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Abstract

The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology 
have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of 
oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of 
natriuretic peptides and cGMP – inhibiting the hydrolysis of intra-oocyte cAMP – and that the pre-ovulatory gonadotrophin surge 
reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. 
Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent 
developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not 
recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review 
particularly focuses on this latter aspect – the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical 
practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and 
fertility treatment options.
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Introduction

Oocyte maturation and oocyte quality are fundamental 
to fertility in all mammalian species. These are evident 
in modern human infertility treatment in which oocyte 
quantity and quality are rate limiting to the success of 
nearly all artificial reproductive technologies (ART). 
We now know a great deal about the regulation of 
oocyte maturation. It has long been recognised that one 
of the most important classes of molecules regulating 
mammalian oocyte maturation are the cyclic nucleotides, 
namely, cyclic adenosine 3′,5′-monophosphate (cAMP) 
and cyclic guanosine 3′,5′-monophosphate (cGMP). 
These, in particular cAMP, have been the subject of 
intensive oocyte research for the past 40 years.

The earliest report on the role of cAMP used 
a permeable cAMP, dibutyryl cAMP (dbcAMP), 
demonstrating oocytes can be maintained in meiotic 
arrest in vitro after removal from their follicular 

environment (Cho et  al. 1974). Since then, cAMP 
and cGMP and their roles in the regulation of oocyte 
maturation remain intensively researched worldwide. 
This research largely focused on the regulation 
of meiosis and the role of the nucleotides in the 
maintenance of meiotic arrest and the resumption of 
meiosis, principally using rodent models (reviews from 
that period; (Dekel 1988, Eppig 1989)). This research 
area was complicated by the cAMP paradox, whereby 
high levels of oocyte cAMP maintain oocyte meiotic 
arrest, but at the time of ovulation high follicular 
levels of cAMP induce meiotic resumption (Dekel 
et al. 1988). Understanding the mechanisms regulating 
oocyte meiotic resumption was further complicated 
by the controversy over the participation of falling 
cAMP levels and the simultaneous loss of cumulus–
oocyte gap junctional communication (GJC). Many 
of the controversies of that period are now settled 
following landmark discoveries, including the role 
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of phosphodiesterases (PDEs) (Tsafriri et  al. 1996, 
Masciarelli et al. 2004), the sources and roles of cAMP 
(Mehlmann et al. 2002) and cGMP in the oocyte (Norris 
et al. 2009, Vaccari et al. 2009), and the participation 
of natriuretic peptides (Zhang et al. 2010).

Hence, today we have a thorough understanding of 
the participation of cAMP and cGMP in the regulation 
of mammalian oocyte meiosis. However, it is striking 
that the large numbers of studies from the 1970s to 
1990s, principally in mice, were largely limited to 
investigating oocyte meiosis and did not follow the 
oocyte’s subsequent capacity to support embryo 
development or oocyte developmental competence. 
Curiously, even today, this central function of 
oocytes is not typically studied by mouse oocyte 
developmental biologists, but rather is the subject of 
major research efforts conducted by domestic animal 
oocyte biologists. It was first discovered in bovine 
and porcine oocytes that the spike of follicular cAMP 
that occurs at ovulation is important for the oocyte’s 
subsequent capacity to support embryo development 
(Aktas et  al. 1995, Funahashi et  al. 1997). This 
important discovery has led to a whole new area of 
research over the past two decades, which has shifted 
the focus of cyclic nucleotides away from oocyte 
meiosis towards oocyte developmental competence 
or oocyte quality, and how this is applied to improve 
outcomes in the context of ART.

Cyclic nucleotides and oocyte maturation in vivo

Cyclic nucleotides maintain meiotic arrest

Follicle maintains meiotic arrest

A basic tenant of oocyte maturation is that oocytes in mid-
sized antral and pre-ovulatory follicles are competent to 
undergo oocyte meiotic maturation but are arrested at 
the germinal vesicle (GV) stage of meiosis by the follicle 
environment. Hence, oocytes removed from the follicle 
and placed in vitro will undergo hormone-independent, 
spontaneous meiotic maturation (Pincus & Enzmann 
1935, Edwards 1965). It is the cyclic nucleotides, cAMP 
and cGMP, of follicular somatic and germ cell origin that 
are the principal molecules responsible for maintaining 
oocyte meiotic arrest.

Follicle endows the oocyte with developmental 
competence

During folliculogenesis, oocytes undergo changes at 
both the nuclear and cytoplasmic levels that confer 
the oocyte with developmental competence, defined 
as the capacity to support pre-implantation embryo 
development (Gilchrist & Thompson 2007). Among 
other processes, changes in large-scale oocyte chromatin 
structure are essential for the onset of developmental 
competence (reviewed in Luciano & Lodde 2013).  

The proper maintenance of cumulus cell (CC)–oocyte 
gap junctional communication (GJC) appears to have a 
crucial role in chromatin remodelling and the gradual 
transcriptional silencing processes that occur in fully 
grown oocytes, from early antral through to the latter 
half of antral folliculogenesis (De La Fuente & Eppig 
2001, Lodde et al. 2008). CC–oocyte GJCs in turn are 
regulated by cyclic nucleotides, as FSH or a range of 
cAMP-modulating pharmaceuticals sustain functional 
CC–oocyte communication (Luciano et  al. 2004, 
Thomas et al. 2004a, Atef et al. 2005, El-Hayek & Clarke 
2015). In addition, treatment with FSH in vivo leads 
to oocyte chromatin condensation and suppression of 
transcription (Zuccotti et al. 1998, De La Fuente & Eppig 
2001). The use of bovine cumulus–oocyte complex 
(COC) culture systems that prolong GJC, sustain oocyte 
growth and allow early chromatin compaction events 
is associated with the oocyte acquiring the ability to 
mature and be fertilised in vitro (Luciano et al. 2011). 
However, when GJ functionality is experimentally 
interrupted, chromatin rapidly condenses and RNA 
synthesis abruptly ceases. Interestingly, this effect is 
nullified by preventing cAMP hydrolysis specifically 
within the oocyte (Luciano et al. 2011). The preservation 
of an appropriate cAMP content in the oocyte, even in the 
absence of functional GJC, is able to prevent the abrupt 
condensation of chromatin. This suggests that the cAMP 
cascade is the likely regulator of GJ-mediated actions 
on chromatin remodelling. These findings suggest that 
cAMP could be involved in the control of the activity 
of factors that modulate oocyte transcription and large-
scale chromatin remodelling in fully grown oocytes 
during their final phase of development, immediately 
before the resumption of meiosis.

cAMP control of meiotic arrest

It has long been known that moderate to high intra-
oocyte levels of the second messenger, cAMP, maintain 
oocyte meiotic arrest (Cho et  al. 1974). Cyclic AMP is 
synthesised from ATP by an active adenylyl cyclase (AC). 
In rodent oocytes, AC3 has been reported to be present 
and functional (Horner et al. 2003). GPR3 is a functional 
receptor found in the oocyte, and hence the oocyte can 
independently synthesise cAMP (Olsiewski & Beers 1983, 
Mehlmann et al. 2002). However, a major source of intra-
oocyte cAMP is the somatic cells surrounding the oocyte 
by virtue of the electrophysiological syncytium between 
the oocyte, cumulus and granulosa cells. Activation of 
CC ACs by FSH or forskolin loads the oocyte with cAMP, 
increasing cAMP concentrations in the oocyte manyfold 
(Thomas et  al. 2002). Sustained levels of intra-oocyte 
cAMP activate protein kinase A (PKA), which in turn 
prevent the activation of maturation-promoting factor, 
retaining the oocyte in the M-phase. Cyclic nucleotide 
participation in the control of the meiotic cell cycle is 
reviewed elsewhere (Downs 2010, Conti et al. 2012).
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cGMP and phosphodiesterases

The oocyte possesses a potent PDE that must be kept in 
check to maintain meiotic arrest. The study of oocyte 
PDEs began several decades ago, when it was found 
that non-specific PDE inhibitors, such as theophylline 
(Cho et  al. 1974) and 3-isobutyl-1-methylxanthine 
(IBMX) (Magnusson & Hillensjo 1977, Dekel & Beers 
1978), maintain meiotic arrest of oocytes in vitro. Two 
studies published in the 1990s reported the presence 
of a specific family of PDEs within the rodent oocyte, 
namely PDE3A, identified using in situ hybridisation 
(Reinhardt et  al. 1995) and sub-type-specific PDE 
inhibitors such as milrinone and cilostamide (Tsafriri 
et al. 1996). Several years later, activity of the oocyte 
PDE3 was shown to increase before both spontaneous 
and gonadotrophin-induced meiotic resumption 
(Richard et  al. 2001). The effect of specific PDE3 
inhibitors on maintaining oocyte meiotic arrest 
in vitro has now been demonstrated across many 
mammalian species: rats (Tsafriri et  al. 1996), mice 
(Wiersma et  al. 1998), cattle (Mayes & Sirard 2002, 
Thomas et  al. 2002), monkeys (Jensen et  al. 2002), 
humans (Nogueira et  al. 2003a) and swine (Laforest 
et al. 2005). Demonstration of sterility of female mice 
bearing a PDE3A-null mutation due to the ovulation 
of GV-stage oocytes was the final proof of the central 
role of PDE3A in maintaining oocyte meiotic arrest 
(Masciarelli et al. 2004).

PDEs are organised into 11 families with differing 
PDE isoenzymes capable of hydrolysing cAMP or cGMP 
or both nucleotides. An important finding was that 
PDE3A, which is the prominent PDE in the oocyte, is 
a cGMP-inhibited cAMP-hydrolysing enzyme (Maurice 
& Haslam 1990). It was long known that cGMP is an 
oocyte maturation inhibitor (Hubbard & Terranova 
1982) and that ovarian levels of cGMP decline after 
LH stimulation (Ratner 1976). After three decades, its 
significance became apparent when two key papers 
revealed that cGMP permeating from the granulosa/CC 
compartment into the oocyte via gap junctions inhibits 
the oocyte’s PDE3A (Norris et  al. 2009, Vaccari et  al. 
2009). Hence, cGMP from the follicular somatic cells 
maintains sufficient intra-oocyte cAMP to maintain the 
oocyte in meiotic arrest (Fig. 1).

Contribution of natriuretic peptides to meiotic arrest

The signalling model for the maintenance of meiotic 
arrest has recently been enhanced by the discovery 
of the important roles of the natriuretic peptides. The 
natriuretic peptide family is composed of three major 
types: atrial natriuretic peptide, brain natriuretic 
peptide and C-type natriuretic peptide (CNP). A study 
showed that granulosa cells secrete CNP and CCs 
express its receptor, NPR2, which is a member of the 
guanylyl cyclase receptor family. NPR2 stimulation by 
CNP increased cGMP intracellular concentrations in 
both CCs and the oocyte and maintained meiotic arrest 
(Zhang et  al. 2010). CNP has since been identified 
as an oocyte-meiosis-inhibiting peptide in a range 
of species such as mice (Zhang et  al. 2010), swine 
(Santiquet et al. 2014), cattle (Franciosi et al. 2014) and 
rats (Zhang et  al. 2015). The physical characteristics 
and mode of action of CNP suggest it is likely to be the 
oocyte maturation inhibitor (OMI) found in follicular 
fluid, as described several decades ago (Tsafriri et al. 
1976). This knowledge now provides us with a logical 
model, whereby the follicular compartment maintains 
oocyte meiotic arrest in vivo by supplying CNP-induced 
cGMP from the granulosa/CCs, via gap junctions, to the 
oocyte to inhibit PDE3A, thereby maintaining sufficient 
cAMP to inhibit GV breakdown (GVBD; Fig. 1).

Ovulatory cascade

LH-induced changes in cyclic nucleotides

The pre-ovulatory surge of LH induces oocyte maturation, 
but neither oocytes nor CCs express LH receptors, so 
how does the LH surge lead to oocyte maturation? The 
exact cellular mechanisms and sequences of events 
that transduce the LH signal from the mural granulosa 
cells to the oocyte have been the topic of intense debate 
for decades. It is not the intention of this review to 
delve into these debates; fortunately, this is reviewed 
comprehensively elsewhere (Downs 2010).

LH induces an acute transient spike in cAMP in the 
somatic compartment of the follicle. This is of the order 
of an 80–200-fold increase in cAMP, depending on the 
compartment measured (Tsafriri et al. 1972, Yoshimura 
et  al. 1992, Mattioli et  al. 1994, Albuz et  al. 2010). 
The spike in cAMP appears, in general, to occur before 
GVBD, with levels falling sharply at around the time of 
GVBD. There is contradictory evidence as to whether 
the LH-induced spike in cAMP is transmitted into the 
oocyte (Yoshimura et al. 1992, Norris et al. 2009). This 
pre-ovulatory spike in cAMP is able to induce meiosis, 
as cAMP pulsing of explanted follicles or isolated 
COCs in vitro induces the resumption of meiosis in the 
presence of inhibitors (Tsafriri et al. 1972, Dekel et al. 
1981, Downs et  al. 1988). Hence, the acute changes 
in cAMP concentrations that follow the gonadotrophin 
surge play a significant role in oocyte function, and 

CNP

NPR2

cGMP

PDE3A
cAMP 5′AMP

GVBD

Figure 1 The coordination between CNP, cGMP and cAMP in the 
control of oocyte meiotic arrest. See text for abbreviations.
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this is an important point to note for cAMP-mediated 
oocyte in vitro maturation (IVM) systems (see ‘Cyclic 
nucleotides and oocyte quality’ section).

Despite this ovulatory pulse in follicular cAMP levels, 
activation of the oocyte PDE3A and a consequent fall 
in intra-oocyte cAMP are clearly a prerequisite for 
de-phosphorylation of PKA, and activation of maturation-
promoting factor (MPF) and meiotic resumption (Fig. 2). 
How is the rapid loss of oocyte cAMP achieved? 
LH administration leads to a fall in follicular cGMP 
(Hubbard 1986) and a loss of gap junctions (Sela-
Abramovich et  al. 2005). The involvement of cGMP 
in the process of meiotic resumption was recently 
strengthened by the work of Shuhaibar et al. (Shuhaibar 
et  al. 2015). Using follicles from mice expressing a 
FRET sensor, real-time monitoring of cGMP showed that 
within 1 min of LH exposure, cGMP concentrations start 
to decrease from the peripheral granulosa cells and by 
20 min the concentration of cGMP decreased by more 
than 20-fold and was uniformly low across the follicle 
(Shuhaibar et  al. 2015). Consequently, it is likely that 
oocyte cAMP concentration decreases because of the 
relief of the inhibitory actions of cGMP on PDE3A in the 
oocyte (Norris et al. 2009, Vaccari et al. 2009).

CNP activation of the NPR2 guanylyl cyclase is a 
principal source of cGMP in the follicle (Zhang et  al. 
2010), and LH downregulates CNP transcript expression 
in mouse granulosa cells and CNP protein in follicular 
fluid (Kawamura et  al. 2011). In human, an ovulatory 
dose of hCG results in a decrease in CNP levels in 
follicular fluid (Kawamura et  al. 2011). LH induces 
a decrease in NPR2 guanylyl cyclase activity within 
20 min (Robinson et al. 2012), which can be explained 

by de-phosphorylation and inactivation of NPR2 in 
granulosa cells (Egbert et al. 2014). Hence, the present 
model of oocyte meiotic resumption is that LH induces 
a spike in follicular cAMP and a simultaneous decline in 
CNP and cGMP, leading to activation of oocyte PDE3A 
causing a decline in intra-oocyte cAMP sufficient to 
activate MPF that leads to meiotic resumption (Fig. 2).

LH surge and cAMP spike activate the EGF network

The cAMP spike within the mural granulosa cells  
initiates a signal transduction cascade that activates 
the EGF receptor-ERK1/2 pathway to induce oocyte 
maturation and ovulation. LH-induced cAMP 
production rapidly upregulates the production of EGF-
like peptides (EGF-p) amphiregulin, epiregulin and 
betacellulin to induce EGF receptor–ERK1/2 pathway 
signalling (Park et  al. 2004, Ashkenazi et  al. 2005, 
Shimada et al. 2006, Fan et al. 2009). Transcription of 
EGF-p is induced by cAMP activation of PKA, leading 
to the activation of the cAMP-response element (CRE) 
site in the gene’s promoter region via a p38MAPK–
CREB-dependent process (Richards 2001, Shimada 
et  al. 2006, Fan et  al. 2009). Mature form EGF-p are 
cleaved from mural granulosa cells and bind to the 
EGF receptor (ERBB1), expressed on mural granulosa 
cells (autocrine) as well as on CCs (paracrine) (Hsieh 
et  al. 2007, Yamashita et  al. 2007). Ligand binding 
in both cell types leads to receptor dimerisation and 
auto-phosphorylation on multiple tyrosine residues, 
which induce downstream RAS and, ultimately, 
ERK1/2 activation (Yamashita et  al. 2007, Fan & 
Richards 2010). ERK1/2 consequently promotes the 
production of prostaglandin E2 by upregulating 
prostaglandin synthase 2 expression. Prostaglandin E2 
then acts through the prostaglandin receptor PTGER2, 
expressed in both granulosa cell types, to induce 
further production of the EGF-p by activation of the 
cAMP–PKA–CREB pathway (Shimada et  al. 2006), 
thus perpetuating the maturation-inducing stimulus 
in the LH-unresponsive CCs. Hence, LH-induced 
upregulation of the cAMP–EGF-p–ERK1/2 signalling 
axis is involved in CC expansion, decreasing somatic 
cell cGMP, closure of GJs, and possibly a meiosis-
inducing stimulus of CC origin (Su et al. 2002, Norris 
et al. 2010, Chen et al. 2013).

Loss of gap junctions

In the mammalian ovary, intercellular coupling 
between oocyte and CCs undergoes dynamic changes 
during follicle development (Anderson & Albertini 
1976), and the patency of GJC between the oocyte 
and CC compartments decreases in parallel with the 
meiotic resumption of the oocyte (Eppig 1982, Larsen 
et  al. 1986). In both in vivo and IVM, the progressive  
disruption of GJC occurs concomitantly with the 
retraction and degeneration of CC transzonal projections 
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Figure 2 The cyclic nucleotides transmit the ovulatory cascade from 
the somatic to germ cell compartment of the follicle, instructing the 
oocyte to resume meiosis in the preparation for ovulation. See text 
for abbreviations.
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(Hyttel et  al. 1986). Whether this pre-ovulatory loss 
of CC–oocyte GJC causes meiotic resumption due to 
the termination of cAMP transfer from CCs to oocyte, 
as originally hypothesised (Dekel & Beers 1978), has 
remained the subject of much debate for decades. 
There is strong evidence supporting the hypothesis 
that diffusion of cGMP from the oocyte to the somatic 
compartment through functional GJs during GVBD has 
a crucial role in the re-initiation of meiosis (Norris et al. 
2009, Vaccari et al. 2009, Shuhaibar et al. 2015).

Cyclic nucleotides and oocyte quality

In vitro maturation (IVM)

Understanding the role of cyclic nucleotides in oocyte 
maturation has important practical applications in ART, 
particularly in oocyte IVM. IVM is an ART in which 
COCs are collected at the immature GV stage from 
unstimulated or FSH-primed ovaries and matured as 
intact COCs in vitro before fertilisation (Edwards 1965). 
The most significant application of IVM is in the global 
production of livestock species, especially cattle. It is 
also conducted in other domestic species, including 
pigs, sheep, goats, deer, cats, camels and horse, but to a 
much less extent compared with cattle breeding. Global 
cattle embryo production by IVM/IVF exceeded 400,000 
in 2013 (Perry 2014), with growth predicted to continue. 
Nevertheless, this figure is likely a gross underestimation. 
Based on this method, immature oocytes are harvested 
from cows usually without exogenous hormone 
treatment, often on a regular basis (e.g. monthly) even 
during early pregnancy. Thus, it leads to shortening of 
the intergenerational interval and genetic enrichment. In 
this industry, IVM is widely regarded as routine and safe.

IVM has proved less successful in humans. Its use and 
further development as a fertility treatment have been 
relatively limited compared with classical IVF following 
hormonal stimulation of ovaries. The principal reason 
for the poor uptake of human IVM appears to be its 
lower efficiency at generating pregnancies compared 
with conventional IVF, and not due to safety concerns 
(Buckett et al. 2007, Kuhtz et al. 2014, Spits et al. 2015) 
or other practical aspects of the technology. Women with  

polycystic ovaries (PCO) are excellent candidates 
for treatment with IVM because of their high number 
of antral follicles that can be aspirated for oocyte 
retrieval. In addition, these women have a particularly 
increased risk of ovarian hyperstimulation syndrome, 
a potentially life-threatening iatrogenic complication 
of gonadotrophin stimulation, which has never been 
reported after IVM treatment. IVM is principally used 
for women with PCO. However, an important new 
application of IVM is also used for fertility preservation 
in young women who are diagnosed with cancer and 
who face a substantial risk of gonadotoxicity secondary 
to chemotherapy or radiotherapy. For these women, for 
whom time is usually pressing, IVM is advantageous as 
it is possible to harvest oocytes at short notice without 
prior hormone therapy and without elevated oestrogen 
levels, which is contraindicated in the cases of hormone-
sensitive tumours (De Vos et al. 2014).

In the context of modern milder approaches to 
ART and the increasing demand from patients for a 
simpler, cheaper, more patient-friendly reproductive 
technology, the search for improvements in IVM are 
continuing and improved pregnancy rates have recently 
been established by a number of centres (Junk & Yeap 
2012, Ortega-Hrepich et al. 2013, Walls et al. 2015a). 
Nonetheless, the reduced pregnancy rates per cycle 
compared with conventional IVF represents a major 
obstacle that needs to be overcome for widespread 
uptake of IVM. This lower efficiency manifests at 
multiple levels: particularly lower metaphase II rates 
(typically 50–60%), but also lower subsequent embryo 
development rates (Walls et  al. 2015b), and in some 
centers, higher miscarriage rates. The use of cAMP 
modulators in human IVM offers great promise to 
improve pregnancy rates. Animal data obtained from 
more than 10 years of research using various cAMP-
modulated IVM systems provide evidence that IVM 
efficiency and pregnancy outcomes can be improved 
by controlling cAMP levels during IVM. 

Cyclic AMP-mediated IVM Systems

This section reviews the various oocyte IVM systems/
technologies pertaining to IVM regulated by the 

Table 1  Pharmacological agents used in IVM to manipulate cyclic nucleotides.

Agent Mode of action Remarks

Hypoxanthine, IBMX PDE inhibitors: broad spectrum Act on CC and oocyte PDEs to prevent cAMP hydrolysis 
Org9935, cilostamide, milrinone PDE3-specific inhibitors Target the PDE in the oocyte (PDE3A) to prevent intra-oocyte cAMP 

hydrolysis 
Rolipram PDE4-specific inhibitor Target the PDE in CC and MGC (PDE4) to prevent cAMP hydrolysis
Dipyridamole PDE8-specific inhibitor Inhibits PDE8 in CCs (bovine) to prevent cAMP hydrolysis
CNP NPR2 agonist Stimulates CC and MGC cGMP synthesis thereby antagonising PDE
Sildenafil PDE5 and PDE6 inhibitor Target CC and MGC PDEs to prevent cGMP hydrolysis
Forskolin, iAC AC activators Elevate CC/oocyte cAMP
dbcAMP, 8-bromo-cAMP cAMP analogous Elevate CC/oocyte cAMP

AC, adenylate cyclase; CC, cumulus cell; CNP, C-type natriuretic peptide; dbcAMP, dibutyryl cAMP; IBMX, 3-isobutyl-1-methylxanthine; MGC, 
mural granulosa cell; NPR2, natriuretic peptide receptor 2; PDE, phosphodiesterase.
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cyclic nucleotides. The modes of actions of some 
pharmacological agents used to manipulate cyclic 
nucleotides in IVM are listed in Table 1. IVM systems 
are broadly divided into four approaches (Fig.  3), 

although some may overlap. Although standard IVM 
is used in human and veterinary clinical practice, 
the other three approaches can be considered at the 
preclinical stage of development, which has shown 

Figure 3 Differing approaches to cAMP-mediated IVM. Schematic comparison of standard IVM containing FSH but no cAMP-modulating agents (A) to 
various cAMP-mediated IVM systems, including (B) biphasic IVM using a PDE inhibitor for the first phase followed by washout and PDE inhibitor free 
in the second phase, (C) induced IVM producing moderate cAMP levels, where oocytes are matured in the simultaneous presence of PDE inhibitor and 
an inducing ligand, and (D) induced IVM where exogenous cAMP or AC activators produce high levels of COC cAMP. (E) Schematic illustration of 
actual and predicted COC cAMP levels in the differing IVM systems containing FSH compared with standard IVM and in oocytes matured in vivo. In 
the absence of FSH in standard IVM, COC cAMP levels decrease rather than increase (modified from (Thompson & Gilchrist 2013)). EGF-p, epidermal 
growth factor-like peptides; GV, germinal vesicle; GVB, germinal vesicle breakdown; MII, metaphase II; PDE, phosphodiesterase.
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substantial benefit (Table 2). The rationale for moving 
beyond standard IVM is that oocyte maturation does 
not occur ‘spontaneously’ in vivo, but rather is an 
induced process that occurs in response to a rapid 
and transient surge in somatic/COC cAMP (Dekel & 
Beers 1978).

Standard IVM (low cAMP)

Standard IVM refers to the isolation of immature COCs 
from antral follicles and their subsequent maturation in 
medium without cAMP-modulating agents (Fig. 3A). This 
method is based on the principles of spontaneous oocyte 
meiotic maturation described previously (Edwards 
1965, Pincus & Enzmann 1935). Standard IVM systems 
typically contain FSH or other additives such as EGF, 
EGF-p and/or LH/hCG (Fig. 3A). FSH leads to a transient 
rise in COC cAMP (Li et al. 2012) (Fig. 3E). However, if 
COC collection and processing is slow (see “The oocyte 
collection phase” section) or if FSH is omitted from IVM, 
then cAMP levels fall rapidly, resulting in spontaneous 
meiotic resumption (Aktas et  al. 1995, Luciano et  al. 
2004). In some species, FSH has negligible effects on 
MII rates and hence oocytes mature spontaneously (e.g. 
murine, bovine and ovine), whereas in others, FSH 
significantly improves MII rates, suggesting meiotic 
induction (e.g. porcine and human). As cAMP hydrolysis 
is permitted in this system, intra-oocyte cAMP levels 

decrease (Fig.  3E), leading to inactivation of PKA and 
rapid progression to GVBD (Norris et al. 2009, Vaccari 
et al. 2009, Li et al. 2012).

Biphasic IVM (moderate cAMP)

Biphasic IVM systems use a relatively high concentration 
of a PDE inhibitor to prevent spontaneous GVBD of 
COCs upon removal from the follicle for an extended 
period (e.g. 24 h or more; Fig. 3B), thereby preserving 
the moderate cAMP levels stimulated by FSH (Fig. 3E) 
(Nogueira et al. 2003b, Nogueira et al. 2006, Kawashima 
et al. 2008). Examples of PDE inhibitors used include: 
Org9935, cilostamide, milrinone, IBMX and CNP 
(Table 2). In the second phase, the inhibitor is washed 
out, decreasing cAMP levels and enabling oocyte 
maturation (Fig. 3B). In general, biphasic IVM systems 
lead to modest improvements in oocyte developmental 
competence, relative to standard IVM (see Table 2 for 
references).

Induced IVM (moderate cAMP)

In oocytes that are naturally GV-arrested (e.g. intra-
follicular) or artificially GV-arrested (e.g. isolated COCs 
arrested using a PDE inhibitor), meiosis can be readily 
induced using natural ligands such as FSH, EGF and 
EGF-p (Dekel & Beers 1978, Dekel & Sherizly 1985, 

Table 2  Effect of cAMP-mediated IVM on subsequent oocyte developmental competence.

IVM system cAMP modulator Species

Effect on oocyte 
developmental 
competence* References

Biphasic IVM (moderate cAMP) Org 9935 Human None Nogueira et al. (2006)
Murine Improved Nogueira et al. (2003b)

Cilostamide Human None Vanhoutte et al. (2007)
Human Improved Vanhoutte et al. (2009a,b)
Bovine Improved Luciano et al. (2011)
Porcine Improved Dieci et al. (2013)

IBMX Bovine Improved Lodde et al. (2013)
Porcine Improved Kawashima et al. (2008)

CNP Bovine Improved Franciosi et al. (2014)
Induced IVM (moderate cAMP) Milrinone Bovine Improved Thomas et al. (2004b)

Porcine None Grupen et al. (2006)
Rolipram Bovine Improved Thomas et al. (2004b)
Dipyridamole Bovine Decreased Sasseville et al. (2009)
Hypoxanthine Murine None Downs et al. (1986)

Induced IVM (high cAMP) dbcAMP Porcine Improved Funahashi et al. (1997), Somfai et al. (2003),  
Bagg et al. (2006), Kim et al. (2008), Akaki et al. (2009), 
Nascimento et al. (2010), Sugimura et al. (2015)

None Park and Yu (2013), Appeltant et al. (2015)
iAC Bovine Improved Luciano et al. (1999, 2004), Guixue et al. (2001)

Bovine None Aktas et al. (1995)
Forskolin Human Improved Shu et al. (2008)

Murine Improved Albuz et al. (2010), Zeng et al. (2013, 2014),  
Richani et al. (2014b)

Bovine Improved Ali and Sirard (2005), Albuz et al. (2010), Li et al. (2016)
Bovine None/Decreased Ulloa et al. (2014), Guimaraes et al. (2015),  

Bernal-Ulloa et al. (2016)
Ovine Improved Rose et al. (2013)
Ovine None Buell et al. (2015)

*Relative to standard IVM control. As assessed by embryo development typically to the blastocyst stage.
CNP, C-type natriuretic peptide; dbcAMP, dibutyryl cAMP; iAC, invasive adenylate cyclase; IBMX, 3-isobutyl-1-methylxanthine.

Downloaded from Bioscientifica.com at 03/27/2025 02:29:39PM
via free access



R150	 R B Gilchrist and others

Reproduction (2016) 152 R143–R157� www.reproduction-online.org

Downs et  al. 1988). Oocyte maturation is ‘induced’ 
as meiotic maturation is inhibited in the absence of 
such meiosis-stimulating ligands. The actions of these 
ligands are mediated by CCs, as they induce GVBD in 
intact explanted follicles or in COCs in vitro, but not 
in DOs in vitro (Downs et al. 1988, Park et al. 2004). 
Hence, induced IVM systems typically incorporate the 
simultaneous application of a meiotic inhibitor and a 
meiosis-inducing ligand (Fig. 3C) (Thomas et al. 2004b). 
GVBD and progression to MII occur in the presence of 
the meiotic inhibitor at moderate–low levels of COC 
cAMP (Fig. 3E). This system, pioneered by Downs and 
Eppig (Downs et al. 1988), has been used extensively for 
decades as a mouse oocyte experimental model to study 
the cellular and molecular control of meiotic induction 
(Downs 2010). However, it has not been examined in 
oocyte developmental competence studies (see Table 2 
for references).

Induced IVM (high cAMP)

The distinguishing feature of this approach to IVM is 
the inclusion of pharmacological agent(s) that increase 
COC cAMP or induce the synthesis of large quantities 
of cAMP in the COC (Fig.  3D). This approach was 
pioneered by Funahashi H. et al. by treating porcine 
COCs with dbcAMP, leading to improved subsequent 
blastocyst yield (Funahashi et al. 1997). Use of dbcAMP 
has proved highly successful and is now widely used 
in porcine IVM embryo production systems (Table 2). 
Other cAMP-elevating agents of note used for this 
approach include invasive adenylate cyclase (iAC; 
(Aktas et al. 1995, Luciano et al. 1999)) and forskolin 
(Ali & Sirard 2005, Shu et  al. 2008). Forskolin, in 
particular, leads to rapid and large increases in whole 
COC and intra-oocyte cAMP (Thomas et  al. 2002, 
Bernal-Ulloa et  al. 2016) to levels that approximate 
the spike in COC cAMP levels that occur in vivo in 
response to LH (Fig.  3E) (Wang et  al. 2011). One 
such approach is simulated physiological oocyte 
maturation (SPOM; (Albuz et al. 2010, Gilchrist et al. 
2015)). The COC cAMP profile in response to these 
pharmacological agents is usually more acute and 
notably higher than that achieved by FSH treatment 
of COCs, as per standard IVM (Albuz et  al. 2010). 
Such induced IVM systems typically incorporate a 
pre-IVM (Luciano et  al. 1999) or biphasic approach 
(Funahashi et  al. 1997) (Fig.  3D), in which COCs 
are exposed to the cAMP-elevating agent for several 
hours (e.g. 2 h; (pre-IVM) to up to 22–24h (biphasic)). 
This is usually followed by an IVM phase lacking 
pharmacological AC activators, either in the presence 
(Zeng et al. 2013) or absence of FSH (Sugimura et al. 
2015). A PDE inhibitor such as cilostamide can be 
included in the IVM phase, as used in SPOM version 
1 (Albuz et al. 2010) or omitted as per SPOM version 
2 (Zeng et al. 2013, Richani et al. 2014b, Zeng et al. 

2014, Gilchrist et al. 2015, Li et al. 2016), and in the 
iAC and dbcAMP approaches (Funahashi et al. 1997, 
Luciano et al. 1999, Guixue et al. 2001).

It is noteworthy that in all induced IVM (high 
cAMP) approaches, oocyte meiotic maturation is 
induced as a result of the elevated CC cAMP, even 
in the presence of a PDE inhibitor (Dekel et al. 1988, 
Shu et  al. 2008) (this does not or is less likely to 
occur in biphasic IVM). This may seem paradoxical, 
as pharmacological stimulation of cAMP synthesis 
in CCs increases intra-oocyte cAMP by at least an 
order of magnitude (Thomas et  al. 2002), initially 
preventing GVBD. In fact, this cAMP surge induces 
CC synthesis of potent meiosis-inducing factors (e.g. 
EGF-p (Richani et al. 2014b); see ‘CC EGF signalling’ 
section), which may recapitulate at least some of the 
meiosis-inducing events that occur during oocyte 
maturation in vivo. It is interesting that in induced 
IVM systems, GVBD occurs at a higher intra-oocyte 
cAMP concentration than in standard IVM (Wang 
et al. 2011). Despite the improvements across species 
in oocyte developmental competence using induced 
IVM systems (Table 2), this mode of oocyte maturation 
does not typically improve MII rates, which would 
be useful in species such as human where IVM MII  
rates are typically low (~50%) (Shu et  al. 2008,  
Zeng et al. 2013).

Oocyte collection phase

COC collection conditions and the ensuing first hour 
are paramount to IVM success. This is because a large 
part of the developmental competence acquired by 
the oocyte in the follicle can be lost in the first hour. 
During this period, the oocyte should receive key 
nutrient support (Frank et al. 2013) and activation of the 
oocyte’s potent PDE should be prevented. Therefore, 
cAMP-mediated IVM systems require a PDE inhibitor 
in the oocyte collection medium. Otherwise, upon 
isolation of the COC, the loss of follicular cGMP will 
lead to rapid activation of the oocyte’s PDE, loss of 
cAMP (Aktas et  al. 1995, Luciano et  al. 2004, Albuz 
et  al. 2010), de-activation of PKA, loss of CC–oocyte 
gap junctions, cessation of oocyte transcription and 
irreversible resumption of meiosis (Luciano et al. 2011, 
Li et al. 2012). It is noteworthy that in the IVM literature 
using porcine and bovine abattoir-sourced oocytes, 
these COCs are invariably collected and processed in 
undiluted or high concentration follicular fluid, which 
provides the COC with nutrient and inhibits the oocyte’s 
PDE. Therefore, the clinical practice of performing 
IVM oocyte pickups with saline, PBS or simple holding 
medium is likely to be detrimental to oocyte quality. We 
have recently demonstrated that the inclusion of IBMX in 
human oocyte collection medium supports subsequent 
oocyte maturation and healthy embryo development 
(Spits et al. 2015).
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Cyclic AMP-mediated IVM and oocyte  
developmental competence

Publications accumulated over the past decade provide 
evidence that cAMP-mediated IVM systems can lead 
to notably improved oocyte quality, compared with 
standard IVM, as measured by enhanced subsequent 
pre-implantation embryo development and quality (see 
Table 2 for citation list). Hence, these novel approaches 
to IVM are now highly attractive for clinical and 
commercial applications to bridge the efficiency gap 
between IVM and IVF. Different cAMP-mediated IVM 
systems yield differing outcomes. Biphasic IVM and 
induced IVM (low cAMP) approaches typically lead 
to modest improvements in blastocyst yield. However, 
induced IVM systems producing high COC cAMP 
levels generally lead to larger improvements in oocyte 
quality (Fig. 3 and Table 2). Induced IVM systems lead 
to apparently healthy pregnancies and offspring (Akaki 
et al. 2009, Albuz et al. 2010, Bernal-Ulloa et al. 2016). 
There are challenges, however, in working with these 
systems (Gilchrist et al. 2015). First, manipulating oocyte 
cAMP has major effects on oocyte meiotic kinetics, and 
hence timing to MII should be assessed carefully under 
local laboratory conditions (see “Kinetics of meiosis” 
section). Secondly, IVM systems, where CC and oocyte 
functions are acutely altered such as SPOM version 1, 
can be difficult to work with; therefore, strict attention 
to protocol is needed (Gilchrist et al. 2015). This led to 
the development of a more user-friendly SPOM version 
2 (Zeng et al. 2013, 2014). These issues highlight that, 
to realise the full potential of these novel approaches 
to IVM, further refinement of practical aspects of IVM 
protocols is warranted.

Impact of cAMP-mediated IVM on CCs and the oocyte

As there is a clear beneficial effect of cAMP-mediated 
IVM systems on oocyte developmental competence 
(Table 2), the effect of cAMP-mediated IVM on cellular 
and molecular aspects of CC and oocyte function is of 
interest as a means to (1) provide insights into basic 
mechanisms regulating oocyte quality and (2) offer 
opportunities to further improve IVM efficiency.

CC microarray analysis

A microarray analysis of CCs after 6-h exposure to cAMP-
elevating agents (forskolin + IBMX + dipyridamole; see 
Table  1) was performed to elucidate cAMP-induced 
gene networks (Khan et  al. 2015). These culture 
conditions were demonstrated previously to enhance 
embryo development (Ali & Sirard 2005). The analysis 
demonstrated that cAMP significantly and specifically 
modulated gene expression dynamics including genes 
involved in cell metabolism, cell communication, 
signal transduction, steroidogenesis, cell survival 

and extracellular matrix formation (Khan et  al. 2015). 
Genes involved in cell metabolism such as GFPT2 
(glutamine-fructose-6-phosphate transaminase 2) and 
HK2 (hexokinase 2) were significantly upregulated by 
the cAMP-elevating agents, as well as genes involved 
in carbohydrate uptake (SLC2A1, solute carrier family 
2-facilitated glucose transporter, members 1 and 3 
respectively) and steroidogenesis (STAR, steroidogenic 
acute regulatory protein). Interestingly, downregulation 
of EGF pathway genes (AREG, amphiregulin and 
HAS2, hyaluronan synthase 2), which are involved in 
cumulus expansion, was observed ((Khan et al. 2015); 
see the end of “CC EGF signalling” section for temporal 
effects). Decreased phosphorylation of ERK1/2 supports 
a possible negative regulatory role of PKA in this 
process. These findings imply that treatment of COCs 
with cAMP-elevating agents upregulates genes in cell 
metabolism, carbohydrate uptake and steroidogenesis, 
and downregulates genes of the EGF pathway (Khan 
et al. 2015).

CC–oocyte gap junctional communication

The central objective of the most recent IVM systems 
is to preserve CC–oocyte communication, as it is 
critical to generating a healthy mature oocyte capable 
of sustaining embryo development (Gilchrist 2011). 
Under standard IVM conditions, the drop in COC 
cAMP concentration that occurs after removal of the 
COC from the antral follicle (Aktas et al. 1995, Albuz 
et al. 2010) is accompanied by initiation of closure of 
CC–oocyte GJs (Thomas et al. 2004a). This loss of GJC 
is attenuated to some extent by the inclusion of FSH in 
standard IVM media (Atef et al. 2005). FSH stimulates 
expression of genes encoding connexins including 
Gja1 (El-Hayek & Clarke 2015), possibly via a PKA-
regulated mechanism (Yun et  al. 2012). Inhibiting 
COC cAMP hydrolysis, in either the CC or the oocyte 
compartment using selective PDE inhibitors, further 
attenuates the loss of GJC and is usually associated 
with a delay in GVBD (Luciano et  al. 2004, Thomas 
et  al. 2004a). By contrast, using cAMP-elevating 
agents in IVM, such as forskolin or dbcAMP, not only 
prevents GJC loss but also maintains full patency for 
extended periods of IVM (Thomas et  al. 2004a, Shu 
et al. 2008, Albuz et al. 2010, Li et al. 2016). Using 
cAMP-mediated approaches to preserve CC–oocyte 
GJCs in IVM is usually associated with an improvement 
in oocyte developmental competence (see Table  2 
for citations). Furthermore, blocking GJs negates any 
benefits of cAMP-mediated IVM in terms of subsequent 
embryo development (Atef et al. 2005). The molecular 
mechanisms underlying the improvement in oocyte 
quality are not clear; GJ-mediated effects on oocyte 
metabolism may be important (see “COC metabolism 
and oocyte antioxidant defence” section), as well 
as effects on oocyte transcription. As outlined in 
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the section on ‘Follicle endows the oocyte with 
developmental competence’, addition of cAMP 
modulators to IVM prevents premature chromatin 
condensation and permits continued oocyte RNA 
synthesis. It has been hypothesised that this occurs 
via a GJ-mediated mechanism (De La Fuente & Eppig 
2001, Luciano et al. 2011).

Kinetics of meiosis

A founding principle of cAMP-mediated IVM systems 
is to prevent spontaneous GVBD of oocytes upon 
removal from antral follicles (Gilchrist & Thompson 
2007) and as such the kinetics of the meiotic cell cycle 
are notably different in these cAMP-mediated oocyte 
maturation systems (Fig. 3). GVBD occurs most rapidly 
under spontaneous IVM (e.g. mouse, ~1 h; bovine,  
~6 h), where there is uncontrolled loss of intra-oocyte 
cAMP leading to the activation of MPF. Using biphasic 
IVM systems, GVBD is prevented as long as the cAMP 
modulator is present – typically, 22–48 h (Nogueira 
et al. 2003b, Nogueira et al. 2006). In induced IVM 
systems, GVBD is typically delayed (but not inhibited) 
by several hours; for example, from 1 to 3 h in mouse 
or from 6–7 h to 10–12 h in bovine (Thomas et  al. 
2004a, Albuz et  al. 2010). Delay in time to MII 
depends on the type, dose and combination of cAMP 
modulators, but MII is either not delayed (Kim et al. 
2008) or delayed by only several hours (Thomas et al. 
2004b, Albuz et al. 2010, Rose et al. 2013). However, 
as GVBD is always delayed, the GVBD to MII interval 
is commonly shortened using induced or biphasic 
IVM systems, relative to standard IVM (Thomas et al. 
2004b, Kim et al. 2008). There is strong evidence to 
suggest that this occurs because these IVM systems 
generate potent meiosis-inducing factors, likely of 
CC origin requiring EGFR signalling (see section on 
‘CC EGF signalling’ (Dekel et  al. 1988, Downs & 
Chen 2008, Albuz et al. 2010)). The net effect of this  
rapid progression through meiosis is a reduction 
in meiotic asynchrony, as originally identified by 
Funahashi et al. (1997) – i.e. a reduction in the time 
range at which a cohort of oocytes reach MII. Hence, 
a significant benefit of cAMP-mediated IVM systems 
is likely to be a reduction in in vitro ageing of IVM 
oocytes, which may account for their improved 
developmental competence.

CC EGF signalling

The effect of cAMP elevation in CCs in induced IVM 
systems (e.g. SPOM; Fig. 3D) is mediated, at least in part, 
by EGF receptor activity. The EGF receptor inhibitor 
AG1478 blocks GVBD in COCs pulsed with dbcAMP 
to stimulate maturation (Downs & Chen 2008). The 
same effect is also observed in SPOM COCs exposed 
to AG1478 (Albuz et  al. 2010). Moreover, genetic 

expression analysis of the effect of elevated cAMP  
in vitro implicates PKA and ERK1/2 pathways, which 
are interconnected with EGF receptor signalling, as 
key downstream signalling regulators of cAMP in 
vitro (Khan et al. 2015). The increased developmental 
competence of cAMP-mediated IVM oocytes may 
in part be attributable to the impact of cAMP on 
EGF pathway signalling in CCs. Standard IVM 
conditions (including with FSH) exhibit perturbed 
CC expression of EGF-p relative to those matured 
in vivo (Richani et  al. 2013), leading to alterations 
in COC glucose metabolism and decreased oocyte 
mitochondrial activity (Richani et  al. 2014a). Cyclic 
AMP elevation using forskolin leads to a large, 
but very transient, increased expression of CC 
amphiregulin, epiregulin and betacellulin compared 
with unstimulated or IBMX-treated COCs (Richani 
et al. 2014b). However, the increase in expression of  
EGF-like peptides does not translate into increased 
activation of the EGF receptor or its downstream target 
ERK1/2 (Richani et  al. 2014b), suggesting that the  
cAMP-induced spike in EGF-like peptides may impact 
alternate downstream EGF receptor targets (Chen et al. 
2013) or may alter temporal EGFR signalling through 
negative feedback. The latter hypothesis is supported 
by evidence showing increased EGF-p expression 
after 2 hours of forskolin exposure in the mouse, but 
not at 4 h (mouse) or 6 h (cow) (Richani et al. 2014b, 
Khan et al. 2015).

Figure 4 Possible mechanisms by which high levels of COC cAMP 
during in vivo oocyte maturation or by induced IVM improve oocyte 
quality. EGF-p, epidermal growth factor-like peptides; GJC, gap 
junctional communication; GSH, glutathione; GVBD, germinal 
vesicle breakdown; ROS, reactive oxygen species.
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COC metabolism and oocyte antioxidant defence

cAMP-mediated IVM has an effect on CC and oocyte 
metabolism, consistent with the established relationship 
between oocyte developmental competency and oocyte 
metabolism (Thompson et al. 2007). The basic pattern of 
metabolism during development and maturation of the 
oocyte is demonstrated as a dynamic process with the 
consumption of oxygen and the utilisation of nutrients 
present in culture media – mainly glucose, pyruvate 
and lactate (Leese 2015). Induced IVM (high cAMP; 
SPOMv2; Fig. 3D) systems that enhance oocyte quality 
lead to increased lactate production by COCs over the 
course of IVM, suggesting stimulation of CC glycolysis 
(Zeng et  al. 2014). Importantly, treating COCs during 
pre-IVM with forskolin plus IBMX leads to intra-oocyte 
GSH accumulation in a pre-IVM duration-dependent 
manner, which is ablated when GJs are blocked (Zeng 
et  al. 2014, Li et  al. 2016). This cAMP-mediated 
increase in GSH is associated with lower levels of H2O2, 
suggesting that a key benefit of cAMP-mediated IVM is 
an improvement in the oocyte’s antioxidant defences 
requiring GSH supplied by CCs (Li et  al. 2016). As 
increased GSH levels are highly correlated with oocyte 
developmental competence (de Matos et  al. 1995), 
this may at least partly explain why pre-maturation 
with these agents improves oocyte competence. Cyclic 
AMP-modulated pre-IVM treatments also increase COC 
oxygen consumption and oocyte oxidative metabolism, 
associated with an increase in the oocyte redox ratio 
and a higher ATP:ADP ratio (Zeng et  al. 2013, 2014). 
Therefore, activation of cAMP signalling pathways during 
oocyte maturation affects not only oocyte metabolism 
but also oocyte antioxidant defence, in a GJ-dependent 
manner (Li et al. 2016).

Conclusions

There is a vast body of literature on the role of 
cyclic nucleotides in mammalian oocyte function. 
Their role in the regulation of oocyte meiosis is now 
clear. More recently we have acquired substantial 
experimental evidence that the delicate balance 
of cyclic nucleotides between the somatic and 
germ cell compartments plays a key role in oocyte 
developmental competence. Current research is 
directed to understanding the mechanisms by which 
cyclic nucleotides improve oocyte quality (Fig.  4). 
Nonetheless, application of cAMP modulators in IVM 
can present practical challenges, for example, on the 
timing of meiosis, and may present regulatory body 
issues. The challenge therefore to the medical and 
veterinary disciplines is to capitalise on these new 
scientific and technological advances to improve the 
efficacy of IVM, for the benefit of infertile and cancer 
patients and for domestic animal breeding. 
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