Activation of temperature-dependent flagellar movement of demembranated fowl spermatozoa: involvement of an endogenous serine protease

K. Ashizawa, S. Katayama, G. J. Wishart, A. Shiraishi and Y. Tsuzuki

1Laboratory of Animal Reproduction, Faculty of Agriculture, Miyazaki University, Miyazaki 889-21, Japan; and 2Department of Molecular and Life Sciences, Dundee Institute of Technology, Dundee DD1 1HG, UK

In the presence of ATP, the motility of demembranated fowl spermatozoa was vigorous at 30°C, but negligible at 40°C. Motility could be restored at 40°C by the addition of 10–100 ng trypsin ml⁻¹. Chymotrypsin also stimulated the motility, but neither papain nor carboxypeptidase B appreciably affected motility. Conversely, at 30°C sperm motility was inhibited by aprotinin or phenylmethylsulfonyl fluoride. These results suggest that endogenous protease, presumably serine protease, activity is instrumental in the regulation of fowl sperm motility. It seems likely that the site of action of this protease is axonemal, but a direct effect of added protease on dynein ATPase activity could not be demonstrated.

Introduction

Flagellar movement of spermatozoa is based on the active sliding of microtubules as a result of ATP hydrolysis by dynein ATPase (for review, see Tash and Means, 1983; Lindemann and Kanous, 1989). Although this basic axonemal mechanism is fairly well understood, the factors and mechanisms of its regulation have still to be clarified. There appear to be several regulatory mechanisms that individually or synergistically control sperm motility: Ca²⁺ and Ca²⁺-associated compounds, cAMP and intracellular pH (Majumder et al., 1990). In addition, current evidence suggests that a protease activity with a Lys- and Arg-ester bond specificity is required for sperm motility. It is assumed that this regulatory system is probably located near the dynein arms, but does not directly involve the force-generating dynein ATPase (de Lamirande et al., 1990).

Unlike mammalian spermatozoa, fowl spermatozoa show definitive temperature-dependent changes in their motility: in most synthetic diluents, they become immotile at the avian body temperature of 40–41°C, and motility is restored by decreasing the temperature (Munro, 1938; Nevo and Schindler, 1968; Ashizawa and Nishiyama, 1978; Takeda, 1982; Ashizawa and Okauchi, 1984; Ashizawa and Wishart, 1987; Wishart and Ashizawa, 1987; Ashizawa et al., 1989a, b; Thomson and Wishart, 1989, 1991). The axoneme itself appears to be directly involved in this regulatory system, since the motility of demembranated spermatozoa is, as with intact spermatozoa, negligible at 40°C and restored at 30°C (Ashizawa et al., 1989a, b). Furthermore, cAMP-independent phosphorylation of a 43 kDa axonemal protein is likely to be a regulatory step in the maintenance of fowl sperm motility (Ashizawa et al., 1992).

If the activity of endogenous proteases is involved in the above temperature-dependent regulatory system, then fowl spermatozoa might be expected to be made immotile at 30°C by the addition of protease inhibitors and, conversely, motile at 40°C by the addition of appropriate exogenous proteases. In this study, the effects of some proteases and protease inhibitors on the motility of demembranated fowl spermatozoa were therefore examined at 30°C and 40°C, and information was obtained concerning the locus of action of such proteases.

Materials and Methods

Animals and preparation of spermatozoa

Commercial White Leghorn roosters (Babcock strain, Akagi Poultry Breeding Farm, Miyazaki) were used throughout the study. All birds were housed in individual cages and fed ad libitum on a commercial breeder diet. They were exposed to a 14 h light:10 h dark cycle.

Semen was collected by the method of Bogdonoff and Shafrner (1954). Samples of semen pooled from four to six males were diluted approximately tenfold in 150 mmol NaCl l⁻¹ with 20 mmol TES (N-Tris-[hydroxymethyl]-methyl-2-aminoethanesulfonic acid) l⁻¹ at pH 7.4 and centrifuged at 700 g for 13 min at room temperature (20–25°C). The washed spermatozoa was reconstituted in the same buffer to give a final concentration of approximately 1 x 10⁹ cells ml⁻¹. Samples of 3–4 ml were poured into 30 ml Erlenmeyer flasks with a screw cap.

Chemicals

Trypsin (approximately 10 000 BALL A435 units mg⁻¹ protein) was obtained from Mochida Pharmaceutical Co.
Measurement of motility of demembranated spermatozoa

Intact spermatozoa were preincubated at 30°C or 40°C for 10 min. After the preincubation, demembranation and reactivation were performed according to the method described by Ashizawa et al. (1989b). The extraction medium used consisted of 0.1% Triton X-100, 0.2 mol sucrose 1\(^{-1}\), 25 mmol potassium glutamate 1\(^{-1}\), 1 mmol MgSO\(_4\) 1\(^{-1}\), 1 mmol dithiothreitol 1\(^{-1}\) and 0.05 mmol Tris-HCl buffer 1\(^{-1}\) (pH 7.9). The reactivation medium consisted of 0.5 mmol ATP 1\(^{-1}\), 0.2 mmol sucrose 1\(^{-1}\), 25 mmol potassium glutamate 1\(^{-1}\), 1.5 mmol MgSO\(_4\) 1\(^{-1}\), 1 mmol dithiothreitol 1\(^{-1}\) and 20 mmol Tris-HCl buffer 1\(^{-1}\) (pH 7.9). To examine the effects of exogenous proteases or protease inhibitors, various concentrations of trypsin, chymotrypsin, papain or carboxypeptidase B at 40°C, and aprotinin or PMSF at 30°C were added to the reactivation medium. Phosphodiesterase, EGTA or Ca\(^{2+}\) were also added to trypsin-treated spermatozoa. The suspension of demembranated spermatozoa was viewed in a microscope slide chamber (Sekisui Chemical Co., Ltd, Tokyo, UR-157 type) on a thermostatically controlled warm plate, and the motility of spermatozoa was recorded by videomicroscopy at 30°C or 40°C (Katz and Overstreet, 1981).

Measurement of crude dynein ATPase activity

Crude dynein extract from fowl spermatozoa was obtained by the method described by Ashizawa and Hori (1990). ATPase activities were assayed by the reduction of ATP concentrations determined by firefly bioluminescence (Ashizawa and Hori, 1990). Protein concentrations of crude dynein extract were determined according to published methods (Bradford, 1976), with BSA as the standard. The rate of ATPase activity was expressed in terms of mmol ATP hydrolysed mg\(^{-1}\) protein min\(^{-1}\).

Phosphorylation of endogenous proteins and electrophoresis

Phosphorylation reaction and electrophoresis on polyacrylamide gels of demembranated sperm proteins were carried out according to the methods described by Ashizawa et al. (1992). Briefly, demembranated spermatozoa with extraction-reactivation medium containing 0.1% Triton X-100, 0.2 mol sucrose 1\(^{-1}\), 25 mmol potassium glutamate 1\(^{-1}\), 1 mmol MgSO\(_4\) 1\(^{-1}\), 1 mmol dithiothreitol 1\(^{-1}\), 20 mmol Tris-HCl buffer 1\(^{-1}\) (pH 7.9), 0.1 mmol ATP 1\(^{-1}\) and approximately 7000 c.p.m. [\(^{32}\)P]ATP pmol\(^{-1}\) were incubated for 2 min at 30°C or 40°C. Aprotinin or trypsin, when incorporated, was present at a final concentration of 0.24 IU (trypsin inhibitor unit) ml\(^{-1}\) or 50 ng ml\(^{-1}\), respectively. The phosphorylation reaction was terminated by the addition of equal volumes of concentrated (twofold) Laemmli (1970) sample buffer and boiling for 5 min. Samples containing protein from approximately 1.3 × 10\(^6\) spermatozoa were loaded on to 10% SDS-polyacrylamide slab gels, and electrophoresed. Autoradiography was performed at −80°C for 2–4 days exposure to X-ray film with an intensifying screen (Lightning plus, Du Pont, Wilmington, DE).

Statistical analysis

Statistical comparisons were performed using Student’s t test.

Results

Effects of proteases and protease inhibitors on the motility of demembranated fowl spermatozoa

Reactivation of fowl spermatozoa without the addition of trypsin was negligible at 40°C. In contrast, the presence of 10–100 ng trypsin ml\(^{-1}\) permitted reactivation of sperm motility at 40°C, and optimum reactivation occurred at 50 ng trypsin ml\(^{-1}\). At higher concentrations, fewer spermatozoa were reactivated (Fig. 1a). Chymotrypsin also stimulated the motility of demembranated spermatozoa at 40°C, and maximum motility was obtained at 600 ng chymotrypsin ml\(^{-1}\) (Fig. 1b). However, no stimulation of motility was observed following the addition of papain (Fig. 1a) or carboxypeptidase B (Fig. 1b), within the ranges 0–2 μg ml\(^{-1}\) and 0–500 μg ml\(^{-1}\), respectively, and disintegration of sperm tails was observed at higher concentrations. The addition of papain and carboxypeptidase B at lower concentrations (ng ml\(^{-1}\)) was also ineffective in initiating motility (data not shown).

However, the vigorous motility of demembranated spermatozoa at 30°C was inhibited in a dose-dependent manner by the addition of the protease inhibitors, aprotinin or PMSF (Fig. 2). However, the addition of 500 ng trypsin ml\(^{-1}\) released the inhibitory effect of aprotinin within 1 min (Fig. 3).

Neither the addition of phosphodiesterase to remove endogenous cAMP nor the addition of Ca\(^{2+}\) or EGTA to trypsin-treated spermatozoa had any significant effect on sperm motility at 40°C (Table 1).

Effects of proteases on dynein ATPase activity and the phosphorylation state of proteins of demembranated fowl spermatozoa

The flagellar ATPase activity of crude dynein extract without the addition of proteases was approximately 22 nmol ATP hydrolysed mg\(^{-1}\) protein min\(^{-1}\). This activity was not stimulated by the addition of proteases, including trypsin and chymotrypsin (Table 2).

A marked difference in the phosphorylation status of a 43 kDa protein was obtained in demembranated spermatozoa at 30°C and at 40°C. This protein was slightly phosphorylated...
Protease and motility of fowl spermatozoa

Fig. 1. The motility of demembranated fowl spermatozoa in the reactivation medium at 40°C after addition of various concentrations of (a) (●) trypsin or (○) papain and (b) chymotrypsin (●) or carboxypeptidase B (○). Results are the mean (±SEM) from five samples of spermatozoa.

Fig. 2. The motility of demembranated fowl spermatozoa in the reactivation medium at 30°C after addition of various concentrations of aprotinin or phenylmethylsulfonyl fluoride (PMSF). Results are the mean (±SEM) from five samples of spermatozoa. TIU: trypsin inhibitor units.

at 40°C, but strongly phosphorylated at 30°C, confirming the previous observation of Ashizawa et al. (1992). However, neither aprotinin at 30°C nor trypsin at 40°C affected the phosphorylated state of this or other phosphorylated proteins (Fig. 4).

Table 1. The effects of phosphodiesterase, EGTA and Ca²⁺ on the motility of trypsin-treated demembranated fowl spermatozoa at 40°C

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Motility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>4.8 ± 1.9a</td>
</tr>
<tr>
<td>Trypsin (50 ng ml⁻¹)</td>
<td>62.1 ± 4.2b</td>
</tr>
<tr>
<td>Trypsin (50 ng ml⁻¹) + phosphodiesterase</td>
<td>70.5 ± 5.3b</td>
</tr>
<tr>
<td>EGTA (2 mmol l⁻¹)</td>
<td>4.1 ± 1.8a</td>
</tr>
<tr>
<td>Ca²⁺ (0.1 μmol l⁻¹)</td>
<td>2.7 ± 1.3a</td>
</tr>
<tr>
<td>Trypsin (50 ng ml⁻¹) + EGTA (2 mmol l⁻¹)</td>
<td>72.1 ± 3.5b</td>
</tr>
<tr>
<td>Trypsin (50 ng ml⁻¹) + Ca²⁺ (0.1 μmol l⁻¹)</td>
<td>70.4 ± 2.6b</td>
</tr>
</tbody>
</table>

Each value represents the mean (±SEM) of five samples of spermatozoa. Values with different superscripts differ significantly (P < 0.01) from each other.

Table 2. The effects of proteases on the ATPase activity of crude dynein extract of fowl spermatozoa at 40°C

<table>
<thead>
<tr>
<th>Protease</th>
<th>ATPase activity (nmol ATP hydrolysed mg⁻¹ protein min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>21.8 ± 0.3a</td>
</tr>
<tr>
<td>Trypsin (50 ng ml⁻¹)</td>
<td>20.5 ± 0.7a</td>
</tr>
<tr>
<td>Chymotrypsin (600 ng ml⁻¹)</td>
<td>20.9 ± 0.9a</td>
</tr>
<tr>
<td>Papain (600 ng ml⁻¹)</td>
<td>20.9 ± 0.7a</td>
</tr>
<tr>
<td>Carboxypeptidase B (40 μg ml⁻¹)</td>
<td>21.0 ± 0.3a</td>
</tr>
</tbody>
</table>

Each value represents the mean (±SEM) of five samples of spermatozoa. Values with different superscripts differ significantly (P < 0.01) from each other.

Discussion

Protease activities were mainly thought to be involved in the catabolism of proteins, but recent evidence suggests that they
also have a short-term regulatory function, for example in the control of sperm motility (Gagnon and de Lamirande, 1987). The present study showed that temperature-dependent immobilization of demembranated fowl spermatozoa at 40°C was reversed by the addition of trypsin or chymotrypsin. Furthermore, sperm motility at 30°C was inhibited by aprotinin or PMSF, but could be restored by the subsequent addition of trypsin. It is therefore proposed that an endogenous, presumably serine protease is present in the fowl sperm axoneme, and plays an important role in regulating sperm movement. The immobilization of fowl spermatozoa at 40°C might be due in part to the reduction of activity of this protease, although the effects of temperature on the activity of proteases of fowl spermatozoa were not measured in this experiment.

Although this is the first report of the presence of such protease activity in avian spermatozoa, similar sperm proteases appear to be preserved throughout evolution from sea urchins to humans (de Lamirande et al., 1990), as protease inhibitors, including aprotinin, inhibited the motility of demembranated spermatozoa in sea urchins, fish and mammals (de Lamirande et al., 1983; de Lamirande and Gagnon, 1986; Cosson and Gagnon, 1988; Inaba and Morisawa, 1991).

The target and precise mechanisms of action of proteases in the regulation of sperm motility remain to be elucidated. The inhibition of motility initiation by high concentrations of ATP was abolished by the inclusion of trypsin in demembranated hamster spermatozoa, and it is assumed that trypsin may involve the action of cAMP (Yeung, 1986), since a trypsin-like protease derived from bovine spermatozoa can stimulate adenylyl cyclase (Johnson et al., 1985). In the present study, however, no decrease in motility was observed by the addition of phosphodiesterase to remove endogenous cAMP from trypsin-treated spermatozoa. Moreover, trypsin-stimulated sperm motility was not affected by the removal or addition of Ca²⁺. From these results, it may be proposed that the proteases act directly on the axoneme in a cAMP- and Ca²⁺-independent manner. However, the results reported here also showed that ATPase activity of a dynein extract of fowl spermatozoa was not stimulated by the addition of proteases tested, suggesting that these proteases might not act directly on dynein ATPase. Similarly, trypsin did not stimulate the steady-state activity of the axonemal dynein ATPase of sea urchin spermatozoa (Kamimura et al., 1985) and aprotinin, at 50-fold the concentration needed to block sperm motility, caused only a 30% inhibition of dynein ATPase isolated from bull spermatozoa (Gagnon and de Lamirande, 1987).

Recently, we suggested that cAMP-independent phosphorylation of a 43 kDa axonemal protein is likely to be a regulatory step in the maintenance of fowl sperm motility (Ashizawa et al., 1992). However, the phosphorylation state of this protein did not change in the presence of proteases or their inhibitors, which supports the hypothesis that the site of action of endogenous protease may lie between the 43 kDa protein and the dynein-tubulin sliding system. This hypothesis agrees with the suggestion that other sperm proteases may act near the site where dynein arms interact with microtubules, without affecting the dynein ATPase (de Lamirande et al., 1990).

This study was supported by a grant from the Ministry of Education, Science and Culture, Japan. G. J. Wishart was supported by the Royal Society of Edinburgh.

References

Ashizawa K and Hori M (1990) Activation of dynein adenosine triphosphatase and flagellar motility of demembranated spermatozoa by monovalent salts at 40°C in the domestic fowl, Gallus domesticus Comparative Biochemistry and Physiology 97A:325–328


Protease and motility of fowl spermatozoa


