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Abstract

Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway

responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link

between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive),

fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as

regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these

regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction

is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin

receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin

signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic

POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance.

Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play

a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on

reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.
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Kisspeptin governs puberty onset and reproduction

Kisspeptin is a hypothalamic neuropeptide that drives
fertility by stimulating gonadotropin-releasing hormone
(GNRH) neurons (Gottsch et al. 2004, Han et al. 2005).
A product of the KISS1 gene, kisspeptin, is cleaved from
an initial 145 amino acid precursor to a 54 amino acid
peptide in humans (Kotani et al. 2001, Ohtaki et al.
2001) and a 52 amino acid peptide in mice (Terao et al.
2004). In humans, smaller isoforms of 14 and 13 amino
acids have also been isolated, each sharing the common
C-terminal sequence (Kotani et al. 2001, Ohtaki et al.
2001). Kisspeptin binds to the once orphaned G-protein-
coupled receptor-54 (Kotani et al. 2001), now commonly
referred to as Kiss1r (Gottsch et al. 2009).

Two independent research groups discovered the
essential role of kisspeptin in reproduction almost
simultaneously in 2003, when Kiss1r mutations were
isolated in cases of idiopathic hypogonadotropic
hypergonadism (de Roux et al. 2003, Seminara et al.
2003). Seminara et al. (2003) were also the first to
examine Kiss1r null mice, which shared the infertility
and had no other discernible phenotype. It is now
universally accepted that kisspeptin is fundamental to
GNRH-driven fertility and the key pieces of evidence for
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this include the following: i) the stimulatory effect of
kisspeptin is blocked by GNRH antagonists (Gottsch
et al. 2004, Irwig et al. 2004, Matsui et al. 2004, Shahab
et al. 2005); ii) injections of kisspeptin directly in to the
vicinity of GNRH neuron stimulate luteinizing hormone
(LH) secretion (Patterson et al. 2006); iii) kisspeptin
activates GNRH neurons in vivo (Irwig et al. 2004,
Matsui et al. 2004) and in vitro (Han et al. 2005,
Pielecka-Fortuna et al. 2008); iv) kisspeptin immuno-
reactive fibers appose GNRH neuron cell bodies
(Kinoshita et al. 2005, Clarkson & Herbison 2006,
Smith et al. 2008) and their terminals within the median
eminence (Smith et al. 2011); v) kisspeptin stimulates
GNRH release into the portal circulation of sheep (Smith
et al. 2011) and the isolated mediobasal hypothalamus
(d’Anglemont de Tassigny et al. 2008); and finally vi)
almost all GNRH neurons express Kiss1r (Irwig et al.
2004, Han et al. 2005, Smith et al. 2009). Importantly,
the effects of kisspeptin are absent in Kiss1r knockout
(KO) mice, showing specificity to this receptor (Messager
et al. 2005, Dungan et al. 2007, Kauffman et al. 2007).

It is worthy to note that using a genetic ablation
approach, the importance of the kisspeptin system
in mice has been challenged. Mice with ablated
kisspeptin neurons presented with normal fertility
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(Mayer & Boehm 2011). However, it is questionable
whether a complete loss of kisspeptin cells was
achieved. It is likely that this result reflects redundancy
in kisspeptin neurons and signaling as genetically
targeted mice with 50 and 95% reductions in Kiss1
transcript still maintain, albeit impaired in females,
fertility (Popa et al. 2013). In addition, the DBA/2J mouse
strain possess less than one-tenth the level of Kiss1
mRNA in the brain than the C57BL/6 mice (Quennell
et al. 2011), yet are fertile. Thus, these data may highlight
the importance of kisspeptin in reproduction, in that it
is synthesized in excess to ensure reproductive success.

One of the primary functions of kisspeptin appears to
be as an interneuronal bridge between systemic levels of
sex steroids and GNRH neuron regulation (Smith 2013;
Fig. 1). In rodents, kisspeptin-producing cells are found
in the anteroventral periventricular nucleus (AVPV)
and the arcuate nucleus (ARC) (Smith 2013). In sheep,
kisspeptin neurons are located in the dorsolateral region
of the preoptic area (POA) (perhaps a homologous
population to the rodent AVPV) and the ARC (Estrada
et al. 2006, Smith et al. 2007), and estrogen regulation of
kisspeptin has been extensively studied in these regions
in both rodents and sheep (Smith 2013). Both neuronal
populations are important in the generation of estrogen-
positive feedback and sex steroid-negative feedback
signals to GNRH neurons. The former, critical for the
GNRH/LH surge and ovulation in females and
the latter, involved in the tonic/pulsatile regulation of
GNRH secretion in both sexes (Simerly 2002, Herbison
2008). Specifically, sex steroids robustly regulate
kisspeptin neurons and those in the ARC forward signals
applicable to negative feedback regulation of GNRH in
mice (Smith et al. 2005a, 2005b). In the female rodent,
Kiss1 neuron
AVPV

Kiss1 neuron
ARC

GNRH neuron
POA

GNRH

LH/FSH Estradiol

Figure 1 The proposed negative and positive feedback mechanism
exerted by ovarian steroids on the regulation of kisspeptin neurons. In
rodents, Kiss1 neurons are located in both AVPV and ARC and stimulate
(C) GNRH neurons. In the ARC, Kiss1 neurons project directly to
GNRH cell bodies and their terminals in the median eminence.
Moreover, estradiol (E2) inhibits (K) ARC Kiss1 neurons consistent with
negative feedback control of GNRH neurons. In the AVPV, E2 stimulates
(C) Kiss1 neurons, facilitating positive feedback regulatory control and
the preovulatory GNRH/LH surge. AVPV Kiss1 neurons only project
directly to GNRH cell bodies.
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AVPV kisspeptin cells are critical for positive feedback
regulation of GNRH (Smith et al. 2005a, 2006b). In
sheep, key differences are apparent in feedback
regulation of GNRH compared with rodents. Thus,
estradiol (E2)-induced positive feedback appears to be
mediated by kisspeptin neurons in both the ARC
(Estrada et al. 2006, Smith et al. 2009) and the POA
(Smith et al. 2009, Hoffman et al. 2011).
Metabolic control of fertility

The appropriate regulation of energy balance is important
for fertility. Successful reproduction requires adequate
resources within the individual organism. Thus, the ability
to control reproduction and metabolism simultaneously
ensures that offspring are born into an environment with
sufficient energy supplies to maintain survival of both the
mother and the offspring (Evans & Anderson 2012). As a
result, there is a clear association of the effects of energy
balance on reproduction, whereby perturbations in
energy balance, including obesity and frequently result
in fertility impairment (Pasquali et al. 2007). In most
cases, it is evident that negative energy balance, when
less energy (food) is consumed than is expended in
metabolism, inhibits the reproductive axis. Ewes
subjected to restricted feeding exhibited a significant
decrease in mean LH concentration, LH pulse frequency,
and follicle-stimulating hormone (FSH) concentrations
compared with normal fed ewes (Thomas et al. 1990). In
male rats, food restriction decreased LH, FSH, and
testosterone levels compared with ad libitum fed controls
(Compagnucci et al. 2002). Similar studies are also
evident in mice, showing reduced fertility as a conse-
quence of undernutrition (Castellano et al. 2005, Luque
et al. 2007). Overall, these studies demonstrate that lean
animals with a reduced food intake are often
hypogonadotropic.

At the other end of the metabolic spectrum, diet-
induced obesity (DIO) also has an effect on reproductive
status. This is especially relevant now because obesity is
reaching epidemic proportions and is one of the most
serious public health issues facing the developed world.
In male mice with DIO, sperm motility and fertility are
compromised compared with normal-weight controls
(Ghanayem et al. 2010). In adult female DBA/2J mice,
which are susceptible to DIO, there were decreases in
pregnancy rates and GNRH expression compared with
controls (Tortoriello et al. 2004). These studies highlight
that obesity can also lead to reduced fertility.
The effect of energy status on fertility is mediated
by kisspeptin

As both metabolic state and energy balance are
important for reproduction, it would be reasonable to
assume that kisspeptin neurons can provide the link
www.reproduction-online.org
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between energy status and fertility. The role of kisspeptin
expression in altered energy states has been investigated
in states of undernutrition in mice and streptozotocin-
induced diabetes in rats. Fasting in prepubertal rats led
to a significant reduction in whole hypothalamic Kiss1
but increased Kiss1r expression compared with normal
fed rats (Castellano et al. 2005). Using a shorter period
of fasting (48 h) in adult male mice, both Kiss1 and Kiss1r
mRNA expression was reduced compared with fed
controls (Luque et al. 2007). In a different altered energy
state, an induced diabetic rat model, there was a
significant decrease in Kiss1 mRNA compared with
controls (Castellano et al. 2006). In follow-up studies
isolating the distinct populations of Kiss1, fasting
reduced expression in the AVPV, but not the ARC, in
adult female ovariectomized (OVX) rats (Kalamatianos
et al. 2008). Alternatively, chronic calorie restriction in
female rats at the age of puberty reduced Kiss1
expression in the ARC, but not the AVPV (Roa et al.
2009). In OVX ewes, the effect of body weight status was
seen on Kiss1 mRNA expression in both the ARC and
the rostal, POA region, and was reduced in ewes made
lean (Backholer et al. 2010). Thus, both populations of
kisspeptin neurons are potential targets for negative
energy balance.

To further support the role of kisspeptin in mediating
the effects of energy status on fertility, there are functional
data where exogenous kisspeptin administration can
rescue the hypothalamic–pituitary axis in these con-
ditions. Fasted prepubertal male and female rats showed a
significant increase in LH levels when they were centrally
administrated with kisspeptin (Castellano et al. 2005).
Furthermore, in a male diabetic rat model, kisspeptin
administration led to a significant increase in LH levels
compared with a vehicle control (Castellano et al. 2006).
Thus, in conditions of negative energy balance, treatment
with kisspeptin may overcome the reduced endogenous
expression of Kiss1 and rescue any deficit in reproductive
function. Alternatively, such a relationship does not
automatically preclude a role for kisspeptin in mediating
the effects of energy status. Kisspeptin may simply bypass
the neuronal pathways that exert inhibitory metabolic
actions on GNRH secretion, thus the data above should
be considered with caution.

With regard to positive energy balance, data are
relatively scarce. However, in one recent study, Kiss1
expression was investigated in a DIO mouse model. Here,
female DBA/2J mice made obese by maintenance on a
high-fat diet from weaning to adulthood had reduced
Kiss1 mRNA in the ARC and the AVPV compared with
chow-fed controls. Consistent with this, kisspeptin neuron
number (as detected by immunohistochemistry) was also
reduced in the latter (Quennell et al. 2011).

From the aforementioned data, it is clear that energy
balance has profound effects on the reproductive axis
and these appear to be mediated, at least in part, by
kisspeptin expression and signaling in the hypothalamus.
www.reproduction-online.org
This immediately raises the question as to what
metabolic signals govern this effect. Metabolic control
involves multiple factors acting on and within the
hypothalamus (Barsh & Schwartz 2002), and it is
possible that any one or the combined effect of many
signals is important for the regulation of kisspeptin and in
turn fertility.
Metabolic regulators of kisspeptin

Leptin

The adipose hormone leptin is a critical component for
energy balance. Leptin is secreted in proportion to fat
stores and acts within the brain to signal adequate energy
stores and satiety (Halaas et al. 1995). Adequate leptin
concentrations are also known to be essential for the
reproductive axis, gating the onset of puberty (Cheung
et al. 1997, Chehab 2000) again through action in the
brain (de Luca et al. 2005). Despite the acceptance
of leptin as a requisite for puberty and fertility, the
neuroanatomical pathway linking leptin signaling to
GNRH neurons is not yet fully understood. GNRH
neurons do not possess the signaling isoform of the leptin
receptor (LepRb; Quennell et al. 2009). Therefore,
interneuronal pathways that are sensitive to leptin and
converge on GNRH neurons are required and kisspeptin
neurons are recognized as a primary candidate.

We were the first to demonstrate leptin’s regulatory
control of the kisspeptin system using leptin-deficient
ob/ob mice (Smith et al. 2006a). Owing to the lack of
circulating leptin, these mice are obese but experience
a condition of perceived negative energy balance and
are infertile. Male ob/ob mice had significantly reduced
expression of Kiss1 mRNA in the ARC compared with
WT littermates and this was partially corrected when
exogenous leptin was administered to the periphery.
Importantly, all mice in this study were castrated to
remove the confounding regulatory effects of endogen-
ous gonadal steroids, which are reduced in ob/ob mice.
The study also confirmed the presence of Lepr (LepRb)
mRNA on 40% of kisspeptin neurons in the ARC,
indicating that leptin regulation of gene expression is
likely to occur directly on kisspeptin neurons (Fig. 2).

In support of this study, female ob/ob mice were also
shown to have reduced expression of Kiss1 mRNA in the
ARC compared with WT controls (Quennell et al. 2011).
Moreover, this reduction was again shown in OVX mice
and also in OVX mice with baseline estrogen replace-
ment (Quennell et al. 2011). Similar confirmation of
leptin regulation of kisspeptin has been reported in rats
using a streptozotocin-induced diabetes model (resulting
in hypoinsulinemia and hypoleptinemia; Castellano
et al. 2006). Here, central leptin administration was
able to restore the otherwise reduced expression of Kiss1
mRNA in the whole hypothalamus. In guinea pigs, leptin
can induce depolarization of kisspeptin neurons in the
Reproduction (2014) 147 53–63
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Figure 2 The potential role of leptin and ghrelin on Kiss1 neuron
regulation. Leptin stimulates (C) Kiss1 expression in both AVPV and
ARC, but direct or indirect action on Kiss1 neurons is currently debated
(?). Data suggest a direct role on ARC Kiss1 neurons, but not those in the
AVPV. Equally, data show an interneuronal pathway linking leptin
signaling to Kiss1 neurons. Alternatively, ghrelin inhibits (K) Kiss1
neurons and does so in the AVPV via a yet to be determined indirect
mechanism (?). There is currently no evidence to claim a direct action
of ghrelin on ARC Kiss1 neurons (?), but this remains a possibility.
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ARC, of which 36% express Lepr (Qiu et al. 2011).
Finally, similar data are also apparent in sheep. In OVX
ewes made lean through dietary restriction, reduced
Kiss1 expression in the ARC was again partially restored
with central leptin administration (Backholer et al.
2010). Interestingly, in this study, a similar effect was
also observed in the POA kisspeptin neurons and
virtually all these neurons (both POA and ARC)
expressed Lepr mRNA (Backholer et al. 2010).

Despite the evidence for a direct effect of leptin on
kisspeptin neurons, more recent discoveries have cast
doubt as to whether this is indeed the case. Subsequent
neuroanatomical data in female sheep show a complete
absence of leptin-induced pSTAT3 responses (indicating
the presence of functional LepR) in either POA or ARC
kisspeptin neurons (Louis et al. 2011). This same
publication also showed an absence of LepRb (detected
using Lepr–EGFP transgenic mice) in immunoreactive
kisspeptin neurons in the AVPV. Moreover, a very limited
proportion (0–6%) of ARC kisspeptin neurons (visualized
using Tac2–EGFP transgenic mice) coexpressed pSTAT3
immunoreactivity (Louis et al. 2011). In this model,
however, the number of ‘kisspeptin neurons’ visualized
via Tac2–EGFP appeared limited and so it is conceivable
that the authors may have underestimated this popu-
lation and reduced their ability to detect LepRb
colocalization. Indeed, other studies using similar
techniques have shown leptin activation (pSTAT3) in
15% of ARC kisspeptin neurons (Cravo et al. 2011).
Despite this, the notion of kisspeptin neurons receiving
direct input from leptin signaling has certainly become a
contentious one. This was originally brought to the fore
in a paper demonstrating that the onset of puberty is
Reproduction (2014) 147 53–63
unaltered in a female mouse model with a targeted
disruption of LepR selectively in Kiss1 neurons (Donato
et al. 2011). Of interest here is that functional LepR
signaling (pSTAT3 immunoreactivity) was confirmed in
13–20% of ARC kisspeptin neurons in control (LepRflox/flox)
mice. As predicted, receptor expression was markedly
reduced, but not completely abolished, in Kiss1-Cre
LepRflox/flox mice. So it is possible that the remaining
(but severely limited) LepR expression on kisspeptin
neurons following cre-lox recombination may still be
adequate for the relay of leptin signaling to kisspeptin
neurons and in-turn fertility. Of note here is the apparent
redundancy in Kiss1 expression required for fertility in
mice (Popa et al. 2013). Equally, it is noted in Kiss1-Cre
LepRflox/flox mice that LepR deletion was also apparent in
the ovary and testes (Donato et al. 2011). Kiss1
expression has been documented in the gonads (Gaytan
et al. 2009, Tariq et al. 2013) and also other brain regions
during development (Gottsch et al. 2011), so the
specificity of LepR deletion may be compromised. This,
paired with the possibility of developmental compensa-
tory mechanisms in the transgenic model, should not
be ignored. In order to overcome many of these issues,
a subsequent study examined LepR-null mice where
LepR was re-expressed selectively in kisspeptin cells.
These mice showed no improvement to the infertile
phenotype of LepR-null mice (Cravo et al. 2013),
indicating that leptin signaling in kisspeptin neurons is
not sufficient for fertility in mice.

Although it remains to be disproven as to whether
leptin can act directly on kisspeptin neurons, indirect
actions remain a likely possibility (Fig. 2). Indeed, in both
studies refuting the direct role of leptin on kisspeptin
neurons, a neuronal population expressing LepRb located
in the ventral premammillary nucleus (PMV) was
implicated (Donato et al. 2011, Louis et al. 2011).
Notably, lesions of the PMV prevent the restoration of
fertility following leptin treatment in ob/ob mice and
‘re-expression’ of LepRb in the PMV of female LepR-null
mice is sufficient to induce sexual maturation (Donato
et al. 2011). Moreover, PMV neurons appear to make
close contacts with kisspeptin and GNRH neurons
(Donato et al. 2011, Louis et al. 2011) and a yet to be
characterized population of LepRb neurons is also present
in close vicinity of Kiss1 neurons in both ARC and
AVPV (Louis et al. 2011). So coordinated interplay
between the PMV–kisspeptin–GNRH systems is likely.
Overall, it can be concluded that PMV is a key site for
leptin’s permissive action at the onset of puberty and
supports the hypothesis that leptin’s role in controlling
metabolism (via the ARC) and reproduction is anatomi-
cally dissociated (Coppari et al. 2005).

In spite of wealth of evidence demonstrating the effect
of leptin on promoting fertility, and the involvement
of kisspeptin neurons in mediating this effect (direct or
indirect), the contribution of additional modulators
of metabolism should not be ignored (see below).
www.reproduction-online.org
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Data also suggest that leptin may not be the sole critical
metabolic factor predicating the restoration of fertility in
models of negative energy balance. In sheep, the
restoration of ad libitum feeding in food-restricted
ewes rescues pulsatile LH secretion but does so prior
to any change in circulating leptin concentrations
(Szymanski et al. 2007). Similarly, restoration of leptin
to normal basal levels in caloric restricted female rats
does not restore Kiss1 mRNA or plasma LH levels (True
et al. 2011). Although it could be argued in the latter that
a required threshold of leptin was not reached because
higher ‘pharmacological’ levels of leptin replacement in
this study did maintain LH at control values (True et al.
2011). Nevertheless, alternative regulators of metab-
olism are very likely involved in kisspeptin regulation
and should be explored.
Insulin

Insulin, the product of the pancreatic b cells, is vital for
the control of carbohydrate and fat metabolism and also
plays a role in the hypothalamus to regulate energy
balance (Schwartz et al. 1992). Moreover, central insulin
signaling promotes fertility (Bruning et al. 2000) and, like
leptin, appears to regulate GNRH neurons through an
interneuronal mechanism (Divall et al. 2010). In food-
restricted ewes, the rescue of pulsatile LH secretion via
restoration of ad libitum feeding (which occurs prior to
any change in circulating leptin, see above) is preceded
by an increase in circulating insulin concentrations
(Szymanski et al. 2007), leading to the hypothesis that
LH pulses are reinitiated by changes in availability of
metabolic fuels and insulin.

Further, mice that are lacking insulin receptors
selectively in kisspeptin neurons (IRKiss mice) experience
a delay in puberty (Qiu et al. 2013). Specifically, female
IRKiss mice had delayed vaginal opening and first estrous,
while males had reduced testis mass at postnatal day 31.
These data indicate that kisspeptin neurons are likely
mediators for the effects of insulin on reproduction.
However, this phenotype appears to be limited to puberty
onset because measures of adult fertility in these mice
(levels of LH, FSH, sex steroids, as well as fertility)
appeared unperturbed (Qiu et al. 2013). Consistent with
the latter, insulin treatment does not appear to restore
Kiss1 mRNA expression in the whole hypothalamus of
diabetics rats (Castellano et al. 2006). Thus, the role
of kisspeptin neurons in mediating the effect of insulin
on the reproductive axis still requires further clarification.
Ghrelin

Ghrelin is a stomach hormone commonly associated
with the neural control of appetite and metabolism
(Andrews 2011, Briggs & Andrews 2011). However,
unlike leptin or insulin, ghrelin operates as an orexigenic
www.reproduction-online.org
factor. Ghrelin also affects the reproductive system. For
example, central ghrelin injection to OVX rats, or OVX
rats treated with E2, suppressed LH concentration and
pulse frequency (Furuta et al. 2001, Ogata et al. 2009).
Similar inhibitory effects on LH secretion were observed
throughout the estrus cycle (Fernandez-Fernandez et al.
2005). Here, ghrelin significantly inhibits GNRH release
from hypothalamic explants and ghrelin suppressed
GNRH-induced LH release in vitro (Fernandez-
Fernandez et al. 2005). The central inhibitory effects of
ghrelin on LH secretion also occurs in sheep (Iqbal et al.
2006). Thus, it appears that conditions of negative energy
balance increase plasma ghrelin concentrations and in
turn suppress the reproductive axis.

The mechanisms through which central ghrelin
inhibits the reproductive system remain unresolved,
although kisspeptin neurons in the hypothalamus may
be a primary target. Previous studies highlight that
ghrelin could inhibit LH secretion by directly
suppressing the effects of kisspeptin on the reproductive
axis. Ghrelin significantly reduced the duration of the LH
secretory response to kisspeptin-10 (Martini et al. 2006).
Moreover, during fasting, exogenous ghrelin treatment,
or the combination of both, expression of Kiss1 mRNA
in the AVPV is reduced (Forbes et al. 2009), without
affecting Kiss1 mRNA in the ARC, indicating that
ghrelin may target these kisspeptin neurons to suppress
LH secretion.

Ghrelin acts on the growth hormone secretagogue
receptor (GHSR) in the brain to elicit changes in
physiological functions. Although ghrelin suppresses
LH secretion and regulates Kiss1 mRNA, there is no
clear neuroanatomical evidence linking GHSR neural
circuits to reproductive neural circuits. We first
examined direct coexpression of the GHSR and GNRH
or kisspeptin neurons using a GHSR–eGFP reporter
mouse line, which is currently the best model available
to visualize GHSR expressing neurons. We showed
for the first time that neither GNRH nor kisspeptin
neurons in the AVPV express GHSR–eGFP, so any effect
of ghrelin on these kisspeptin neurons must be indirect
(Smith et al. 2013; Fig. 2). Importantly, we realize that
these findings are reliant on the validity of the GHSR–
eGFP model. In our study, we observed that only half of
the GHSR–eGFP cells in the AVPV coexpressed Ghsr
mRNA (as determined by in situ hybridization) and
we remain cautious with the GHSR–eGFP mouse model
and the interpretation of our data. Moreover, far fewer
eGFP cells were localized to the ARC than expected.
Given this, we can make no claim to the degree
of GHSR–eGFP coexpression in kisspeptin neurons of
the ARC. It remains likely that ARC kisspeptin neurons
could coexpress GHSR and receive direct ghrelin
input (Fig. 2) because expression of mRNA for both
genes is prominent in this area (Gottsch et al. 2004,
Zigman et al. 2006).
Reproduction (2014) 147 53–63
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Figure 3 The potential involvement of NPY/AgRP and POMC/CART
neurons in Kiss1 neuron regulation. Regulators of metabolic function
(leptin and ghrelin) regulate NPY/AgRP and POMC/CART neurons,
which are neuroanatomicaly and functionally connected to Kiss1
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Hypothalamic regulators of kisspeptin

If leptin, insulin, or ghrelin do not directly act on
kisspeptin neurons, what are the possible indirect
mechanisms? A realistic possibility may be the neuronal
systems within the ARC responsible for integrating these
peripheral metabolic signals and relaying effects on food
intake and energy expenditure to higher brain centers.
These neurons, termed ‘first-order neurons’ consist of
neuropeptide Y (NPY)/agouti-related peptide (AgRP)
neurons and pro-opiomelanocortin (POMC)/cocaine
and amphetamine-regulated transcript (CART) neurons
(Barsh & Schwartz 2002). The majority of NPY/AgRP and
POMC/CART neurons in the ARC contain LepRb, insulin
receptor, and GHSR (Willesen et al. 1999, Barsh &
Schwartz 2002, Perello et al. 2012). Whether they are
actively involved in the metabolic control of kisspeptin
neurons is yet to shown.
neurons. At this stage, NPY/AgRP regulation of Kiss1 neurons is unclear
(?). On the other hand, products of POMC/CART neurons appear to
stimulate (C) Kiss1 neurons.
NPY/AgRP neurons

A recent study suggests that NPY/AgRP neurons are
involved in an important link between reproduction and
metabolism (Wu et al. 2012). These neurons are
orexigenic and critical to initiate food intake (Aponte
et al. 2011, Atasoy et al. 2012) and genetic ablation of
AgRP neurons in adulthood results in starvation (Luquet
et al. 2005). In order to examine the mechanisms
underpinning hyperphagia in genetically obese and
infertile ob/ob mice, Wu et al. (2012) discovered that
ablating NPY/AgRP neurons in these mice caused a
prolonged period of reduced food intake and remarkably
restored fertility in both males and females. Consistent
with this is the inhibitory effect of NPY on GNRH/LH
secretion (Barker-Gibb et al. 1995, Xu et al. 2009).
Interestingly, NPY may inhibit or stimulate LH secretion
according to the steroid milieu in rats, inhibiting in OVX
models, but stimulating in intact (Kalra & Crowley 1984).
In sheep, NPY only appears to have an inhibitory role
on gonadotropin release (Barker-Gibb et al. 1995).

Despite the association, the effect of NPYon kisspeptin
neurons is far from clear. In sheep, kisspeptin neurons
receive neuroanatomically defined inputs from
NPY/AgRP neurons (Backholer et al. 2010). However,
in NPY KO mice, the expression of Kiss1 mRNA appears
to be reduced to levels similar to that during a fasted state
(Luque et al. 2007). This is somewhat counterintuitive
given that fasting, which reduces kisspeptin expression,
stimulates the hypothalamic expression of NPY (Hahn
et al. 1998). Leptin also appears to suppress NPY
expression (Ahima 2000) but increases the expression
of Kiss1 (Smith et al. 2006a). Nevertheless, the
stimulatory role of NPY on Kiss1 has also been shown
in a hypothalamic cell line in vitro (Luque et al. 2007).
Thus, the relationship between NPY and kisspeptin
appears highly complex and one wonders what specific
role AgRP may be playing (Fig. 3), particularly in regard
Reproduction (2014) 147 53–63
to data obtained from NPY KO mice. Specific actions
of AgRP on kisspeptin neurons are yet to be shown.
POMC/CART neurons

Juxtaposed to the NPY/AgRP neurons in the ARC are the
POMC/CART neurons. These represent the major
anorexigenic pathway in the control of food intake
and energy expenditure (Barsh & Schwartz 2002). Like
their counterparts, POMC/CART neurons also send
projections to kisspeptin neurons in sheep (Backholer
et al. 2010) and mice (Cravo et al. 2011, True et al.
2013). In mice, subsets of kisspeptin neurons also
express melanocortin receptor type 4 (Cravo et al.
2011) and melanocortin (one of the neuropeptides
produced from these neurons) agonist (MTII) stimulates
LH release in luteal phase ewes and increases Kiss1
mRNA expression in the POA (Backholer et al. 2009).
Of note, Kiss1 mRNA in the ARC was reduced in
response to MTII (Backholer et al. 2009). The latter,
while counterintuitive, could be explained due to a
downstream effect of the possible reinstatement of E2

levels following treatment as the experiment was
performed in ovary intact seasonally anestrous ewes.

Very recent data have demonstrated that CART may
also play a specific role in the regulation of kisspeptin.
Using electrophysiological recordings from Kiss1–GFP
mice, CART has been shown to postsynaptically
depolarize kisspeptin neurons in the ARC (True et al.
2013). Thus, the stimulatory role of positive energy
balance mediators on kisspeptin and fertility may also
involve this neuropeptide (Fig. 3). Importantly, the
authors here noted that CART could also directly activate
GNRH neurons, using GNRH–GFP rats (True et al.
2013). This relationship was previously noted in mice for
www.reproduction-online.org
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both products of POMC/CART neurons but also with
NPY, showing Y1 receptor-mediated suppression of
GNRH neuron activity (Roa & Herbison 2012). Thus,
although evidence shows that first-order neuron
regulation of kisspeptin is possible, these neurons can
also provide a kisspeptin-independent route through
which neuropeptide metabolic cues can directly
regulate GNRH and fertility.
Kisspeptin-mediated control of energy balance?

While most of the focus of current research has been
on the role of kisspeptin in relaying metabolic signals to
the reproductive axis, little attention has been paid to the
potential role for kisspeptin as a regulator of energy
balance. It is not uncommon for neuroendocrine systems
to possess reciprocal control of feeding behavior and
reproduction (Small et al. 2002, Tena-Sempere 2007).
Moreover, Kiss1r is expressed in a number of brain areas
that do not contain GNRH (Herbison et al. 2010), as well
as in several peripheral tissues (Kotani et al. 2001),
including metabolic tissues such as pancreas and
adipose tissue (Brown et al. 2008). Thus, it is possible
that kisspeptin signaling may have additional roles
beyond the control of reproduction. However, this has
not yet been shown.
Kiss1 and Kiss1r KO mice do not appear to have any

difference in body weights compared with WT litter-
mates (Lapatto et al. 2007), and initial studies on rats
found no effects of central kisspeptin administration
on food intake, bodyweight, or the hypothalamic
expression of NPY, AgRP, POMC, or CART (Castellano
et al. 2005). Similarly, kisspeptin treatment had no effect
on food intake in sheep (Clarke et al. 2012), so any
contribution of kisspeptin in the control of energy
balance seemed unlikely. However, it its worth noting
here that DBA/2J mice, which are much more suscep-
tible to high-fat DIO and infertility, have substantially
less Kiss1 mRNA in the AVPV and ARC (Quennell et al.
2011). Moreover, body weights in Kiss1 and Kiss1r KO
mice have only been reported before full maturity, and
the examination of the entire metabolic characteristics
of these mice has not yet been performed.

In opposition to this precedent, kisspeptin neurons
send afferents to first-order NPY/AgRP and POMC/CART
neurons (Backholer et al. 2010). These neurons may
possess Kiss1r because it is expressed in cells within the
ARC (Lee et al. 1999), which are not kisspeptin neurons
(Smith et al. 2011). Moreover, electrophysiological
recordings in mice show that kisspeptin can directly
excite POMC/CART neurons and indirectly inhibit NPY/
AgRP neurons, via a mechanism based on enhancing
GABA-mediated inhibitory synaptic tone (Fu & van den
Pol 2010). The net effect of such kisspeptin regulation
would be to decrease food intake and increase
metabolism. Consistent with this, central administration
of kisspeptin was recently shown to increase meal
www.reproduction-online.org
intervals, reducing nocturnal food intake in mice
(Stengel et al. 2011). Alternatively, central administration
of kisspeptin in sheep was reported to inhibit POMC and
increase NPY mRNA expression in the ARC (Backholer
et al. 2010). Although counterintuitive, this effect may
relate to possible antagonistic properties of the continu-
ous kisspeptin infusion (which lasted for 20 h). Such
treatment has been previously shown to desensitize
Kiss1r-induced GNRH release (Seminara et al. 2006) and
reduced Kiss1r mRNA expression on GNRH neurons
(Li et al. 2012). Nevertheless, similar data (kisspeptin
treatment stimulating NPY secretion) are also apparent
using a cell line (Kim et al. 2010). So the precise role of
kisspeptin in regulating the POMC/CART and/or NPY/
AgRP systems is clouded and awaits closer inspection.

In another layer of complexity, recent data have shown
that saporin ablation of kisspeptin neurons in the ARC
prevents the known effects of OVX and E2 replacement
on bodyweight in rats (Mittelman-Smith et al. 2012a).
Apart from their role in reproduction, E2 is known to act
in the brain via ERa to alter body composition by
decreasing food intake and increasing energy expendi-
ture (Xu et al. 2011). Thus, it appears that ARC kisspeptin
neurons are required for the orexigenic effect of OVX.
In addition, a follow-up study with kisspeptin neurons
ablation demonstrated that E2 and kisspeptin appear to
have apposing actions on skin temperature (Mittelman-
Smith et al. 2012b), perhaps predicating a role for
kisspeptin in thermogenesis and energy expenditure.
While encouraging, these data are at odds with the
proposed role for kisspeptin, which (like E2) is to
decrease food intake and increase energy expenditure.
Of significance here is that the ablation of kisspeptin
neurons would also eliminate NKB and dynorphin
signaling (as these are coexpressed in these neurons
(Goodman et al. 2007)). The roles that these other
neuropeptides have on energy balance and their
potential role in the above phenomenon need to
be confirmed.

Finally, a role for kisspeptin on energy balance may
occur outside the hypothalamus. As stated above, Kiss1r
is expressed in the pancreas (Kotani et al. 2001) and
adipose tissue (Brown et al. 2008). In the former,
kisspeptin has been shown to play a physiological role.
Kisspeptin appears to be capable of stimulating insulin
release in vitro in mice and in vivo in rats (Bowe et al.
2009). These data, however, have been challenged
by similar studies displaying an inhibitory effect of
kisspeptin on insulin secretion in isolated mouse islets
(Vikman & Ahren 2009). Clearly, more work is necessary
to decipher the role that kisspeptin signaling is playing
here and in other potential peripheral tissues.
Conclusion

Kisspeptin is a vital component for the neuroendocrine
regulation of GNRH secretion. As such, it has been a
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Figure 4 The relationship between energy balance and reproduction.
We propose that kisspeptin neurons in the arcuate nucleus are central
to this integrated regulatory loop, forming a link between energy
balance and reproduction. Concerning reproduction, kisspeptin
neurons stimulate (C) GNRH secretion and ultimately gonadal steroid
production. These hormones then feed back (K) and regulate
kisspeptin output. Concerning energy balance, metabolic signals such
as leptin and ghrelin modulate fertility via kisspeptin regulation.
Kisspeptin may potentially regulate energy balance circuits (stimulating
POMC and inhibiting NPY) in a feedback mechanism similar to that of
reproduction. But whether kisspeptin has clear effects on energy
balance is yet to be shown (?).
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focus for the central pathway responsible for conveying
key homeostatic information to GNRH neurons (Fig. 4).
Multiple studies have implicated kisspeptin signaling as
a conduit for the well-established link between energy
balance and reproductive function. While the precise
metabolic pathway is yet to be fully understood, the
peripheral signals leptin, insulin, and ghrelin are likely to
play a role, as are POMC/CART and NPY/AgRP neurons
in the ARC. Finally, a direct role for kisspeptin in
mediating energy balance is now gathering momentum.
Future studies are required to confirm this possibility and
determine its physiological relevance.
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