
R
EPRODUCTIONREVIEW
Multiple roles of the prostaglandin D2 signaling pathway
in reproduction
Moı̈ra Rossitto, Safdar Ujjan, Francis Poulat and Brigitte Boizet-Bonhoure

Genetic and Development Department, Institute of Human Genetics, CNRS UPR1142,
34094 Montpellier Cedex 05, France

Correspondence should be addressed to B Boizet-Bonhoure; Email: brigitte.boizet@igh.cnrs.fr
Abstract

Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited

reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins

E2 (PGE2), D2 (PGD2), and F2 (PGF2a) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread

expression of lipocalin- and hematopoietic-PGD2 synthases in the male reproductive tract supports the purported roles of PGD2 in

the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative

roles of PGD2 signaling and the roles of both PGD2 synthases in testicular formation and function. We review the data reporting

the involvement of PGD2 signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss

the roles of lipocalin-PGD2 synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2 production.

Finally, we discuss the hypothesis that PGD2 signaling may be affected in certain reproductive diseases, such as infertility,

cryptorchidism, and testicular cancer.

Reproduction (2015) 149 R49–R58
Introduction

Prostaglandins (PGs) derived from polyunsaturated
fatty acids belong to the superfamily of eicosanoids.
The eicosanoid cascade starts with the activation of
phospholipases A2 and C that release arachidonic acid
from the cellular membrane. Arachidonic acid is
oxidized and then reduced by the enzymes cyclooxy-
genases 1 and 2 (COX1 and COX2, also referred to as
prostaglandin endoperoxidase H synthase 1 and 2
(PTGS1 and PTGS2)), to be converted into PGG2 and
PGH2. The COXs are key enzymes in PG biosynthesis
and differ in their expression levels and tissue
distribution; COX1 is constitutively expressed, whereas
expression of COX2 is induced (Simmons et al. 2004).
PGH2, the unstable reaction intermediate, is then
converted into either PGD2, PGE2, PGF2a or prostacyclin
(PGI2) and thromboxane A2 (TxA2), by the action of
specific terminal PG synthases: prostaglandin D synthase
(PGDS), prostaglandin E synthase (PGES), prostaglandin F
synthase (PGFS) or prostacyclin synthase (PGIS), or
thromboxane synthase (TXS) respectively (Fig. 1 and
Table 1) (Cha et al. 2006). PGs are rapidly inactivated by
oxidation by the NADC-dependent 15-hydroxyprosta-
glandin dehydrogenase (15-PGDH) (Fincham &
Camp 1983). PGs are involved in the cardiovascular,
gastrointestinal, genitourinary, endocrine, respiratory,
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immune, and nervous systems (Hata & Breyer 2004).
These molecules act locally in an autocrine and/or
paracrine manner and their actions are complex, not
least because, given the structural similarity of these
molecules and their receptors, PGs may have synergistic
or antagonistic effects upon the same physiological
processes (Woodward et al. 2011, Tootle 2013).

PGD2 is actively produced in many organs, and is the
most abundant prostanoid in the CNS (Urade & Hayaishi
2000a) and in the respiratory tract and airways of
asthmatic patients (Oguma et al. 2008). PGD2 has
essential roles in various physiological processes
(Matsuoka et al. 2000, Kobayashi & Narumiya 2002,
Qu et al. 2006, Huang et al. 2007, Taniguchi et al. 2007,
Oguma et al. 2008, Gao et al. 2009, Nieves & Garza
2014), and particularly in several steps of the reproduc-
tion function (this function will be discussed further
in the following paragraphs). Also, PGD2 together with
the prostaglandins PGE2 and PGI2, in conjunction with
other mediators such as histamine, are involved in the
inflammation process (Hata & Breyer 2004, Herlong &
Scott 2006). Hematopoietic PGDS (H-PGDS) is the key
enzyme in the synthesis of PGD2 in the immune system
and mast cells (Urade & Hayaishi 2000a, Kanaoka &
Urade 2003). Furthermore, the resolution of inflam-
mation is accompanied by a shift from the biosynthesis
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Figure 1 Pathway of prostanoid biosynthesis and signaling. Arachidonic acid is metabolized by the action of cyclooxygenase (COX) first to
prostaglandin endoperoxide (PGG2) and then to PGH2, which is subsequently converted to various prostaglandins (PGD2 and PGJ2, PGE2, PGF2a,
PGI2) and thromboxane A2 (TXA2) by respective synthases. COX, cyclooxygenase; PGES, prostaglandin E synthase; PGDS, prostaglandin D synthase;
PGFS, prostaglandin F synthase; PGIS, prostacyclin synthase; TXS, thromboxane synthase. Individual prostaglandin interacts with specific members
of the subfamily of the G protein-coupled receptor (GCPR) superfamily of seven transmembrane-spanning proteins, DP1, DP2, EP1–4, FP, IP, and TP.
Then, these receptors activate different transduction (cAMP/ Ca2C) and signaling pathways.
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of PGES to that of lipocalin PGDS (L-PGDS) (Schuligoi
et al. 2005, Nicolaou et al. 2014).
PGD2 synthesis and its regulation

PGD2 synthesis is regulated by the functional and
differential coupling of COX1 and COX2 enzymes with
both PGDS and PGES (Ueno et al. 2005). The expression
of COX2 is induced by growth factors such as pro-
inflammatory cytokines (IL1, TNFa), and inhibited by
glucocorticoids and other anti-inflammatory cytokines
(IL4 and IL10) (Loftin et al. 2002, Morita 2002). In
particular, COX2 is induced by interleukin-1 in the testes
of infertile men, stimulating the production of PGD2 and
PGF2a (Matzkin et al. 2010). Testosterone induces COX2
expression and PGF2a production in hamster Leydig cells
through a nonclassical mechanism involving MAPK
signaling (Matzkin et al. 2009). Silencing of Ptgs2
through G9a- and EZH2-mediated histone methylation
and DNA methylation of its promoter region has also
been reported (Coward et al. 2014). On the other hand,
the nonsteroidal anti-inflammatory drugs (NSAIDS)
inhibit COX enzymatic activities through noncompeti-
tive (Aspirin) or competitive binding to the active site
(Cha et al. 2006).
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The synthesis of PGD2 is under the specific control of
two PGDS, the L-PGDS (or PTGDS), and the H-PGDS (or
PTGDS2) (Urade & Eguchi 2002). Originally identified in
the rat brain, L-PGDS, whose function is independent of
the tripeptide glutathione, is part of the lipocalin protein
superfamily, the members of which are secreted into
the extracellular space (Urade et al. 1985, Urade &
Hayaishi 2000a). This enzyme is produced in the CNS
(brain, spinal cord, dorsal root ganglia), in the male
genitalia (testes, epididymides, prostate) (Fouchecourt
et al. 2002), and in the heart (Eguchi et al. 1997). It has
been suggested that L-PGDS has dual functions.
Associated with the endoplasmic reticulum and the
outer nuclear membrane, it catalyzes the final step in
PGD2 synthesis from a common PG precursor. Secondly,
as L-PGDS is secreted in many fluids (cerebrospinal
fluid, seminal plasma, ascites, serum, urine, and
amniotic fluid), it has been proposed to have a role in
binding and transporting small hydrophobic ligands
such as retinol, b-lactoglobulin, bile pigments, and
thyroid hormones (Urade & Hayaishi 2000b,
Fouchecourt et al. 2002).

The expression of L-Pgds is also under the control of
many regulatory factors, protein kinase C (PKC) (Fujimori
et al. 2005), estrogens (Mong et al. 2003), IL1b, RasGRP4
www.reproduction-online.org
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Table 1 Abbreviations.

COX1 or PTGS1: Cyclooxygenase 1 or prostaglandin G/H synthase 1
COX2 or PTGS2: Cyclooxygenase 2
DP1: Prostaglandin D2 receptor 1
DP2 or CRTH2: Prostaglandin D2 receptor 2
H-PGDS or PTGDS2: Hematopoietic-type prostaglandin D2 synthase
HQL-79: 4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]-piperidine
L-PGDS or PTGDS: Lipocalin-type prostaglandin D2 synthase
NSAIDS:
PG: Prostaglandins
PGD2: Prostaglandin D2

PGDS: Prostaglandin D synthase
PGE2: Prostaglandin E2
PGES: Prostaglandin E synthase
PGF2a : Prostaglandin F2a
PGFS: Prostaglandin F synthase
PGG2: Prostaglandin G2

PGH2: Prostaglandin H2

PGI2: Prostaglandin I2 or prostacyclin
PGIS: Prostaglandin I synthase
TxA2: thromboxane A2

TXS: Thromboxane A synthase
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(Li et al. 2003), each being highly cell-type specific.
PGD2 itself induces L-Pgds expression through binding
of the Nrf2 factor on the L-Pgds promoter region in
macrophages (Kim et al. 2013). In vitro primary cultures
of rat Sertoli cells also show the activation of L-PGDS
protein expression after treatment with progesterone or
retinoic acid (RA) (Samy et al. 2000). RA strongly induces
the accumulation of L-PGDS mRNA in human 3AO
ovarian cancer cells, leading to the inhibition of their
proliferation (Su et al. 2003). Furthermore, in the
embryonic male gonad, L-PGDS expression is initiated
and maintained by the testis differentiating factor SOX9
(Moniot et al. 2009) (see below).
Originally identified in the rat spleen, H-PGDS is

a member of the class of glutathione-S-transferase
enzymes, which are cytosolic and play a role in
detoxification. Bivalent Ca2C and Mg2C ions increase
the activity of H-PGDS; however, onlyMg2C increases its
affinity for glutathione (Inoue et al. 2003). Despite the
high homology of the primary sequence in different
species, the tissue expression profile is highly variable.
Expression is high in the peripheral tissue, spleen, thymus,
bone marrow, gastrointestinal tract, and oviduct of rats
(Kanaoka & Urade 2003). In the mouse, expression is
predominant in the skin, oviduct (Kanaoka et al. 2000),
and granulosa cells of the postnatal and adult ovary
(Farhat et al. 2011). However, in humans, expression is
found in the placenta, lung, fetal liver, heart, brain,
mastocytes, lymphocytes, Th2 cells, and antigen-present-
ing cells (Kanaoka et al. 2000, Tanaka et al. 2000).
PGD2 is dehydrated in vitro and in vivo by a none-

nzymatic process to produce PGs of the J series, PGJ2, and
15-deoxy 12–14-PGJ2 (15-d PGJ2) (Shibata et al. 2002).
These PGD2 metabolites can also influence diverse
cellular functions. In particular, H-PGDS was shown to
control the onset and resolution of acute inflammation
through PGD2 and 15-d PGJ2 (Rajakariar et al. 2007).
www.reproduction-online.org
PGD2 signal transduction

PGs are secreted and activate nine different receptors
(Fig. 1): DP1 and DP2 or chemoattractant receptor-
homologous molecule expressed on Th2 cells (CRTH2)
for PGD2, EP1–4 for PGE2, FP for PGF2a, IP for PGI2, andTP
for TxA2 (Breyer et al. 2001). PG receptors are categorized
as three clusters of a distinct subfamily of the G protein-
coupled receptor (GCPR) superfamily of seven
transmembrane-spanning proteins (Coleman et al.
1994). The only exception is DP2, a member of the
chemoattractant receptor subgroup. These receptors
transduce different signals via the production of second
messenger cAMPor IP3/diacylglycerol/Ca2C (Woodward
et al. 2011) (Fig. 1).

Thus, PGD2 may bind to two receptors, the DP1
receptor (Boie et al. 1995) and/or the DP2 receptor
CRTH2 (Hirai et al. 2001). Activation of the DP1 receptor,
coupled to a Gas protein, induces the production of the
second messenger cAMP, which stimulates protein
kinase A (PKA) and also induces an influx of Ca2C

(Boie et al. 1995). The activation of CRTH2 or DP2
receptors coupled to a Gai protein inhibits cAMP
production (Hirai et al. 2001) and induces intracellular
Ca2C mobilization caused by the production of inositol
triphosphate (Woodward et al. 2011). On the other
hand, the PGD2 metabolite 15d-PGJ2 was identified as a
ligand for the peroxisome proliferator-activated receptor
gamma (PPARg), a member of the nuclear receptor
family (Forman et al. 1995) and for DP2.
PGD2 and reproduction in adult gonads

Female reproduction

Few studies have evaluated the involvement of PGD2 in
female reproduction. H-PGDS and both DP1 and CRTH2

receptors are expressed in the placenta and L-PGDS
is present in amniotic fluid, indicating a role in the
regulation of placental communication (Lumsden et al.
1986, Saito et al. 2002). H-Pgds mRNAwas localized in
the granulosa cells from primary to pre-ovulatory
follicles of the mouse adult ovary (Farhat et al. 2011).
In this tissue, H-PGDS-induced PGD2 interferes with
FSH signaling through increased Fshr and Lhcgr (LhR)
receptor expression, leading to the activation of
steroidogenic Cyp11a1 and Star gene expression, and
subsequently to progesterone secretion. Furthermore,
H-PGDS-induced PGD2 is involved in the regulation of
follicular growth through inhibition of granulosa cell
proliferation in growing follicles (Farhat et al. 2011).

However, numerous roles of other PGs, PGE2, PGF2a,
and PGI2 have been highlighted in different stages of
blastocyst implantation: vascular permeabilization,
stromal decidualization, blastocyst growth and develop-
ment, leukocyte recruitment, embryo transport, tropho-
blast invasion, and extracellular matrix remodeling
(Salleh 2014). The respective contribution of these PGs
Reproduction (2015) 149 R49–R58
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in female reproduction was highlighted through the
analysis of the Cox1 and/or Cox2-knockout mice (Morita
2002). In particular, Cox2 gene-deficient mice have
defective ovulation, fertilization, and implantation
mechanisms (Loftin et al. 2001). This phenotype was
mimicked in Ep2

K/K receptor mice, demonstrating the
involvement of PGE2 in these processes. COX2, PGE2,
and Ptger2, synthesized in follicular cumulus cells in
response to gonadotropins, induce the follicle and oocyte
maturation necessary for fertilization and ovulation
(Kobayashi & Narumiya 2002). Furthermore, mice
with targeted disruption of the Cox1 gene have delayed
parturition resulting in neonatal death, demonstrating the
role of Cox1 for the initiation of labor (Gross et al. 1998).
PGF2a,which is highly expressed in the uterus, is involved
in this process via the FP receptor. Moreover, PGF2a
expression in the corpus luteum of the ovary is also
involved in the apoptosis of these cells in the absence of
gestation (Hasumoto et al. 1997).
Male reproduction

In the male, Cox1K/K and Cox2K/K mouse models do
not exhibit perturbed reproductive processes. However,
L-PGDS is widely expressed in the testis and caput
epididymis of bull and mouse models (Gerena et al.
2000a,b). L-PGDS is detected in bovine and human
seminal plasma (Gerena et al. 1998, Tokugawa et al.
1998) and its concentration is lower in oligozoospermic
than in normozoospermic men (Tokugawa et al. 1998),
suggesting that this protein plays a role in both the
development and maturation of sperm and emphasizes
the role of L-PGDS in spermatogenesis. L-Pgds mRNA
expression is found mainly in Leydig cells (Baker &
O’Shaughnessy 2001), prospermatogonia, and SOX9-
expressing Sertoli cells (Moniot et al. 2009) of the adult
mouse testis. In rat, L-PGDS was detected in the Sertoli
and germ cells of the adult testis (Samy et al. 2000). In
humans, L-PGDS, H-PGDS, and DP1 receptor are also
expressed in the interstitial compartments of testes with
normal and impaired spermatogenesis (Schell et al.
2007). L-PGDS and H-PGDS are expressed in Leydig
cells and mast cells, respectively, along with COX2, in
testes with impaired spermatogenesis. COX1 and COX2
are shown to be absent in normal human testes, whereas
they are highly expressed in testicular cancer, and act to
induce the growth of testicular cancer cells (Hase et al.
2003). The expression of COX2 in testicular biopsies from
patients with mixed atrophy is correlated with H-PGDS
expression in the mast cells of these testes (Welter et al.
2011). The major function of L-PGDS in spermatogenesis
may be related with its role in the supply of retinoids,
thyroid hormones, and essential fatty acids for the
development of germ cells in the seminiferous tubules
and maturing spermatozoa in the epididymides (Urade &
Hayaishi 2000a). However, the role of L-PGDS in male
reproduction remains unclear (Leone et al. 2002).
Reproduction (2015) 149 R49–R58
H-PGDS expression in the male gonad is not well
documented. The expression was detected in the Leydig
cells and mast cells of the testes of human patients with
impaired spermatogenesis (Schell et al. 2007) and in the
germ cells of murine testes (personal data not shown);
however, its role in reproduction is unknown.

15-Deoxy PGJ2, a metabolite of PGD2 influences the
expression of differentiation markers (SMC, smooth
muscle actin) and the contractibility of the human
peritubular cells of the testes (Schell et al. 2010) and
thus, may be involved in infertility (Welter et al. 2013).
COX2 mRNA expression was greatly increased in
experimental cryptorchid testes, when compared with
contralateral testes. Furthermore, in the spermatocytes of
the cryptorchid testes the COX2 protein was specifically
upregulated, thus protecting germ cells against apoptosis
and disturbance of spermatogenesis (Kubota et al. 2011).

Furthermore, PGD2 induced testosterone production
in Leydig cells isolated from hamster testes (Schell et al.
2007). On the other hand, COX2 activity was shown
to reduce steroidogenesis by decreasing Star gene
expression in MA-10 mouse Leydig cells (Wang et al.
2003). However, the role of PGD2 in the steroidogenesis
process is still unclear because other reports using
organotypic cultures of adult human gonads did not
find a link between the effect of analgesics on PG
synthesis and inhibition of testosterone production
(Albert et al. 2013).
PGD2 and the formation of embryonic male gonads

PGD2 signaling components are expressed in embryonic
testes

Amongst the male-enriched bands, identified by rep-
resentational difference analysis (RDA) at embryonic
stage E12.5, the gene encoding for L-PGDS was
identified (Adams & McLaren 2002). The expression of
L-Pgds mRNA in developing urogenital ridges was first
detected in the Sertoli cells and prospermatogonia of late
E11.5 male genital ridges (Adams & McLaren 2002). The
expression of L-Pgds mRNAs in both somatic and germ
cell compartments was confirmed at E13.5, although
somatic expression was higher than that of germ cells
(Moniot et al. 2014). L-Pgds showed similar expression
profiles to Sox9 and Fgf9, with expression starting at mid-
late E11.5 and progressing to a plateau at E12.5
(Wilhelm et al. 2005). L-Pgds expression was described
as a dynamic wave-like expression pattern, closely
resembling that of Sry and Sox9 in the embryonic testis.
L-Pgds transcripts were detected in the center of the testis
at the 17 tail somites (Ts) stage, shortly after the onset
of Sox9 expression at 15 Ts, and were shown to be
upregulated at 21 Ts (Wilhelm et al. 2007). L-PGDS
protein expression was evident in the E12.5 male
gonads, in both the Sertoli and germ cells (Moniot
et al. 2009). L-Pgds mRNA expression shifts from the
www.reproduction-online.org
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seminiferous tubules in the embryonic gonad and
neonatal testis to the interstitial compartment, particu-
larly the Leydig cells in the adult testis (Baker &
O’Shaughnessy 2001, Moniot et al. 2009).
Concerning the second PGD2-inducing H-Pgds

enzyme, H-Pgds mRNA expression in both germ and
somatic cells was found in E11.5–E17.5 gonads. In
addition, the H-PGDS protein is also expressed in both
cell types (Moniot et al. 2011, 2014). Production of
PGD2 by both the somatic and germ cell lineages was
confirmed, using chemical fixation of PGD2 on its
production site (Bandeira-Melo et al. 2011) followed by
immunofluorescence analysis, suggesting that both
L-PGDS and H-PGDS enzyme capabilities are active
within the embryonic gonad (Moniot et al. 2014). On
the other hand, in the E13.5 male gonad, the DP1
receptor is only expressed in somatic cells whereas the
DP2 is expressed in both germ cells and somatic
compartments, at the mRNA and protein levels (Moniot
et al. 2014).
PGD2 signaling is involved in somatic differentiation

In most mammals, somatic sex determination in males
is initiated in undifferentiated embryonic gonads by the
expression of the Sry gene, which occurs at stages
E10.5–E12.5 in mice, initiating testis differentiating Sox9
geneexpression (Sekido&Lovell-Badge 2008). Themaster
effector gene Sox9 encodes a transcription factor that
belongs to the HMG superfamily (Wagner et al. 1994).
Before sex determination and before the peak of Sry
expression at E11.5, SOX9 is excluded from the nucleus in
the genital ridge of both sexes (Morais da Silva et al. 1996,
de Santa Barbara et al. 2000), via a nuclear export signal
(NES), located in its HMGdomain (Gasca et al. 2002), and
is retained in the cytoplasm, possibly via its interaction
with microtubules (Malki et al. 2005a). Upon sex
determination, the SOX9 protein is transported into the
nucleus in the male gonad. PGD2 signaling via its DP1
receptor and stimulation of the cAMP pathway induce
SOX9 nuclear translocation via PKA phosphorylation in
NT2/D1 cells (Malki et al. 2005b) (Fig. 2). Indeed, in
L-PgdsK/K gonads, SOX9 subcellular localization and
testis cord formation were impaired up to E13.5, even
though a variable SOX9 expression pattern and sex cord
formation phenotype, ranging from normal to severely
abnormal, were found (Moniot et al. 2009). Furthermore,
the PGD2-producing H-PGDS enzyme is expressed in the
embryonicgonadatmidE11.5 (16–17Ts), despite L-PGDS
not being expressed. Inhibition of H-Pgds enzymatic
activity by the specific HQL-79 inhibitor impairs nuclear
translocationof theSOX9protein inE11.5pre-Sertoli cells,
a phenotype that was also found inH-PgdsK/K XY gonads
(Moniot et al. 2011), suggesting that an initial H-PGDS-
mediated PGD2 signal could participate in the SOX9
nuclear translocation necessary for the process of Sertoli
cell differentiation (Fig. 2).
www.reproduction-online.org
Moreover, PGD2 has a masculinizing effect on
cultivated XX gonadal explants (ectopic testicular cord
formation and expression of AMH) (Adams & McLaren
2002) through the stimulation of Sox9 gene expression
(Wilhelm et al. 2005), as SOX9 can directly bind to
and activate the L-Pgds promoter (Wilhelm et al. 2007).
L-Pgds expression was indeed abolished in E12.0 male
Sox9K/K gonads (Ck19-Cre; Sox9flox/flox mice), confirm-
ing that SOX9 is required for the initiation of L-Pgds gene
expression, as L-Pgds is a direct target gene for SOX9.
Moreover, ablation of Sox9 after the onset of L-Pgds
expression (E13.5–E14.5 Amh-Cre; Sox9flox/flox) also
induces a strong downregulation of L-Pgds expression,
demonstrating the requirement for the SOX9 protein in
the maintenance of L-Pgds gene expression in embryo-
nic Sertoli cells (Moniot et al. 2009). Altogether, these
data show that L-Pgds and Sox9 genes are part of a
regulatory loop, initiating and maintaining L-Pgds
expression and upregulating Sox9. This regulatory loop
is independent on the fibroblast growth factor 9 (Fgf9)/
Sox9 regulatory loop previously identified (Kim et al.
2006). Indeed, the onset of L-Pgds expression was not
affected in Fgf9K/K (Moniot et al. 2009) or Fgf9 receptor
R2 (FgfR2K/K) (Kim et al. 2007) mutant XY gonads
and Fgf9 mRNA expression was not modified in E12.5
L-PgdsK/K gonads, confirming that both pathways do
not interact genetically. However, both FGF9 and PGD2

signaling molecules cooperate to additively upregulate
Sox9 expression in the Sertoli-like NT2D1 cell line
(Moniot et al. 2009; Fig. 2). Many endocrine disruptors
(phtalates, bisphenol) and several NSAIDS that inhibit
COX activities reduce PGD2 production in the SC5
mouse Sertoli cell line and in cultured rat fetal testes
(Kristensen et al. 2011a,b, 2012), leading to reduced
testosterone production. However, the role of PGD2 in
the onset of the steroidogenesis process remains unclear.
Unlike adult human or rat testes, ex vivo exposure of
embryonic human testis to paracetamol, aspirin,
and indomethacin has no effect either on the production
of PGD2 or on the concentration of testosterone
(Mazaud-Guittot et al. 2013).

PGD2 is also involved in the process of testicular
descent in mice, because adult L-PgdsK/K mice present
unilateral cryptorchidism without impaired androgen
signaling, but rather a decrease in the INSL3 receptor
Rxfp2 mRNA expression in the gubernaculum (Philibert
et al. 2013). The use of NSAIDS, which inhibit COXs
enzymes, during the second trimester of pregnancy is
associated with an increased risk of cryptorchidism in
humans (Jensen et al. 2010, Kristensen et al. 2011a);
however, the nature of the PG(s) involved in this
phenotype is unknown.
PGD2 signaling is involved in germ line differentiation

Thedifferentiated Sertoli cellswill then influence the germ
cell lineage to differentiate (Svingen & Koopman 2013).
Reproduction (2015) 149 R49–R58
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Inmice, primordial germ cells (PGCs) colonize the genital
ridge at around E10.5 and continue proliferating until
E13.5 (McLaren 2000). At this time, in the developing
ovary, germ cells enter prophase of the first meiotic
division after the upregulation of the pre-meiotic gene
Stra8 (Ewen & Koopman 2010). In contrast, in the testis,
germ cells stop proliferating and fully enter the G0/G1

phase of the cell cycle by E15.5 (Western et al. 2008);
meanwhile, pluripotent marker expression is repressed
(Western et al. 2010) and male germ cell markers such as
Nanos2 are upregulated, which actively inhibits meiosis
entry and thus contributes to the differentiation of the
germline (Suzuki & Saga 2008). Male germ cells remain
quiescent until shortly after birth, at which point they
resume mitosis and then initiate meiosis around 8 days
post partum (dpp) (Ewen & Koopman 2010).
In vivo analysis of double-knockout L/H-Pgds

(L/H-PgdsK/K, i.e. depleted for PGD2) gonads
showed that the proliferation rate of E13.5 mutant
germ cells increased by 1.5-fold compared with WT
germ cells. At E15.5 and even E17.5, nearly 10% of
Reproduction (2015) 149 R49–R58
the mutant germ cells were still Ki-67 positive, showing
that a significant proportion of the mutant germ cells
were not mitotically arrested and were still engaged in
the cell cycle at a time which should be quiescent
(Moniot et al. 2014). Meanwhile, cell cycle inhibitors
p21Cip1 and p57Kip2 are downregulated and cell cycle
activators CyclinE1 and E2 are upregulated (Fig. 2),
suggesting that PGD2 signaling is involved in the control
of cell cycle genes in fetal testes, contributing to the
arrest of mitotic process. Moreover, at late embryonic
stages, the ectopic expression of pluripotency markers
Pou5f1 (Oct4), Sox2, and Nanog was detected in
L/H-PgdsK/K testes and the male germ cell marker
Nanos2 is downregulated in mutant testes suggesting
that PGD2 has a role in the germ cell differentiation
in the embryonic testis. Somatic factors, Notch1 (Garcia
et al. 2013) and Cyp26B1, an RA-metabolizing enzyme
of the cytochrome P450 family that is produced by the
Sertoli cells and that protects germ cells from RA (Bowles
et al. 2006), were significantly reduced in E13.5 mutant
gonads (Fig. 2), suggesting that PGD2 produced by
www.reproduction-online.org
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Sertoli cells influences the differentiation of the
embryonic germ cells (Moniot et al. 2014). Finally,
the DP2 receptor is responsive to the effects of PGD2 in
the male germline, because Dp2K/K testes have the
same phenotype as that of the L/H-PgdsK/K testes (Fig. 2;
Moniot et al. 2014). PGD2 signaling is thus an early
pathway acting in both paracrine and autocrine manners
(Fig. 2), contributing to the proper differentiation of male
fetal germ cells.
Conclusions, perspectives

The development and maturation of the reproductive
organs are complex and highly regulated biological
mechanisms, in which numerous factors and signaling
pathways are involved. In this review, we addressed
the advancement of knowledge on PGD2 signaling in
female and male reproduction, particularly in the
formation of embryonic gonads and the maturation of
adult reproductive organs. Whereas PGD2 signaling
through both PGDSs is involved in the differentiation of
the embryonic testis at the somatic and germ cell levels,
its roles in steroidogenesis and spermatogenesis in
adults are still under debate. The dual roles of the
L-PGDS enzyme suggest that this protein plays a role in
both the development and maturation of sperm and
spermatogenesis. Seminal L-PGDS, an important carrier
of bile pigments, retinoids, thyroid hormones, and
essential fatty acids, would contribute to providing,
beyond the blood–testis barrier, thyroid hormones, and
retinoids to the developing germ cells in the seminifer-
ous tubules and the maturing spermatozoa in the
epididymis. Both PGDSs are indeed expressed in testes
of patients with impaired spermatogenesis, suggesting
their involvement in fertility (Leone et al. 2002).
The increasing incidence of disorders of the repro-

ductive organs in men, such as cryptorchidism, hypos-
padia, decreased semen quality, and testosterone
concentration, or testicular cancers, has been observed
in recent decades (Toppari et al. 1996, Skakkebaek et al.
2001). The use of NSAIDS drugs during the second
trimester of pregnancy is associated with an increased
risk of cryptorchidism in humans (Jensen et al. 2010) and
in rats (Kristensen et al. 2011a). As PGD2 is a potential
target for endocrine disruptors and NSAIDs, our findings
thus open new perspectives for future investigations into
how germ cell development can be perturbed by the
external environment. Germ cells that are not controlled
appropriately during fetal life can later transform into
carcinoma in situ (CIS), the pluripotent precursor cells
for testicular germ cell tumors (Kristensen et al. 2008).
Indeed, PGD2/DP2 signaling is involved in the control of
key regulators of the G1/S phase checkpoint and in the
repression of pluripotent markers’ expression in the male
embryonic germline; its ablation resulting in CIS-like
phenotype in the mice gonad. Further work will
determine whether the double L/H-Pgds mutation can
www.reproduction-online.org
lead to a high incidence of germ-line tumors in the 129sv
background. PGD2 signaling through L-PGDS and SOX9
expression suppresses NT2/D1 cell migration and
invasion, suggesting an important role for PGD2 in
cancer cell suppression in the testis (Wu et al. 2012).
L-PGDS is abnormally expressed in ovarian tumors (Su
et al. 2003, Malki et al. 2007). The antiproliferative effect
of PGD2 has been highlighted in human ovarian cancer
cell lines (Kikuchi et al. 1986, Su et al. 2003); stimulation
of the PGD2/DP1 signal transduction pathway upregu-
lates SOX9 expression leading to the inhibition of cancer
cells growth (Malki et al. 2007).

The recent findings, showing that endocrine disruptors
and NSAIDS influence the PGD2 production in the testes
and that PGD2 signaling is involved in multiples steps
of the embryonic testis differentiation, might introduce
this pathway in the etiology of the reproduction diseases.
As the pharmacology of the PGD2 signaling is well
documented, either activators of this pathwayorDP1/DP2
agonists may be useful as new therapeutic agents.
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