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Abstract

Fetal growth restriction (FGR) is a pregnancy complication wherein the foetus fails to reach its growth potential. The renin–
angiotensin system (RAS) is a critical regulator of placental function, controlling trophoblast proliferation, angiogenesis and blood 
flow. The RAS significantly influences uteroplacental blood flow through the balance of its vasoconstrictive and vasodilatory 
pathways. Although the RAS is known to be dysregulated in placentae from women with preeclampsia, the expression of the RAS has 
not yet been studied in pregnancies compromised by FGR alone. This study investigated the mRNA expression and protein levels of 
RAS components in placentae from pregnancies compromised by FGR. Angiotensin II type 1 receptor (AGTR1) and angiotensin-
converting enzyme 2 (ACE2) mRNA levels were reduced in FGR placentae compared with control (P = 0.012 and 0.018 respectively). 
Neprilysin (NEP) mRNA expression was lower in FGR placentae compared with control (P = 0.004). mRNA levels of angiotensinogen 
(AGT) tended to be higher in FGR placentae compared with control (P = 0.090). Expression of prorenin, AGT, angiotensin-converting 
enzyme (ACE) or ACE2 proteins were similar in control and FGR placentae. The renin-AGT reaction is a first order reaction so levels 
of expression of placental AGT determine levels of Ang II. Decreasing levels of ACE2 and/or NEP by limiting the production of 
Ang-(1-7), which is a vasodilator, and increasing placental Ang II levels (vasoconstrictor) may result in an imbalance between the 
vasoconstrictor and vasodilator arms of the placental RAS. Ultimately this dysregulation of the placental RAS could lead to reduced 
placental perfusion that is evident in FGR.
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Introduction

Fetal growth restriction (FGR) affects 3–9% of all 
births (Miller et al. 2016). FGR occurs when the foetus 
fails to achieve its full growth potential in utero, and 
it is often associated with poor perinatal outcomes. 
There is extensive evidence indicating that an adverse 
prenatal environment and impaired fetal growth results 
in fetal programming, which predisposes the fetus to 
hypertension, diabetes and cardiovascular disease 
in adult life (Barker 2004, Warner & Ozanne 2010). 
Frequently, FGR occurs because of other maternal 
complications in pregnancy such as preeclampsia 
or gestational diabetes. FGR can also have fetal (e.g. 
genetic defects) or placental causes (e.g. infarcts). 
Approximately 60–70% of FGR cases are, however, of 
unknown aetiology and are termed ‘idiopathic FGR’ 

(Ghidini 1996, Resnik 2002). Evidence of additional 
pathological signs, including asymmetric growth and 
reduced amniotic fluid index, allows discrimination 
between FGR and small-for-gestation-age (SGA) infants 
who are otherwise healthy.

While the aetiology of idiopathic FGR is poorly 
understood, inadequate placental development, 
possibly related to insufficient invasion of the maternal 
decidua by the extravillous cytotrophoblast and impaired 
maternal spiral arteriole remodelling (collectively 
termed ‘placental insufficiency’) is known to contribute 
to pregnancy complications including FGR (Lyall et al. 
2013). Perturbations in placental development resulting 
in placental insufficiency are characterised by under 
perfusion of the placenta, later in gestation, resulting in 
suboptimal nutrient delivery to the foetus and therefore 
suboptimal foetal growth (Lackman et al. 2001).

-18-0633

158 3

© 2019 Society for Reproduction and Fertility https://doi.org/10.1530/REP -18-0633
ISSN 1470–1626 (paper) 1741–7899 (online)� Online version via https://rep.bioscientifica.com

Downloaded from Bioscientifica.com at 05/21/2025 02:50:52PM
via free access

mailto:kirsty.pringle@newcastle.edu.au
https://doi.org/10.1530/REP-18-0633
https://rep.bioscientifica.com


S J Delforce and others238

Reproduction (2019) 158 237–245� https://rep.bioscientifica.com

The renin–angiotensin system (RAS) is a circulating 
endocrine system that regulates blood pressure and 
fluid volume (Fig. 1). All the components of the RAS are 
present in the placenta from as early as 6-week gestation, 
where they may act independent of the circulating RAS 
to regulate both villous and extravillous cytotrophoblast 
proliferation, extravillous cytotrophoblast migration, 
invasion and placental angiogenesis (Pringle et  al. 
2011). The placental RAS has also been shown to 
modulate uteroplacental blood flow in animal models 
(Ito et al. 2002, Moritz et al. 2010), regulate extravillous 
cytotrophoblast invasion in vitro (Williams et al. 2010) 
and placental nutrient transport (Shibata et al. 2006).

The RAS regulates these functions through two 
major arms. In tissues, prorenin is non-proteolytically 
activated by binding to its (pro)renin receptor or 
proteolytically activated by cathepsins and other 
proteases so that it is able to cleave Ang I from 
angiotensinogen (AGT, renin’s substrate). Angiotensin I  
(Ang I) is then converted to the main biologically 
active peptide of the system (Ang II) by angiotensin-
converting enzyme (ACE). Ang II, acting via the 
angiotensin II type 1 receptor (AT1R), promotes 

proliferation, angiogenesis and vasoconstriction. Ang 
II/AT1R-induced angiogenesis is mediated through the 
production of angiogenic factors including vascular 
endothelial growth factor (VEGF) and placental growth 
factor (PGF) (Pan et al. 2010, Napoleone et al. 2012). 
This is also the local vasoconstrictor arm of the RAS.

Ang II also on the AT2R and antagonises the effects 
of AT1R activation. Alternatively, Ang I and Ang II can 
be cleaved by a homologue of ACE, ACE2, to produce  
Ang–(1–9) and Ang–(1–7), respectively. Ang–(1–9) can 
further be processed by ACE to produce Ang–(1–7). 
Ang–(1–7) acting via its receptor, Mas, also antagonises 
the effects of AT1R activation. Neprilysin is an 
endopeptidase that is able to produce both Ang–(1–7) 
from Ang I as well as Ang-(1-9) (Gafford et  al. 1983). 
Additionally, neprilysin is able to inactivate Ang II by 
cleaving it into two tetrapeptides (Gafford et al. 1983). 
Aminopeptidases, including glutamyl aminopeptidase 
(ENPEP) and endoplasmic reticulum aminopeptidase 
1 (ERAP1), allow the conversion of Ang II to Ang III or 
Ang IV, and can cause vascularisation, inflammation, 
vasodilation and hypertrophy. Thus, disruption of the 
placental RAS and the balance between these vasoactive 

Figure 1 The renin–angiotensin system (RAS) cascade. Prorenin is activated by binding to the (pro)renin receptor ((P)RR) and possibly by 
proteolysis to cleave angiotensin (Ang) I from angiotensinogen (AGT). ACE then converts Ang I to the biologically active Ang II. Ang II can bind 
to angiotensin II type 1 receptor (AT1R) to promote proliferation, angiogenesis and vasoconstriction through stimulation of intracellular 
signalling pathways. Furthermore, angiotensin (Ang) II binds to angiotensin I type 2 receptor (AT2R) and antagonises AT1R activation. 
Aminopeptidases including glutamyl aminopeptidase (ENPEP) and endoplasmic reticulum aminopeptidase 1 (ERAP1) allow the conversion of 
Ang II to Ang III or Ang IV, which act on the AT4R and can induce inflammation and hypertrophy. Ang I can also be further converted by 
angiotensin-converting enzyme 2 (ACE2) to Ang–(1–7). Ang–(1–7) acts upon its receptor Mas. Neprilysin (NEP) can cleave Ang-(1–7) from either 
Ang I or Ang (1–9). This results in antagonism of Ang II/AT1R stimulation thus inhibiting proliferation, angiogenesis and vasoconstriction. 
Alternatively, it can cleave Ang II to two tetrapeptides, inactivating Ang II.
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peptides could affect placental blood flow, restricting 
nutrient supply and causing FGR.

Although (Ang) II is known to modulate placental 
blood flow in both uncomplicated and FGR pregnancies 
(McMillen et  al. 2001), in pregnancies associated 
with idiopathic FGR levels of expression of other 
proteins that make up the placental RAS have not been 
determined. Uteroplacental RAS expression is altered in 
preeclampsia and has been characterised extensively. 
Components of the vasoconstrictive/pro-inflammatory 
arm of the RAS ((pro)renin, AGT, ACE, (P)RR and AT1R) 
are significantly upregulated in placentae and/or decidua 
from women with preeclampsia when compared with 
uncomplicated controls (Herse et al. 2007, Anton et al. 
2008, Narita et  al. 2016). Furthermore, Ang II levels 
in chorionic villi from women with preeclampsia are 
significantly higher than placentae from normotensive 
controls (Anton et  al. 2008). Thus, the uteroplacental 
RAS is activated during preeclampsia, potentially due 
to inefficient placental perfusion resulting in a hypoxic 
placenta. Despite the clear link between the placental 
RAS and placental pathologies, very few studies have 
investigated expression and function of the RAS in 
idiopathic FGR placentae.

Therefore, in pregnancies complicated by idiopathic 
FGR, we have measured levels of expression of the 
placental RAS and some of its downstream targets and 
compared these levels with those measured in placentae 
collected from women with uncomplicated pregnancies.

Materials and methods

Placental collection

Placentae were collected from The Royal Women’s Hospital 
Melbourne, with informed consent as approved by the Human 
Research and Ethics Committee (46/03 and 27/00). Placentae 
were collected from pregnancies complicated by idiopathic 
FGR (n = 17) as well as from gestational age-matched 
uncomplicated pregnancies (n = 34). The samples tested in this 
study are a subset of a cohort described previously (Swan et al. 
2010). The clinical characteristics of idiopathic FGR placentae 
and control placentae are described in Table  1. Briefly, the 
inclusion criteria for idiopathic FGR pregnancies were

1.	 Birth weight less than the 10th percentile for gestation as 
determined by the Australian growth charts (Guaran et al. 
1994); and

2.	 At least two of the following diagnoses on antenatal 
ultrasound:
a.	Abnormal Doppler velocimetry (indicated by a change 

in the end-diastolic blood flow, S/D ratio >2.5 for 
elevated, absent or reversed) (Salafia et al. 1997, Chen 
et al. 2002),

b.	Oligohydramnios indicated by an amniotic fluid index 
<7 (Vik et al. 1997, Volante et al. 2004), or

c.	Fetal growth asymmetry as determined by a head 
circumference-to-abdominal circumference ratio 
(HC:AC>1.2) >95th percentile for gestation (Vik et  al. 
1997).

Exclusion criteria are described by Swan et al. (2010). Briefly, 
these included conditions known to be associated with FGR 
including underlying maternal medical diseases such as, 
maternal drug and alcohol dependency, maternal smoking, 
maternal metabolic syndrome (including type 1 and 2 diabetes 
and gestational diabetes), multiple pregnancies, placental 
abruption, hypertension, preeclampsia, prolonged rupture of 
the membranes, foetal congenital anomalies and suspected 
intrauterine infection. Gestation-matched controls were 
matched to these FGR cases based on weeks of completed 
gestation; they had no evidence of obstetric complications that 
are associated with FGR or placental abnormalities. Placentae 
were also collected from patients with spontaneous idiopathic 
preterm labour (excluding women with preterm rupture of 
membranes) and elective preterm delivery for a condition not 
affecting the placenta or foetal growth (e.g. maternal breast 
cancer). Tissue was randomly excised from multiple sites at 
the periphery of the placenta in both FGR and control cases. 
Sampling of placental infarcts was avoided. Placental tissue 
was then washed in phosphate buffered saline (PBS; 0.9%) and 
snap-frozen for subsequent homogenisation for total RNA and 
protein extraction.

Semi-quantitative real-time reverse transcriptase 
polymerase chain reaction (qPCR)

Total RNA was isolated from placentae using the RNeasy 
Midi Kit (Qiagen) and reverse transcribed using Superscript 
III (ThermoFisher Scientific) according to the manufacturer’s 
instructions. qPCR was performed in an Applied Biosystems 
7500 Real-Time PCR System using SYBR Green for detection. 
Each reaction contained cDNA reverse transcribed from 
10 ng total RNA, SYBR Green PCR master mix (Applied 
Biosystems) and primers (Table  2). Genes measured include 
RAS components; prorenin (REN), (P)RR (ATP6AP2), AGT 
(AGT), AT1R (AGTR1), ACE (ACE) and ACE2 (ACE2), alternate 
angiotensin-converting enzymes neprilysin (NEP), ENPEP 
(ENPEP) and ERAP1 (ERAP1) as well as downstream Ang II/
AT1R factors VEGF (VEGF) and PGF (PGF). Dissociation curves 
to detect non-specific amplifications were generated for all 
reactions and non-template control samples were included 
in all assays. mRNA abundance was determined using the 
2−ΔΔCT method and expressed relative to β-actin (ACTB) mRNA 
and a calibrator sample (a term placental sample collected at 
elective caesarean section). The housekeeping gene was not 
significantly different between control and FGR placentae and 
was thus considered stable.

Table 1  Participant characteristics.

Characteristics
Control 
(n = 34) FGR (n = 17) P value

Gestation (weeks) 36.3 ± 3.6 35 ± 3.2 0.122
Sex of Newborn ns
  Male 17 (50%) 8 (47%)
  Female 17 (50%) 9 (53%)
Birthweight of newborn (g) 2860 ± 803.3 1881.4 ± 667.2 0.0001
Placental weight (g) 570.4 ± 147.9 424.2 ± 91.6 0.0005

Data expressed as mean ± standard deviation or frequency (%).
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Protein isolation from placental tissue

Whole cell protein was isolated from FGR and control 
placenta (n = 17–18) using radio-immunoprecipitation assay 
buffer (RIPA, 50 mM Tris–HCl, 158 mM NaCl, 1% Triton X-100, 
1% sodium dodecyl sulphate, SDS) supplemented with a 
Pierce Halt™ complete protease inhibitor cocktail kit (Thermo 
Fisher Scientific) as described previously (Swan et al. 2010). 
Proteins were quantified using the Pierce BCA Protein Assay 
Kit according to the manufacturer’s instructions (Thermo Fisher 
Scientific) and used for both ELISAs and immunoblotting.

Measurement of ACE, AGT and Prorenin  
proteins by ELISA

Placental ACE, AGT and prorenin proteins were measured 
using commercially available ELISAs. The human ACE Duoset 
ELISA kit (R&D systems) was used to measure placental ACE 
protein. A human Total Angiotensinogen Assay Kit (Immuno–
Biological Laboratories Co., Fujioka–Shi, Japan) was used 
to measure placental AGT protein. A human prorenin ELISA 
Kit (Molecular Innovations) was used to measure placental 
prorenin protein. All proteins were assayed on a single plate. 
The intra-assay coefficient of variations were 3.6, 6.0 and 
9.2% respectively for ACE, AGT and prorenin.

Measurement of ACE2 proteins by immunoblotting

ACE2 protein was measured by immunoblot. The Novex® 
NuPAGE® SDS–PAGE Gel System (Thermo Fisher Scientific) 
was used for electrophoresis of the protein in 4–12% Bis–
Tris 1.5 mm gels, and then transferred onto PVDF membrane 
(Thermo Fisher Scientific). Membranes were blocked for 1 h 
at room temperature in 5% BSA (bovine serum albumin)/5% 
skim milk powder in 0.1% TBS-T before being incubated 
with the primary antibody (1:1000, Polyclonal anti-ACE 2, 
ab15348 (Abcam)) overnight at 4°C, in 5% skim milk powder 
in 0.1% TBS-T. The membrane was then incubated with the 
secondary antibody (1:5000, goat anti-rabbit IgG antibody, 
12-348, Millipore) in 3% Skim milk powder in 0.1% TBS-T for 
1 h at room temperature. Protein bands were detected using 
an ECL detection kit (Amersham, GE Healthcare, IL, USA) 
and imaged using an Amersham Imager 6000 (Amersham, 
GE Healthcare). Membranes were then stripped in 0.1 M 
NaOH to allow detection of the internal control (β-actin). 

After blocking (5% skim milk in 0.1% TBS-T) for 1 h at room 
temp, membranes were incubated with the primary antibody 
(1:3000, Polyclonal anti-β-actin (Abcam, ab8227)) for a further 
1 h at room temperature. Membranes were then incubated 
with the secondary antibody and detected as described earlier. 
The density of each band was corrected for its respective 
loading control (β-actin) and further normalised to an internal 
control sample (pooled term placenta collected at caesarean 
section) on each membrane. Samples were run in duplicate 
and averaged for the final analysis.

Statistical analysis

Data were analysed using Graphpad Prism, version 7.0. 
Differences between control and FGR samples were 
determined using non-parametric Mann–Whitney tests. To 
determine the associations between abundance of particular 
RAS mRNAs and putative downstream targets or obstetric 
outcomes, Spearman’s non-parametric correlations were used. 
Outliers were removed if they lay outside 2-SD from the mean. 
Significance was set at P < 0.05 for all data.

Results

Birth and placental weights of control and 
FGR pregnancies

Gestational age and foetal sex were not significantly 
different between control and FGR cases (Table 1). Birth 
weights in the FGR cohort were significantly lower than 
their control counterparts (Table 1). Similarly, placental 
weights were significantly reduced in FGR pregnancies 
compared with control (Table 1).

Expression of placental RAS components in 
FGR placentae

Prorenin (REN), (pro)renin receptor (ATP6AP2) and 
ACE mRNA abundance were the same in control and 
FGR placentae (Fig. 2). Angiotensinogen (AGT) mRNA 
expression tended to be higher in FGR placentae 
compared with control; however, this failed to reach 
significance (P = 0.09, Fig.  2). Angiotensin II type 1 
receptor (AGTR1) and angiotensin-converting enzyme 

Table 2  Primers used for qPCR.

Genes
GenBank  
accession #

Primer sequence (5′–3′) Concentration 
(nM)

Melt  
temperature (°C)Forward Reverse

ACTB NM_001101 CGCGAGAAGATGACCCAGAT GAGTCCATCACGATGCCAGT 1000 78
ACE NM_000789 AAGCAGGACGGCTTCACAGA GGGTCCCCTGAGGTTGATGTAT 200 85
ACE2 NM_021804 GCAAGCAGCTGAGGCCATTATA ATCTTCAATCAACTGGCCGC 400 78
AGT NM_000029 CAACACCTACGTCCACTTCCAA TGTTGTCCACCCAGAACTCCT 200 62
AGTR1 NM_000685 CCTCAGATAATGTAAGCTCATCCAC GCTGCAGAGGAATGTTCTCTT 200 77
ATP6AP2 NM_005765 CCTCATTAGGAAGACAAGGACTATCC GGGTTCTTCGCTTGTTTTGC 200 60
ENPEP NM_001977.3 AGGCAACTTATACAATATCTATC CATCCACTGACTCTTCTT 200 75
ERAP NM_001040458.2 TCGGTTGGATGGATAAGA TAGTCTGAGATTCTGATGGA 200 75
NEP NM_000902.3 CTGCTGAGGGGTCACGATT GAGTGCGATCATTFTCACAGC 100 80
PGF NM_002632.5 TTACCGTCACACTCTTCA CATTCAGCAGGGAAACAG 100 77
VEGFA M32977 CTACCTCCACCATGCCAAGT GCAGTAGCTGCGCTGATAGA 400 75
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2 (ACE2) mRNAs were significantly reduced in FGR 
placentae compared with control placentae (Fig.  2, 
P = 0.012 and 0.018).

Prorenin, AGT, ACE and ACE2 proteins were not 
significantly different between control and FGR 
placentae (Fig. 3).

Expression of alternative angiotensin processing 
enzymes and peptidases in control and FGR placentae

Neprilysin (NEP) mRNA expression was significantly 
reduced in FGR placentae compared with control 
placentae (Fig.  4, P = 0.004). Neither glutamyl 
aminopeptidase (ENPEP) or endoplasmic reticulum 
aminopeptidase 1 (ERAP1) mRNAs were altered between 
control and FGR placentae (Fig. 4).

Expression of downstream angiogenic factors

Expression of PGF mRNA was significantly reduced in 
FGR placentae when compared with control (P = 0.003, 
Fig. 5). VEGF mRNA, however, was unchanged (Fig. 5). 
AGTR1 and PGF mRNAs were significantly correlated 
in term placentae from control pregnancies and also 

tended to be positively correlated in FGR placentae, 
however, this failed to reach significance (Fig. 6).

Correlations between obstetric outcomes and 
RAS expression

In control placentae, both AGT and REN were positively 
correlated with birth weight (Fig.  7). Furthermore, 
placental weight was positively associated with AGT 
mRNA expression in control placentae (Fig. 7). However, 
in FGR placentae, these correlations were lost (Fig. 7).

Furthermore, ATP6AP2 mRNA expression was 
negatively associated with both birth weight and 
placental weight in control placentae (Fig.  8). This 
association was lost in FGR placentae (Fig. 8).

Discussion

While the level of expression of the RAS components has 
been studied in preeclamptic placentae complicated by 
growth restriction, a comprehensive exploration of this 
RAS has not been studied in pregnancies complicated 
by idiopathic FGR. This study is the first to demonstrate 
that there is dysregulation of components of the 
placental RAS, suggesting that the placental RAS may 
contribute to impairment of uteroplacental blood flow 
in idiopathic FGR.

All the RAS genes studied were found to be expressed 
in both control and FGR placentae. The level of 
expression of AGT mRNA tended to be enhanced in 
FGR placentae and levels of ACE2 and AGTR1 mRNA 
were reduced. These different levels of expression 
in FGR placentae of AGT, ACE2 and AGTR1 did not 
translate into differences in the levels of their proteins for 
reasons discussed below. The differences in expression 
of these genes does, however, indicate that associated 
with idiopathic FGR, there is disturbed expression of the 
placental RAS that may alter uteroplacental perfusion. If 
this translates into altered activity of the placental RAS in 
FGR, then one might suggest that the rate of degradation 
of Ang II to Ang–(1-7) would be reduced because both 
ACE2 and NEP expression were reduced. This could 
result in an increase in placental Ang II levels such 
as that seen in late gestation preeclamptic placentae 
(Anton et  al. 2008). It is important to note that future 
studies examining the enzyme activity of ACE2 and NEP 
as well as the peptide levels of Ang II and Ang-(1-7) in 
FGR pregnancies are necessary to fully elucidate this.

In FGR placentae, high local levels of Ang II may 
well cause vasoconstriction and could account for the 
reduction in expression of AGTR1 by negative feedback 
in FGR placentae. Li et al. have shown that there is a 
significant reduction in AGTR1 mRNA hybridisation 
signal over the syncytial layer in FGR placentae when 
compared to control (Li et al. 1998). As well, increased 
foetal plasma Ang II levels in pregnancies complicated 
by FGR are associated with a decreased number of 
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Figure 2 Expression of components of the placental RAS in 
uncomplicated (control) pregnancies and pregnancies complicated 
by FGR. (A) REN, (B) ATP6AP2 and (D) ACE mRNAs were the same 
in control and FGR placentae. (C) AGT mRNA tended to be 
increased in FGR placentae when compared with control placentae 
(P = 0.090); however, this failed to reach significance. (E) ACE2 and 
(F) AGTR1 mRNAs were significantly reduced (P = 0.018 and  
0.012 respectively). Single dots represent individual datum that  
were outside the IQR. Data expressed as median ± IQ range. 
*P < 0.05. n = 12–35.
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placental vascular AT1R-binding sites (McQueen 
et  al. 1990, Kingdom et  al. 1993, Knock et  al. 1994). 
The downregulation in AGTR1 in FGR placentae was 
associated with a significant reduction in PGF (Figs 5 and 
6) suggesting that decreased AGTR1 expression might be 
responsible for reduced growth of the placenta. Ang II is 
known to stimulate PGF expression via AT1R activation 
in human vascular endothelial cells (Pan et  al. 2010). 
FGR has also been shown by others to be associated 
with reduced placental PGF (Wu et al. 2017).

A secondary consequence of reduction in the 
expression of NEP and ACE2 in FGR placentae could 
be a reduction in the production of Ang-(1-7) resulting 
in an imbalance in the Ang II/Ang-(1-7) ratio. Ang-(1-7) 
opposes the vasoconstrictor action of Ang II because it 
is vasodilator (Schindler et al. 2007). Thus, two factors 
may be responsible for the reduction in uteroplacental 
perfusion associated with FGR, increased Ang II and 
reduced Ang–(1-7), driving vasoconstriction.

As mRNA expression of AT2R and Mas receptor tend 
to be low to undetectable in term placentae (Delforce 
et  al. 2017), they were not examined in the present 
study. Since the AT1R is the dominant receptor within 
the placenta and there are reduced ACE2/NEP levels 
in FGR placenta (and the potential for an increase in 

the ratio of Ang II/Ang-(1-7)), the overabundance of 
Ang II stimulating AT1Rs may contribute to placental 
vasoconstriction and negative feedback-induced 
downregulation of AT1R in FGR placentae.

From as early as 15-week gestation, women who later 
deliver a small-for-gestational-age baby have higher 
circulating Ang–(1-7) levels (Pringle et al. unpublished 
observations). ACE2 is localised to the syncytial layer of 
the placenta (Pringle et al. 2011) and the pregnant ACE2-
knockout (KO) mouse is an animal model of FGR, in 
that there is placental hypoxia, reduced umbilical blood 
flow velocity, decreased pup weights and increased pup 
resorptions (Yamaleyeva et  al. 2015). These KO mice 
also have lower Ang–(1-7) and higher Ang II levels than 
their pregnant WT counterparts.

It is highly significant that there is in fact a positive 
correlation in appropriately grown babies between 
levels of expression of both renin and AGT and birth 
weight and placental weight, which is lost in pregnancies 
complicated by idiopathic FGR. This finding suggests 
that under normal conditions, the placental RAS plays 
a role in maturation of placental growth and function, 
as we have previously suggested (Delforce et al. 2017, 
Wang et al. 2018). The loss of these associations in FGR 
babies could suggest the placental RAS, including REN 
and AGT cannot regulate foetal and/or placental growth 
in FGR placentae thus leading to FGR.

There is evidence that high levels of AGT have an 
adverse effect on pregnancy outcome. The M235T 
polymorphism in the AGT gene is associated with both 
FGR and a higher prevalence of preeclampsia (Zhang 
et  al. 2007). The AGT M235T allele is more frequent 
in idiopathic FGR pregnancies compared with control  
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pregnancies. (A) NEP mRNA expression was significantly reduced in 
FGR placentae when compared with control (P = 0.004). (B) ENPEP 
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(0.6 vs 0.36 and 0.59 vs 0.38 respectively, both P < 0.001) 
(Zhang et al. 2003). Further studies identified that this 
is associated with abnormal spiral artery remodelling 
(Morgan et al. 1999). We do not know the prevalence of 
this AGT SNP in the populations we have studied.

Also the T allele has been associated with an increased 
risk of essential hypertension and increased circulating 
AGT serum levels (Danser et al. 1998). In first trimester 
decidua, the presence of the T allele is concomitant with 

elevated expression of AGT T235 compared to M235 in 
heterozygous mothers (Morgan et al. 1997).

The case for inappropriate expression of AGT being 
a causal factor leading to reduced uteroplacental 
perfusion and idiopathic FGR would have been 
strengthened if we had shown that AGT protein levels 
were increased. Possibly the AGT antibody used in our 
AGT ELISA (developed for use in human plasma) may 
not bind efficiently to placental AGT because it is often 
in a polymeric form complexed with other proteins 
(Lumbers & Pringle 2014). Importantly, the ELISA used 
in the current study, picks up both full-length intact AGT 
(full-length 52 kDa) as well as des(AI)-AGT, that is AGT 
which has had the ten amino acids of Ang I cleaved. 
Therefore, examination of des(AI)-AGT:total AGT 
levels may also add insight to the function of AGT in 
FGR placentae.

Furthermore, AGT can be present in both glycosylated 
and un-glycosylated forms, ranging from molecular 
weights of 52–75 kDa (Wu et  al. 2011). These varying 
levels and sites of glycosylation can alter the affinity of 
AGT for renin, however, have no role in intracellular 
trafficking or secretion of the AGT protein (Gimenez-
Roqueplo et al. 1998). Future experiments could examine 
AGT via Western blot or alternatively LC-MS/MS to 
measure different forms of AGT for example, oxidised/
reduced AGT and AGT in complex with other proteins 
(Zhou et al. 2010, Dahabiyeh et al. 2019). Women with 
preeclampsia have a significantly lower ratio of reduced 
AGT:total AGT (Zhou et al. 2010). When renin is bound 
to (P)RR in tissues, the binding affinity of the oxidised 
form of AGT is enhanced and results in a four-fold release 
of angiotensin (Zhou et al. 2010, Lu et al. 2016). A lower 
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Figure 7 Correlations between REN and AGT mRNAs and control 
and FGR birth weights and placental weights. (A) REN and (C) AGT 
mRNAs were positively associated with birth weight in control 
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Figure 8 Correlations between ATP6AP2 mRNAs and control and 
FGR birth weights and placental weights. (A and C) ATP6AP2 mRNA 
was negatively associated with birth weight and placental weight in 
control pregnancies (r = −0.35, P = 0.039 and r = −0.52, P = 0.002 
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ratio of reduced AGT:total AGT in maternal serum may 
indicate an enhanced release of angiotensin compared 
with normotensive controls. A similar mechanism may 
be occurring in FGR, where the total levels of AGT are 
not different, but the ratio of oxidised/reduced AGT is 
altered leading to vasoactive responses.

Alternatively, placental AGT protein could be 
contaminated with AGT from maternal blood; this could 
mask any differences in the placental production of 
AGT. Therefore, we think that the mRNA abundance of 
AGT rather than its protein levels more closely reflect 
local placental production of AGT.

Placental ATP6AP2 is increased in women with 
preeclampsia (Narita et  al. 2016), we do not know of 
any other reports of a negative association between 
placental ATP6AP2 mRNA and placental or birth weight. 
One possibility is that the negative association between 
ATP6AP2 and placental and birth weight is indirect. 
However, as ATP6AP2 was not significantly altered 
between FGR and uncomplicated controls, these data 
should be considered with caution.

It was interesting that the expression of enzymes 
linking the three major angiotensins (Ang I, II and 
Ang-(1-7)) were downregulated, while other enzymes 
associated with the metabolism of angiotensins, namely 
ENPEP and ERAP1, which are aminopeptidases acting 
at the N-terminal end of angiotensin resulting in the 
formation of Angiotensin III and IV, were unaffected. This 
might suggest that the pattern of dysregulation of the RAS 
seen in FGR placentae represents a functional response, 
possibly related to shallow or poor placentation.

In conclusion, placentae from pregnancies with 
idiopathic FGR are associated with dysregulated 
expression of the angiotensin-processing enzymes 
(ACE2 and NEP), which may contribute to an imbalance 
between the vasoconstrictor and vasodilator arms of 
the placental RAS such that the vasoconstrictor Ang II 
pathway predominates. These changes could account 
for the diagnostic features of idiopathic FGR (i.e. 
reduced uteroplacental perfusion and decreased foetal 
growth). There is the potential to target this imbalance 
and overactivation of the vasoconstrictor arm of the RAS 
by enhancing the opposing ACE2/Ang–(1-7) pathway 
through increased production or direct treatment 
with Ang–(1-7).
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