Possible roles for prostaglandins E₂ and F₂α in seasonal changes in ovarian steroidogenesis in the frog (Rana esculenta)

A. Gobbetti and M. Zerani

Department of Molecular, Cellular, and Animal Biology, University of Camerino, via F. Camerini 2, 62032 Camerino MC, Italy

Concentrations of PGE₂ and PGF₂α androgens and oestradiol in plasma, and ovary weights were measured in the female frog, Rana esculenta, during the annual breeding cycle. Experiments were carried out in vivo to study the effects of PGE₂ and PGF₂α on plasma sex steroids during the following stages: pre-reproduction (April), reproduction (May), post-reproduction (June) and recovery (October). Experiments were performed in vitro during these stages to evaluate the effects of these two prostaglandins on the secretion of ovarian steroids. Concentrations of PGE₂ were low in plasma during winter hibernation, the reproduction and post-reproduction stages, whereas they were high during the pre-reproduction and recovery stages. PGE₂ treatment in vivo increased androgen secretion in April, whereas PGF₂α treatment increased oestradiol secretion in June and October. In experiments in vitro, PGE₂ increased androgen secretion and decreased oestradiol secretion from ovaries collected in April, whereas PGF₂α increased oestradiol secretion from ovaries collected in October. These results suggest that a seasonal increase in plasma PGE₂ may inhibit breeding activity, probably by stimulating ovarian androgen secretion, whereas, as previously reported, a seasonal increase in plasma PGF₂α may inhibit breeding, by stimulating ovarian oestradiol secretion.

Introduction

In mammals, ovarian steroidogenesis (Espey et al., 1986; Sedrani and El-Banna, 1987; Dharanraj et al., 1989; Greenhalgh, 1990) is regulated by PGs of both F and E series. Prostaglandins are also implicated in the control of ovulation in the chicken (Shimada et al., 1984) and of reproductive function in reptiles (Guillet et al., 1984, 1990, 1991; Jones et al., 1990).

Little is known, however, about the role of PGs in the reproductive processes of amphibians. In the anuran frog, Rana esculenta (Gobbetti et al., 1990, 1991a; Gobbetti and Zerani, 1991), and in the urodele crested newt, Triturus carnifex (Gobbetti et al., 1991b, c), seasonal changes in concentrations of PGF₂α in plasma have been observed to be related to the stages of the annual breeding cycle. The possibility that these seasonal changes in concentrations of the PGs may be related to reproductive function has not been investigated. A role for PGE₂ is suggested by a study in vitro on the male Triturus carnifex abdominal gland, where it was found to induce pheromonal activity (Gobbetti and Zerani, 1992a).

The objective of this study was to establish whether in the female frog Rana esculenta there are seasonal changes in the concentration of PGE₂ in plasma and how this relates to seasonal changes in PGF₂α. A further objective was to determine in vivo and in vitro the effects of PGE₂ and PGF₂α on the secretion of ovarian steroids at different stages of the annual breeding cycle.

Materials and Methods

Animals

Adult female frogs were collected in Umbria, Italy, from a pond 870 m above sea level. The frogs breed in May (reproductive stage), when the temperature increases and enter a post-reproductive phase in the summer. Gonad recrudescence is initiated in mid-summer, and continues into the autumn (recovery stage). The animals hibernate during the cold months of winter to emerge when the temperature increases in the next spring. At the beginning of spring, the frogs return to the pond (pre-reproductive stage).

Observations on free-living and captive animals

Fifteen adult female frogs, Rana esculenta, were collected every month during 1991. Immediately after capture, they were anaesthetized with 3-aminobenzoic acid ethyl ester (Tricaine: Sigma Chemical Co., St Louis, MO), weighed, and a blood sample was taken through a heparinized microtube inserted into the heart. Individual blood samples (600 µl) were collected into chilled tubes containing acetyl salicylic acid (Aspirin; Sigma) and EDTA (5 µg and 7 µg ml⁻¹ of blood, respectively) (Gobbetti et al., 1990). After centrifugation (1500 g for 10 min), plasma samples were stored at −20°C. Ovaries were removed and weighed. In April, May, June and October, frogs were captured and blood samples were taken in the field (control 1), while a further 15 animals were transferred to laboratory aquaria, kept under natural lighting and temperatures and fed ad libitum to

Received 9 March 1992.

© 1993 Journals of Reproduction and Fertility Ltd Downloaded from Bioscientifica.com at 12/18/2018 07:02:36PM via free access
study the effects of captivity on concentrations of hormones in plasma. A week later, blood samples were taken from the animals in captivity, and at the same time blood samples were taken from 15 animals in the field (control 2).

**Experiments in vivo**

In April, May, June and October, 84 female frogs were captured each month, transferred to laboratory aquaria and maintained under natural lighting and temperature. The frogs collected in May had not ovulated. One week later, the animals were assigned to four groups: (a) 21 frogs received a single s.c. injection of 20 ng PGE$_2$ (Sigma) g$^{-1}$ body weight dissolved in 100 µl amphibian saline (0.64% w/v NaCl solution); (b) 21 frogs received a single s.c. injection of 15 ng PGF$_{2\alpha}$ (Sigma) g$^{-1}$ body weight dissolved in 100 µl amphibian saline; (c) 21 frogs received a single s.c. injection of 100 µl amphibian saline only; (d) 21 untreated control animals. Blood samples were taken from seven of the 21 frogs in each group at 0, 18 and 36 h after treatment. After centrifugation (1500 g for 10 min), plasma samples were stored at $-20^\circ$C. Blood samples were taken from a further batch of seven untreated animals at the beginning of the experiments (controls, time 0). The times of treatment and the minimum effective doses of PGE$_2$ and PGF$_{2\alpha}$ were chosen after preliminary experiments (data not shown).

**Experiments in vitro**

In April, May, June and October, seven female frogs were captured each month and transferred to laboratory aquaria. The frogs collected in May had not ovulated. One week later, the animals were decapitated, the ovaries rapidly removed and placed in cold Dulbecco's modified Eagle medium (DME; Sigma) containing 10 mmol Hepes l$^{-1}$, 1 mg Penicillin G ml$^{-1}$, and 2 mg streptomycin ml$^{-1}$. Each month, the ovary from one animal was divided into equal-sized fragments, pooled and equally distributed over 12 incubation wells. Multifwell tissue culture plates (Becton Dickinson and Co., Lincoln Park, NJ) were used. Each set of wells was divided into three experimental groups, each consisting of 4 wells. The experimental groups were: (a) ovarian tissue incubated with DME alone; (b) ovarian tissue incubated with DME plus PGE$_2$ (75 ng); (c) ovarian tissue incubated with DME plus PGF$_{2\alpha}$ (75 ng). The final volume of each well was 1 ml. Culture plates were wrapped in aluminium foil and incubated in a shaking water bath (19°C), at 30 revolutions min$^{-1}$. Incubation medium was removed from separate wells after 25, 50, 100 and 200 min of incubation. The incubation medium samples were stored at $-20^\circ$C until hormone assays were performed; ovarian tissues were homogenized in amphibian saline, and protein contents were determined using a commercial kit (Bio-Rad, Richmond, CA). The experiment was repeated with incubation media without ovarian tissue. The experiment was repeated seven times for each month. The incubation conditions and the minimum effective doses of PGE$_2$ and PGF$_{2\alpha}$ were determined in preliminary experiments (data not shown).

**Determination of PGE$_2$, PGF$_{2\alpha}$, androgens and oestriadiol**

Concentrations of PGE$_2$ and PGF$_{2\alpha}$ were measured by radioimmunoassay in plasma and incubation media as described by Gobbetti et al. (1990) and Gobbetti and Zeran (1992a), respectively. Determinations were carried out on duplicate plasma samples (100 µl) and in incubation media (500 µl) extracted with 10 volumes of diethyl ether for 5 min. After centrifugation (1000 g for 5 min), organic fractions were transferred into glass tubes and evaporated to dryness under nitrogen. Extracts were resuspended in 100 µl assay buffer before assay. The recoveries of added labelled PGE$_2$ and PGF$_{2\alpha}$ were 86.9 ± 0.81% and 85.3 ± 0.71%, respectively (means of 10 determinations ± SD). Standard curves, for the two prostaglandins in buffer and extracted incubation medium were parallel.

Concentrations of androgens, oestradiol in plasma and incubation media were measured by radioimmunoassay as described by d'Istria et al. (1974).

Intra- and interassay coefficients of variation and minimum detectable doses were PGE$_2$, 6.5% 12%, 18 pg; PGF$_{2\alpha}$, 5%, 11.5%, 17 pg; androgens, 6%, 9%, 9.0 pg; oestradiol, 4%, 9%, 8.5 pg, respectively. The PGF$_{2\alpha}$, testosterone and oestradiol antisera were provided by G. F. Bolelli and F. Franceschetti (CNR-Physiopathology of Reproduction Service, University of Bologna) and the PGE$_2$ antiserum was purchased from Cayman Chemical (Ann Arbor, MI). Testosterone was not separated from $5\alpha$-dihydrotestosterone and, therefore, as the antiserum used is not specific, the data are expressed as total androgens. Tritiated PGE$_2$, PGF$_{2\alpha}$, testosterone and oestradiol were purchased from Amershams International (Buckinghamshire), non-radioactive PGE$_2$, PGF$_{2\alpha}$, testosterone and oestradiol from Sigma.

**Statistical analysis**

An analysis of variance (ANOVA) followed by Duncan's multiple range test (Duncan, 1955; Sokal and Rohlf, 1981) was used to analyse the data. Correlation coefficients were calculated as described by Scosciroli and Palenzenza (1979). Data on ovary weights are shown as the gonadosomatic index (GSI: gonad weight/body weight).

**Results**

**Seasonal changes in concentrations of plasma prostaglandins, gonadal steroids and GSI**

The concentration of plasma PGE$_2$ was low in November, December and January, increased in February ($P < 0.01$) and remained high until April; it then fell in May ($P < 0.01$), increasing again in July until October ($P < 0.01$) (Fig. 1). The concentration of plasma PGF$_{2\alpha}$ was high in January and February ($P < 0.01$), decreased from March to May ($P < 0.01$), then increased from June to October ($P < 0.01$), and decreased in November and December ($P < 0.01$) (Fig. 1). Androgen concentrations were highest from January to April ($P < 0.01$), decreased in May ($P < 0.01$), remained low until August and increased from September to December (Fig. 1). Oestriadiol concentrations in plasma showed a peak in June ($P < 0.01$) (Fig. 1). GSI decreased between May and June ($P < 0.01$), and then increased until October, and decreased between November and January. GSI began to increase again in February, reaching its
Fig. 1. Concentrations of plasma (a) PGE₂, (b) PGF₂α, (c) androgens and (d) oestradiol, and (e) gonadosomatic index (GSI: ovary weight:body weight) during the annual breeding cycle in female frog, Rana esculenta. Each mean refers to 15 determinations ± SD.

Effects of captivity on plasma prostaglandins and gonadal steroids

After one week in captivity, concentrations of plasma PGE₂ decreased in April and October (P < 0.01), concentrations of plasma PGF₂α decreased in June and October (P < 0.01), concentrations of plasma androgens decreased in April and October (P < 0.01), and concentrations of plasma oestradiol decreased in June (P < 0.01) (Fig. 2).

Experiments in vivo

Treatment with PGE₂ increased androgen concentrations in April, 6, 18 and 36 h after injection (P < 0.01) (Fig. 3). Treatment with PGF₂α increased oestradiol concentrations in June and October, 18 and 36 h after injection (P < 0.01) (Fig. 4).

Experiments in vitro

The basal release of PGE₂ from the ovary was higher in April and October (P < 0.01) than in May and June. Values in October were higher (P < 0.05) than those of April (Fig. 5). The basal release of PGF₂α in June was lower (P < 0.01) than in other months (Fig. 5). The basal release of androgens was higher in April (P < 0.01) than in other months (Fig. 6). Values in October were higher (P < 0.01) than in May or June (Fig. 6).
Fig. 4. Effects in vivo of 15 ng PGF$_{2a}$ g$^{-1}$ body weight on concentrations of plasma oestradiol in female frog, *Rana esculenta*, during (a) June (post-reproduction) and (b) October (recovery). Experimental groups: (□) untreated frogs; (●) amphibian-saline-only injected frogs; (■) PGF$_{2a}$ injected frogs. Each mean refers to seven determinations ± SD. *P < 0.01 versus untreated and amphibian-saline-only injected frogs (Duncan's multiple range test).

The basal concentration of oestradiol was lower in June (P < 0.01), than in other months (Fig. 7).

Treatment with PGF$_{2a}$ increased the secretion of androgens in April after 50, 100 and 200 min (P < 0.01) (Fig. 6), and decreased oestradiol concentrations in April after 50, 100 and 200 min (P < 0.01) (Fig. 7). Treatment with PGF$_{2a}$ increased oestradiol concentrations in October after 100 and 200 min (P < 0.01) (Fig. 7).

Hormones were not detected in media incubated without ovarian tissue (data not shown).

### Discussion

This work reports, for the first time, the presence of plasma PGE$_2$ in the female frog, *Rana esculenta*, and showed that the concentrations of this prostaglandin are related to the annual reproductive cycle. Concentrations of PGE$_2$ were high in plasma during the pre-reproductive and recovery stages and low during the breeding season and winter hibernation. The seasonal changes in plasma PGF$_{2a}$ and androgens, oestradiol and ovarian weight confirm the findings of Gobbetti et al. (1990) and Zerani et al. (1991). However, Gobbetti et al. (1990) did not observe a peak in plasma oestradiol in June; this may be because this hormone peak is transient. Concentrations of plasma PGF$_{2a}$ were high during the recovery stage of the breeding cycle; concentrations of androgens were high during the pre-reproductive stage, whereas concentration of oestradiol peaked during the post-reproductive stage.

The data in vitro on the basal release of PGE$_2$ and androgens from the ovary correlated with seasonal changes in plasma concentrations of these hormones. The highest amounts of PGE$_2$ and androgens released in ovarian incubations were observed in April and October. In contrast, the lowest release of PGF$_{2a}$ and oestradiol from ovarian tissues was found in June, despite the fact that concentrations of plasma PGF$_{2a}$ and oestradiol are high during this month. In previous studies it was suggested that the major source of these two hormones, during June, may be the interrenal gland (Gobbetti and Zerani, 1991).

The high concentrations of plasma PGE$_2$ and androgens in frogs, during the pre-reproductive phase of the breeding cycle, suggest a causal relationship between these two hormones. The ability of PGE$_2$ to stimulate androgen synthesis in *in vivo* and *in vitro* during the pre-reproductive phase of the breeding cycle supports this hypothesis. On the contrary, in May, this phenomenon was not observed in experiments *in vivo* and *in vitro* with frogs that had not ovulated. It is suggested that PGE$_2$ by stimulating androgen synthesis, inhibits breeding during the pre-reproductive phase, when the environmental conditions are unfavourable for the survival of young. Androgens could act at ovarian, pituitary or hypothalamic levels, as has been proposed for oestradiol (Pavgi and Licht, 1989; Fasano et al., 1991). In this context, it should be noted that during the breeding and post-reproductive phases of the annual cycle, concentrations of plasma PGE$_2$ and androgens were low, in agreement with the low basal release of androgens from the ovaries *in vitro*, and with the observations that treatment with PGE$_2$ failed to...
stimulate the release of androgens. The decrease in oestradiol secretion observed in April in vitro, after treatment with \( \text{PGE}_2 \), could be due to the enhanced synthesis of androgens.

The positive correlation between the seasonal change in concentration of plasma \( \text{PGE}_2 \) and ovarian weights is at present still unclear. In this context, it should be noted that the maturation of the amphibian oocytes is modulated by various hormones that control the amounts of 3',5'-cyclic monophosphate (cAMP) in the follicular cells. A receptor for \( \text{PGE} \) is present on the follicular cell membrane and mediates an increase in cAMP concentrations (Mori et al., 1989).

\( \text{PGE}_{2a} \) injection in vivo in June and October increased the release of oestradiol, although experiments in vitro suggested that \( \text{PGE}_{2a} \) stimulated oestradiol secretion only from ovaries collected in October. The reason for this discrepancy may be that the target tissue for \( \text{PGE}_{2a} \) is the interrenal in June (Gobbetti and Zerani, 1991) and the ovary in October. During the post-reproductive phase the release of oestradiol from the interrenal glands by \( \text{PGE}_{2a} \) may be responsible for inhibiting ovarian function by exerting a negative feedback action at the ovarian, pituitary or hypothalamic levels (Pavgi and Licht, 1989; Fasano et al., 1991). This phenomenon is an adaptive mechanism to prevent the presence of tadpoles in autumn, when the environmental conditions are unfavourable for their survival (Salthe and Mecham, 1974). The ability of \( \text{PGE}_{2a} \) to stimulate ovarian oestradiol synthesis in October is not adequately supported by evidence of increased circulating oestradiol concentrations at this time of year and the meaning of this phenomenon is unclear.

This study indicates that in \textit{Rana esculenta} one week in captivity modified PGs and sex steroids. However, stress-related decreases in the secretion of these hormones were also reported in \textit{Rana esculenta} (Paolucci et al., 1991; Zerani et al., 1991), in \textit{Rana catesbeiana} (Licht et al., 1983), in rough skinned newt, \textit{Taricha granulosa} (Moore & Zoeller, 1985), and in crested newt, \textit{Triturus carnifex} (Gobbetti et al., 1991b, c). It is unlikely that the effects of PGs on steroidogenesis were merely a consequence of captivity as effects of PGs on steroidogenesis were observed irrespective of whether captivity affected steroidogenesis, in this and another amphibian species. Thus \( \text{PGE}_{2a} \) induced an increase in plasma oestradiol in October, when captivity did not affect the secretion of this steroid, in agreement with findings in male \textit{Rana esculenta} (Gobbetti et al., 1992a). In addition, in \textit{Triturus carnifex}, treatment with \( \text{PGE}_2 \) decreased androgen secretion, which was modified by captivity (Gobbetti and Zerani, 1992b), whereas a progesterone secretion which was not modified by
captive was increased after treatment with PGE_2 (Gobetti et al., 1992b).

In summary, this work indicates that seasonal changes in the concentration of these two PGs in blood may regulate the timing of breeding in _Rana esculenta_ ensuring young are produced in the spring; PGE inhibits reproductive function in April by stimulating androgen secretion, and PGF_2α may have a similar function in October by stimulating oestradiol secretion.

This work was supported by a grant to A. Gobetti from M.U.R.S.T.

References


Duncan DB (1955) Multiple range and multiple F test Biometrics 11 1–42

Esprey LL, Norris C and Saphire D (1986) Effect of time and dose of indomethacin on follicular prostaglandins and ovulation in the rabbit Endocrinology 119 746–754


Gobetti A and Zerani M (1992a) PGF_2α, PGE_2 and sex steroids from the abdominal gland of the male crested _Rana_ _Triturus carnifex_ (Laur.) Prostaglandins 43 101–109


Gobetti A, Zerani M, Carnevali O and Botte V (1990) Prostaglandin F_2α in female water frog, _Rana esculenta: _plasma levels during the annual cycle and effects of exogenous PGF_2α on circulating sex hormones General and Comparative Endocrinology 80 175–180

Gobetti A, Zerani M, Bolelli GF and Botte V (1991a) Seasonal changes in plasma prostaglandin F_2α and sex hormones in the male water frog, _Rana esculenta._ General and Comparative Endocrinology 82 331–336


Gobetti A, Zerani M and Botte V (1991c) Plasma prostaglandin F_2α in the male _Triturus carnifex_ (Laur.) during the reproductive annual cycle and effects of exogenous prostaglandin on sex hormones Prostaglandins 41 67–74


Greenhalgh EA (1990) Luteal steroidogenesis and the role in luteal secretion, gonadotrophin secretion and lipoxigenase induced in luteal cells by human chorionic gonadotrophin, phospholipase A, and prostaglandin F_2α Journal of Endocrinology 125 397–403


Sedrani SH and El-Banna AA (1987) Effect of indomethacin on plasma level of vitamin D metabolites, oestradiol and progesterone in rabbit during early pregnancy Comparative Biochemistry and Physiology 87 635–639


Sokal RR and Rohlf FJ (1981) Biometry (2nd Edn). Freeman, San Francisco

Zerani M, Amabili F, Mosconi G and Gobetti A (1991) Effects of captivity stress on plasma steroid levels in the green frog, _Rana esculenta_ during the annual reproductive cycle Comparative Biochemistry and Physiology 98 491–496