given 16 h after GnRH, could reverse the inhibition of ovulation induced by indomethacin. As 99% of injected PGF$_{2\alpha}$ is metabolized during a single passage through the lungs (Davis et al., 1980), the time of administration of PGF$_{2\alpha}$ with regard to the surge of LH may be critical to reverse the inhibitory effects of indomethacin. Because we used a combination of PMSG and GnRH in our experiments to induce ovulation, it was difficult to predict the time of the preovulatory surge of LH, as some ewes may have had a surge of LH prior to injection of GnRH. This could explain why the exogenous PGF$_{2\alpha}$ was not fully effective in inducing follicular rupture in immunized ewes in Expt 2.

The mechanism by which PGF$_{2\alpha}$ interferes with follicular rupture has not been fully elucidated (for review see Espey, 1980; Lipner, 1988) but it appears to involve activation of follicular collagenolysis (Murdoch et al., 1986). Follicular progestosterone (Murdoch and Dunn, 1982), PGE, (Murdoch et al., 1981), histamine (Szego and Gitin, 1964), prolactin (Hamada et al., 1980) and plasminogen activator (Beers et al., 1975) also play roles in the mechanism of follicular rupture.

The development of luteinized unruptured follicles has been described in women treated with nonsteroidal anti-inflammatory agents in association with a decrease in the synthesis of ovarian prostaglandins (Priddy et al., 1990). It has been suggested that a method of inhibiting follicular synthesis or ovarian actions of prostaglandins, but lacking the hazardous peripheral side effects of drugs such as indomethacin, could have potential use as a nonhormonal contraceptive method (Murdoch and Dunn, 1983; Killick and Elstein, 1987; Priddy et al., 1990). Since the immuno-inactivation of PGF$_{2\alpha}$ is confined to the extracellular compartments (Scaramuzzi and Baird, 1976) and crossreactivity of antisera with other prostaglandins was less than 1%, we speculate that the peripheral side effects of immunization against PGF$_{2\alpha}$ may be minimal. The potential use of this method in terms of regulating fertility in other species deserves further research.

In conclusion, we suggest that pregnancy failure in early postpartum ewes may have resulted from an inappropriate uterine environment rather than from inadequate luteal support in these studies. Immunization against PGF$_{2\alpha}$ was effective in blocking ovulation but not in inhibiting oestrous behaviour or formation of persistent luteal tissue. Exogenous PGF$_{2\alpha}$ resulted in luteal regression and partially overrode the negative effects of immunization against PGF$_{2\alpha}$ upon follicular rupture, which provides further evidence of the involvement of PGF$_{2\alpha}$ in the mechanism of ovulation. Immunization against PGF$_{2\alpha}$ can be a useful method to control ovulation and luteal function in sheep. The potential use of this method in terms of regulating fertility in other species deserves further research.

We thank R. L. Butcher, West Virginia University, for the progesterone antiserum; and M. Brown, CEVA Laboratories, Inc., for the gift of GnRH. This paper is a contribution from the Missouri Agricultural Experiment Station Journal Series No. 11592 and Regional Research Project W112. Reproductive Performance in Domestic Ruminants. Graduate study was partially supported by Luso American Foundation and Direccão Geral da Pecuaria, Lisboa, Portugal.
References

Al-Gubory KH and Martinek J (1986) Comparison of the total ovarian follicular populations at day 140 and day 5 postpartum in ewes. Theriogenology 25 795–808

Call W, Foote WC, Ecker CD and Hulet CV (1976) Postpartum uterine and ovarian changes, and estrous behaviour from lactation effects in normal and hormone-treated ewes. Theriogenology 6 495–501

Carvalho CB, Yeik IS and Murdoch WJ (1989) Significance of follicular cyclooxygenase and lipoxigenase pathways of metabolism of arachidonate in sheep. Prostaglandins 37 553–558

Honnmode J (1977) Postpartum changes in the uterus of ewes. Animal Breeding Abstracts 45 384

Murdoch WJ (1988) Effect of a steroid (prednisolone) and nonsteroidal (indomethacin) antiinflammatory agent on ovulation and follicular accumulation of prostaglandin F2α in sheep. Prostaglandins 37 331–334

O'Grady JP, Caldwell BV, Auletta FJ and Speroff L (1972) The effects of an inhibitor of prostaglandins (indomethacin) on ovulation, pregnancy and pseudo-pregnancy in the rabbit Prostaglandins 1 97–106

Orczyk GP and Beheman HR (1972) Ovulation blockade by aspirin or indomethacin – in vivo evidence for a role in prostaglandin in gonadotrophin secretion Prostaglandins 1 3–13

Szego CM and Glatz ES (1964) Ovarian histamine depletion during acute hyperemic response to luteinizing hormone. Nature 201 682–684

Troxel TR and Keisler DJ (1984) Ability of indomethacin to alter prostaglandin metabolite concentrations and to enhance the function of corpora
lutea induced in postpartum suckled beef cows Journal of Animal Science 59 177–181

