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Abstract

Male and female germ lines are vulnerable to oxidative stress. In spermatozoa, such stress triggers a lipid peroxidation cascade that 
culminates in the generation of electrophilic lipid aldehydes that bind to DNA and a raft of proteins involved in the delivery of 
functionally competent cells. One set of targets for these aldehydes are the proteins of the mitochondrial electron transport chain. 
When this interaction occurs, mitochondrial ROS generation is enhanced leading to the sustained generation of oxidative damage in a 
self-perpetuating cycle. Such damage affects all aspects of sperm function including motility, sperm-egg recognition, acrosomal 
exocytosis and sperm-oocyte fusion. Oxidative stress in the male germ line also attacks the integrity of sperm DNA with potential 
impacts on the developmental capacity of embryos and the health and wellbeing of the offspring. Potential pathways of reactive 
oxygen species (ROS) generation in male germ cells could involve enhanced lipoxygenase activity, activation of NADPH oxidase and/
or electron leakage from mitochondria. Similarly, in the female germ line, both the induction of oocyte senescence following 
ovulation and the deterioration of oocyte quality with maternal age appear to involve the generation of oxidative damage. In this 
case, the mitochondria appear to be a particularly important source of ROS compromising the viability and fertilizability of the 
oocyte and interfering with the normal segregation of chromosomes during meiosis. In light of these considerations, antioxidants 
should have some role to play in the preservation of reproductive function in both men and women; however, we still await 
appropriate trials to test this hypothesis.
Reproduction (2020) 159 R189–R201

Introduction

Redox reactions are an essential component of living 
systems and exist in a state of dynamic equilibrium 
whereby the loss (oxidation) and gain (reduction) of 
electrons are carefully balanced. Oxidative stress 
is created when the generation of reactive oxygen 
species (ROS) by a given cell, tissue or fluid exceeds 
the protective capacity of the intrinsic antioxidant 
mechanisms. ROS, in this context, refers to any molecule 
or compound capable of oxidizing biological substrates 
including fats, proteins and DNA and may come in the 
form of free radicals characterized by unpaired valency 
electrons (such as superoxide anion [O2

−·] generated 
by the one electron reduction of molecular oxygen) or 
powerful oxidants (such as hydrogen peroxide [H2O2] 
or peroxynitrite [ONOO−]). Antioxidants, on the other 
hand, come in the form of enzymes that metabolize 
potentially toxic ROS such as hydrogen peroxide (the 
glutathione peroxidase system or catalase) and O2

−· 
(e.g. superoxide dismutase or, possibly, indoleamine 
dioxygenase) or small molecular mass scavengers that 
can terminate free radical-mediated chain reactions 

(such as vitamins C and E or a variety of polyphenols). 
Some proteins (e.g. lactoferrin) or small molecules (e.g. 
penicillamine) can also provide antioxidant protection 
by chelating transition metals that, by redox cycling, can 
catalyse free radical-mediated reactions.

These pro- and anti-oxidant systems normally exist 
in a state of balance whereby biologically important 
oxidation reactions are allowed to occur in a carefully 
controlled manner. However, if this balance is perturbed 
because of a lack of antioxidant protection or an 
overproduction of ROS, then a state of imbalance is 
created and substrates become oxidized in a unregulated 
manner leading to pathological change. Some of the 
products created by such random acts of oxidative 
vandalism may also be cytotoxic and exacerbate the state 
of stress. For example, electrophilic lipid aldehydes (such 
as 4-hydroxynonenal [4HNE] or acrolein) generated as a 
consequence of lipid peroxidation can themselves bind 
to a wide variety of biologically important targets, such 
as the nucleophilic centres of proteins and modify the 
function of these molecules in a way that powerfully 
reinforces the pathological impact. For example, lipid 
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aldehydes can bind to proteins in the mitochondrial 
electron transport chain including ATP synthase subunit 
β (ATP5B), succinate dehydrogenase [ubiquinone] 
flavoprotein subunit (SDHA) and NADH dehydrogenase 
[ubiquinone] iron–sulfur protein 2 (NDUFS2) (Zong & 
Yin 2015). As a result of this interaction the electron 
transport process becomes disorganised, leading to the 
leakage of electrons that are immediately swept up by 
the universal electron acceptor, oxygen, to generate 
O2

−·; the latter then rapidly dismutates to hydrogen 
peroxide, which promotes further lipid peroxidation 
thereby propagating the state of oxidative stress (Aitken 
et al. 2012). Such mechanisms are capable of creating 
oxidative damage in a variety of biological systems and 
are thought to underpin a wide range of pathologies 
including Parkinson’s disease, cancer, artherosclerosis, 
heart failure, Alzheimer’s, depression and ageing. 
However, there are few systems as vulnerable to 
oxidative attack as the reproductive system. 

Oxidative stress has been repeatedly implicated in 
the aetiology of male infertility (Bisht et al. 2017, Aitken 
2018), including the reproductive toxicity that flows from 
exposure to environmental toxicants (Kovacic & Jacintho 
2001) and electromagnetic radiation (Houston et  al. 
2016) as well as clinical conditions such as varicocoele 
(Agarwal et al. 2009) and testicular torsion (Vaos & Zavras 
2017). Oxidative stress has also been implicated in the 
aetiology of female infertility, including such conditions 
as polycystic ovary syndrome, endometriosis, premature 
ovarian failure and preeclampsia (Lu et al. 2018, Park 
et al. 2018). In addition, oxidative stress has been linked 
with the negative impact of repeated ovarian stimulation 
on reproductive competence (Chao et al. 2005) as well 
as the developmental potential of oocytes in an IVF 
setting (Das et al. 2006) or in response to ageing (Lord 
& Aitken 2013, Mihalas et  al. 2017). Following the 
establishment of pregnancy, this form of stress can again 
impact the functionality of the placenta and ultimately 
the health and wellbeing of the foetus, with implications 
for the aetiology of miscarriage, premature rupture of 
the membranes and foetal death (Burton & Jauniaux 
2011, Maiti et al. 2017, Domínguez-Perles et al. 2019).

A detailed consideration of the role of oxidative 
stress in the causation of reproductive disorders is 
of importance because it has clear implications for 
the prevention, diagnosis and therapeutic resolution 
of such conditions. In this review, we shall consider 
evidence supporting a role for oxidative stress in the 
pathophysiology of reproductive disease with particular 
emphasis on the male and female germ line.

Oxidative stress in the male

Precursor germ cells

One of the first reproductive functions shown to be 
vulnerable to oxidative stress was male fertility. We have 

known that the male germ line is vulnerable to oxidative 
stress since the sterilizing impact of ionizing irradiation 
on male fertility was discovered in the 1930s (Snell & 
Aebersold 1937, Ogilvy-Stuart & Shalet 1993). The 
differential sensitivity of testicular germ cells to the free 
radicals generated by ionizing radiation is also indicated 
by the powerful protective action of antioxidants such as 
melatonin (Hussein et al. 2006) and has been exploited 
in the extensive use of radiation therapy to successfully 
treat testicular germ cell tumours (Rajpert-De Meyts 
et  al. 2016). The vulnerability of precursor germ cells 
to oxidative stress is also reflected in the reproductive 
consequences of testicular heating. Thus, for the testes 
to be fully functional, they have to operate at a degree 
or two lower than core body temperature. Heating the 
testes to 40–41°C induces a rapid loss of germ cells 
at the pachytene spermatocyte and spermatid stages 
of differentiation via a combination of Fas-mediated 
apoptosis and autophagy (Zhang et al. 2012). The loss 
of fertility observed under these circumstances can 
be completely reversed by the direct administration 
of antioxidants or treatments that elevate the levels of 
antioxidant protection within the testes (Gharagozloo 
et al. 2016, Kumar Roy et al. 2016). The role of oxidative 
stress in mediating the effects of testicular heating has 
also been indicated in studies involving male germ cells 
from SOD-1-knockout mice which were shown to be 
more vulnerable to heat stress than controls, in vitro and 
in vivo (Ishli et al. 2005). Testicular germ cells are thus 
vulnerable to oxidative stress and none more so than 
round spermatids, which are particularly vulnerable 
to lipid peroxidation and the cytotoxic consequences 
of lipid aldehyde generation (Bromfield et al. 2017). It 
has been proposed that this particular stage of germ cell 
development is vulnerable to a form of cell death known 
as ferroptosis, which is dependent on iron and driven by 
the peroxidative degradation of lipids and accumulation 
of electrophilic aldehydes such as 4-HNE (Bromfield 
et  al. 2019). Furthermore, oxidative stress at the 
spermatid stage is thought to underpin the subsequent 
appearance of functional defects in the spermatozoa 
particularly their competence for sperm-egg recognition 
(Bromfield et al. 2017).

Spermatozoa

The central role of oxidative stress in regulating the 
functionality of spermatozoa has been recognized 
since the pioneering studies of Tosic and Walton on 
the susceptibility of bovine spermatozoa to hydrogen 
peroxide (Tosic & Walton 1946, 1950). John MacLeod 
similarly observed the susceptibility of human 
spermatozoa to hydrogen peroxide stress following the 
incubation of these cells for prolonged periods of time 
in high oxygen-tension media (MacLeod 1943). Indeed, 
spermatozoa were the first cell type in which the 
metabolic generation of cytotoxic quantities of hydrogen 

Downloaded from Bioscientifica.com at 05/21/2025 01:53:49AM
via free access

https://rep.bioscientifica.com


https://rep.bioscientifica.com

Oxidative stress R191

 Reproduction (2020) 159 R189–R201

peroxide was indicated, preceding the discovery of ROS 
generation by phagocytic leukocytes by several decades 
(McLeod 1943, Babior et al. 1973). The protective effect 
of catalase on sperm motility, demonstrated initially 
by McLeod (1943) and substantiated by Aitken et  al. 
(1993), strongly suggests that the primary cytotoxic 
ROS is hydrogen peroxide generated by the dismutation 
of O2

−· (Alvarez et  al. 1987). These observations raise 
fundamental questions about the sources of ROS driving 
male infertility as well as their mechanisms of action, 
functional significance and potential remediation.

Sources of ROS in sperm – amino acid oxidase

The biochemical sources of the ROS generated by 
mammalian spermatozoa have still not been fully 
resolved but are clearly multiple (Aitken et  al. 2003) 
and vary significantly between species (Fig. 1). The first 

source to be identified was an amino acid oxidase in 
bovine spermatozoa (Tosic & Walton, 1950). This oxidase 
utilizes aromatic amino acids as substrate (tyrosine, 
tryptophan and phenylalanine) and generates hydrogen 
peroxide and ammonia in the presence of oxygen. An 
interesting feature of this system is that its contribution 
to the redox status of bovine sperm was insignificant 
until the spermatozoa were immersed in an egg-yolk-
based extender, in preparation for cryostorage. At this 
moment, the free aromatic amino acids present in egg 
yolk stimulated such high levels of ROS generation that 
motility was curtailed. It was subsequently demonstrated 
that the simple addition of isolated aromatic amino 
acids, such as phenylalanine or tyrosine, to suspensions 
of bovine spermatozoa was enough to suppress their 
motility and, ultimately, their vitality (Lapointe & Sirard 
1998). Interestingly the source of the ROS was traced 
to the dead cells in the ejaculate which, because of 

Figure 1 Possible mechanisms by which oxidative stress can be created in spermatozoa. The spermatozoa of several species are known to 
possess an L-amino oxidase that uses aromatic amino acids as substrate (Houston et al. 2015). The biological purpose of these oxidases is not 
known with certainty; however, they are a significant source of damaging ROS in domestic animals (bull, stallion and ram) exposed to high 
concentrations of aromatic amino acids in egg yolk-based cryopreservation media. Lipoxygenase is another potential source of ROS, the 
presence of which may reflect the retention of excess residual cytoplasm as a consequence of defective spermiogenesis and the presence of 
excess free unesterified free fatty acids (Walters et al. 2018). Lipoxygenase may also be a source of ROS in round spermatids by triggering a 
caspase-independent form of apoptosis known as ferroptosis (Bromfield et al. 2019). The mitochondria are a major source of ROS in 
spermatozoa and are heavily involved in the induction of senescence and apoptosis (Koppers et al. 2011). Many species, not mouse, also 
possess an NADPH oxidase (NOX5) that is capable of generating ROS in a calcium-dependent manner. Overexpression of this enzyme has been 
linked to the loss of sperm motility observed in asthenozoospermia (Vatannejad et al. 2019). The major product from all of these sources is O2

−· 
which then dismutates to H2O2 under the influence of superoxide dismutase (SOD). H2O2 is a powerful membrane permeant oxidant that when 
generated in moderate amounts stimulates sperm capacitation. However, in excess, this oxidant attacks unsaturated fatty acids in the plasma and 
mitochondrial membranes to induce a lipid peroxidation cascade culminating in the genesis of small molecular mass electrophilic aldehydes 
such as 4-HNE. The latter then binds to nucleophilic centres within DNA and proteins, inducing a range of pathological challenges to the 
functionality of spermatozoa and the integrity of their genetic cargo.
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their ruptured plasma membranes, were able access 
the amino acid substrates that fuel the oxidase’s ROS-
generating activities. In light of these results, the semen 
extenders used for bovine sperm cryostorage have 
been reconfigured to contain catalase, to scavenge the 
hydrogen peroxide emanating from dead spermatozoa 
in the ejaculate before the motility and vitality of the live 
cells could become compromised (Shannon & Curson 
1982). Similarly, in ram and equine spermatozoa an 
aromatic amino acid oxidase has been found with similar 
attributes to the bovine enzyme. Thus, non-viable ram 
and equine spermatozoa respond to exogenous aromatic 
amino acids such as L-phenylalanine with a significant 
increase in ROS generation that then suppresses the total 
and progressive motility in the live sperm population 
(Upreti et al. 1998, Aitken et al. 2015a). Importantly the 
D-forms of these amino acids are incapable of stimulating 
ROS generation by mammalian spermatozoa; only the 
L-amino acids are active in this system.

Human spermatozoa also possess an amino acid 
oxidase with a preference for aromatic amino acids 
particularly phenylalanine and tryptophan. The L-amino 
oxidase enzyme in human spermatozoa is encoded by 
interleukin (IL)-4-induced gene1 (IL4I1), and the gene 
product is located in the head and midpiece of the cell 
(Houston et al. 2015). In contrast to other species, the 
enzyme is not retained by dead cells that have lost integrity 
in their plasma membranes. As a result, non-viable 
spermatozoa do not respond to aromatic amino acid 
stimulation and so the threat posed by cryopreservation 
media supplemented with egg yolk does not apply in the 
case of human spermatozoa (Houston et al. 2015).

The functional significance of this amino acid oxidase 
is the subject of ongoing discussion but might be related 
to the induction of sperm capacitation. This process is 
known to be redox regulated, driven by the ability of 
ROS to effect a number of critical changes in these cells, 
including cholesterol oxidation, activation of cAMP 
generation and inhibition of tyrosine phosphatase activity 
(Aitken & Curry 2011, Brouwers et al. 2011). Exposure 
to exogenous phenylalanine will induce such changes 
via mechanisms that can be reversed by the concomitant 
presence of catalase, suggesting that hydrogen peroxide 
is the active ROS in this instance, as suggested by 
others (Bize et al. 1991, Rivlin et al. 2004). In keeping 
with this hypothesis, exogenous phenylalanine does 
induce capacitation and the acrosome reaction in 
human spermatozoa (Houston et  al. 2015). However, 
the quantities of phenylalanine required to achieve 
this effect (5–10 mM) are higher than the physiological 
concentrations of phenylalanine in human or, even, 
bovine uterine fluid (Elhassan et al. 2001, Kermack et al. 
2015). Alternative functions for this oxidase include 
the oxidative deamination of aromatic amino acids, 
generating keto acids that are then oxidized by the sperm 
mitochondria. Such a role may be particularly important 
in stallion spermatozoa which are highly dependent on 

oxidative phosphorylation to meet their energy needs 
and relatively resistant to oxidative stress (Griffin et al. 
2019). This rationale may also apply to the spermatozoa 
of other ungulates such as the boar and bull (Storey 2008) 
which are also heavy users of oxidative phosphorylation. 
However, this explanation does not apply to human 
spermatozoa which are primarily driven by glycolysis 
(Calvert et  al. 2019). Yet another possibility is that 
the human oxidase, IL4I1, may be part of an ancient 
bactericidal system, as a consequence of the generation 
of ammonia and hydrogen peroxide. IL4I1 may also limit 
T-lymphocyte activation and proliferation, in part, via the 
production of hydrogen peroxide and local phenylalanine 
depletion. The diminished T cell activation would, in 
turn, lead to impaired proliferation and a disrupted 
capacity to produce Th1 cytokines and proinflammatory 
chemokines, creating a state of immunotolerance 
towards these potentially immunogenic cells (Castellano 
& Molinier-Frenkel 2017).

Sources of ROS in sperm – mitochondria

Another potential source of ROS, particularly 
in moribund or senescent spermatozoa, are the 
mitochondria (Koppers et  al. 2008; Fig. 1). Human 
spermatozoa are unusual in that while they may possess 
mitochondria in the midpiece, they normally rely heavily 
on the oxidation of substrates via the glycolytic pathway 
to meet their energy demands. Moreover, human sperm 
mitochondria are highly prone to electron leakage, 
leading to ROS generation and the suppression of sperm 
function. A variety of factors are known to promote 
ROS generation by human sperm mitochondria, some 
directly, by interfering with the regulated passage of 
electrons along the electron transport chain, such as 
radiofrequency electromagnetic radiation (Houston 
et al. 2018) or polyunsaturated fatty acids (Aitken et al. 
2006) and others indirectly by triggering the intrinsic 
apoptotic pathway, such as parabens or bisphenol  
A (Barbonetti et al. 2016, Samarasinghe et al. 2018).

The unregulated leakage of electrons from human 
sperm mitochondria is capable of causing extensive 
oxidative harm to these cells including the induction of 
significant DNA damage, lipid peroxidation and motility 
loss (Houston et  al. 2018). Clinically, the excessive 
generation of ROS by human sperm mitochondria has 
been linked to defective sperm function including the 
loss of motility seen in asthenozoospermia patients 
(Cassina et  al. 2015, Nowicka-Bauer et  al. 2018). In 
principle, electron leakage can occur at either Complex 
1 or Complex III, although the former seems to be 
the most damaging. This is because ROS generation 
at Complex III leads to the rapid release of hydrogen 
peroxide into the extracellular space, whereas ROS 
produced at Complex I are released to the matrix where 
they can induce peroxidative damage to the inner 
mitochondrial membrane (Koppers et al. 2008).
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Although the enhanced mitochondrial ROS 
generation, seen spontaneously in the defective 
spermatozoa of infertile patients or triggered by cytotoxic 
reagents, has been linked with a loss of mitochondrial 
membrane potential (MMP) (Wang et  al. 2003), this 
association may be indirect in nature. Thus, it has been 
found that electron transport inhibitors can readily 
stimulate mitochondrial ROS generation in human 
spermatozoa in the absence of any immediate change in 
MMP (Koppers et al. 2008). However, it is very possible 
that the prolonged generation of ROS from Complex 
1 in the immediate vicinity of the inner mitochondrial 
membrane might secondarily lead to an opening of the 
transient permeability transition pore and a secondary 
collapse of the MMP (Zorov et al. 2014).

Sources of ROS in sperm – NADPH oxidase and sperm 
capacitation

The possible involvement of an NADPH oxidase in the 
generation of ROS by human spermatozoa was suggested 
by the discovery that the addition of this co-enzyme 
to suspensions of human spermatozoa could induce a 
burst of oxidative activity reflected by an increase in 
lucigenin-dependent chemiluminescence (Aitken et al. 
1997; Fig. 1). Although reservations have been rightly 
raised about the specificity of the lucigenin probe as a 
means of detecting O2

−· (Baker et al. 2004, 2005), the 
same burst of activity was observed when acetylated 
cytochrome C reduction, a more specific O2

−·-detection 
reagent, was used to monitor the response to NADPH 
(Aitken et  al. 1997). Furthermore, the involvement of 
an NADPH oxidase in the generation of ROS by human 
spermatozoa has been suggested by the suppressive 
action of diphenylene iodonium (DPI), a recognized 
NADPH oxidase inhibitor (Aitken et al. 1997). Although 
DPI is a generalized flavoprotein inhibitor, which is 
necessarily not specific for NADPH oxidase activity, 
Donà et al. (2011) demonstrated that ROS production 
by human sperm suspensions could be suppressed by 
another NADPH oxidase inhibitor, apocynin. Moreover, 
the generation of ROS by purified suspensions of 
human spermatozoa was shown to be correlated with 
intracellular glucose-6-phosphate dehydrogenase, a key 
determinant of intrinsic intracellular NADPH generation 
via the hexose monophosphate shunt (Aitken et  al. 
1994). Finally, an NADPH oxidase (NOX5) has been 
definitively identified in human spermatozoa and shown 
to generate ROS in a calcium-dependent manner via 
mechanisms involving the mediation of a non-receptor 
tyrosine kinase, c-Abl, and the HV1 proton channel 
(Musset et al. 2012).

The NCBI gene database indicates that the gene 
encoding the NOX5 protein is present in the genome of 
several mammalian species including cattle, horse, pig, 
cat, dog, rabbit, chimpanzee, rhesus monkey, armadillo, 
ferret, opossum and human. However the NOX5 gene 

does not appear to be represented in the mouse genome. 
So if NOX5 does, as proposed, play a central role in sperm 
biology, it is not a ubiquitous mechanism. Nevertheless, 
from a clinical perspective, asthenozoospermia has been 
associated with the over-expression of NOX5 compared 
with normozoospermic males, as well as significantly 
elevated levels of peroxynitrite, O2

−· and hydrogen 
peroxide generation (Vignini et  al. 2006, Vatannejad 
et al. 2019). In view of these data, a potential role for this 
oxidase in the pathogenesis of defective sperm function 
cannot be ruled out.

Polyunsaturated fats and lipoxygenase

Another source of ROS within the male germ line is 
lipoxygenase (Fig. 1). It has been known for some 
time that polyunsaturated fatty acids can induce ROS 
formation by human spermatozoa (Aitken et al. 2006). 
In addition to arachidonic acid, this activity could be 
induced by other cis-unsaturated fatty acids including 
linoleic and docosahexaenoic acids; however, saturated 
fatty acids, methyl esters of unsaturated fatty acids or 
other amphiphiles were all ineffective. The relevance of 
these findings to male infertility was suggested by the 
positive correlation that has been observed between the 
free unsaturated fatty acid content of defective human 
spermatozoa and their relative capacity for spontaneous 
mitochondrial O2

−· generation (Koppers et al. 2010). The 
underlying mechanism was postulated to be the disruption 
of regulated electron flux along the mitochondrial electron 
transport chain, leading to the leakage of electrons that 
are then swept up by oxygen to generate O2

−·. Another 
possibility is that polyunsaturated fatty acids somehow 
promote the opening of the mitochondrial permeability 
transition pore (mPTP) which, in turn, leads to a loss of 
mitochondrial membrane potential, followed by electron 
leakage and O2

−· generation in spermatozoa. The link 
between polyunsaturated fats such as arachidonic 
acid and mPTP opening could involve the mediation 
of hydroxyeicosatetraenoic acids (HETEs) generated 
via lipoxygenase action. HETEs are known to activate 
Ca2+-induced opening of the mPTP in, for example, the 
failing heart, and exposure to lipoxygenase inhibitors 
has been found to attenuate this process (Moon et  al. 
2018). Under normal circumstances, the unsaturated fat 
that dominates the sperm lipid profile, decosahexaenoic 
acid, might be expected to suppress mPTP opening 
(Khairallah et  al. 2010). However, in the presence of 
excess lipoxygenase, unsaturated fatty acids, particularly 
arachidonic acid, would be expected to stimulate HETE 
generation, mPTP opening, electron leakage and ROS 
generation in a chain of cause and effect. Normally, 
most lipoxygenase activity is lost from mammalian 
spermatozoa during epididymal maturation when the 
cytoplasmic droplet is discarded (Fischer et  al. 2005). 
However, defective human spermatozoa have been 
shown to possess excess residual cytoplasm (Gomez 
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et  al. 1996) and, as a consequence, are associated 
with an elevated cellular content of lipoxygenase 
activity as well as excess arachidonate (Yu et al. 2019). 
Moreover, suppression of lipoxygenase activity in 
human spermatozoa has been shown to protect human 
spermatozoa from the oxidative stress, created following 
exposure to exogenous hydrogen peroxide (Walters 
et  al. 2018). A possible interpretation of these data 
would be that (1.) hydrogen peroxide exposure directly 
induces lipid peroxidation; (2.) major by-products of the 
lipid peroxidation cascade include lipid aldehydes that 
bind to redox centres within the mitochondrial electron 
transport chain stimulating the regeneration of sustained 
high levels of ROS; (3.) sustained oxidative stress 
leads to mitochondrial calcium overload; (4.) elevated 
intra-mitochondrial calcium levels then lead to the 
stimulation of PLA2 activity which induces an increase 
in free arachidonate and lipoxygenase-mediated HETE 
generation and (5.) the HETEs promote mPTP opening, 
a consequential collapse of mitochondrial membrane 
potential, ATP depletion, yet more ROS generation and 
finally induction of the intrinsic apoptotic cascade and 
creation of DNA damage (de Lamirande & Gagnon 
1992, Peng & Jou 2010, Koppers et  al. 2011). Such a 
cascade is consistent with the clear linkages that have 
been reported on many independent occasions between 
impaired sperm function and elevated mitochondrial 
ROS generation, lipid peroxidation, intracellular 
calcium overload, mPTP opening, loss of mitochondrial 
membrane potential and DNA damage (Aitken & Curry 
2011, Zhang et  al. 2014). Clearly, further studies will 
have to be conducted to determine the details of how all 
of these various factors intersect.

Redox regulation of sperm function – the yin  
and the yang

Whilst it is becoming clear that excess ROS generation 
by spermatozoa is involved in the aetiology of defective 
sperm function, this leaves open the question as to why 
spermatozoa would evolve systems for the generation of 
ROS in the first place; particularly when the vulnerability 
of these cells to oxidative stress is so apparent. The 
answer to this question appears to be that a key aspect 
of sperm physiology, namely their ability to capacitate, 
is redox regulated.

In this context, it has been repeatedly shown that 
capacitation has been linked to the cellular generation 
of ROS (Bize et  al. 1991, de Lamirande & Gagnon 
1993, Rivlin et  al. 2004, Aitken et  al. 2015b) which 
is, in turn, dependent on the presence of bicarbonate 
and cytoplasmic alkalinization (Ecroyd et  al. 2003). 
Furthermore, the ROS-generating capacity of 
spermatozoa can be reduced by DPI, high concentrations 
of Zn and semenogelin, all of which suppress sperm 
capacitation (Ecroyd et  al. 2003, de Lamirande & 
Lamothe 2010). Conversely, the Zn chelator, TPEN, 

enhances O2
−· anion generation and stimulates sperm 

capacitation (de Lamirande et al. 2009). Progesterone, 
a physiological promoter of sperm capacitation and 
acrosomal exocytosis, has also been found to stimulate 
ROS generation (Ghanbari et al. 2019). Moreover, ROS 
generation stimulates cAMP generation, cholesterol 
oxidation and tyrosine phosphorylation, all of which 
are associated with the attainment of a capacitated state 
(White & Aitken 1989, Aitken et  al. 1998b, Lewis & 
Aitken 2001, Aitken & Nixon 2013).

An additional contribution to the physiological 
induction of sperm capacitation may also be made by 
another radical species, nitric oxide (NO), which can 
induce many of the hallmarks of sperm capacitation 
including an upregulation in phosphotyrosine expression, 
the stimulation of hyperactivated movement and the 
enhancement of sperm-zona interaction (Zini et al. 1995, 
Sengoku et al. 1998, Herrero et al. 1999). Furthermore, 
a lack of NO stimulation appears to be associated with 
sperm pathologies of various kinds (Kalezic et al. 2018). 
Just as we saw with O2

−·, Zn inhibitors and Zn chelators 
promote both NO generation by human spermatozoa 
and capacitation (de Lamirande et al. 2009). Moreover, 
seminogelin, the major protein constituent of the 
human semen coagulum, blocks capacitation via 
the suppression of both O2

−· and NO generation (de 
Lamirande & Lamothe 2010). Exposure of human 
spermatozoa to NO sources has also been shown to 
promote the tyrosine phosphorylation events associated 
with capacitation, while nitric oxide synthase inhibitors 
have been found to suppress this process (Herrero et al. 
1999). The rapid reaction between NO and O2

−· anion 
creates the powerful oxidant, peroxynitrite (ONOO−). 
Peroxynitrite modifies tyrosine in proteins to create 
nitrotyrosines, leaving a detectable footprint. Human 
spermatozoa have been shown to express nitrotyrosine 
residues suggesting that peroxynitrite, a strong oxidizing 
agent, may well be a physiological inducer of the 
oxidative changes associated with sperm capacitation in 
vivo, including both hyperactivation and the sperm-zona 
binding competence of these cells (Herrero et al. 2001). 
The generation of such a powerful oxidant during sperm 
capacitation will also inevitably place limits on the long-
term survival of spermatozoa once they have engaged 
the capacitation process. Indeed, following this line of 
logic, it has been suggested that sperm capacitation and 
senescence are opposite ends of a biological continuum 
driven by peroxynitrite (Aitken et al. 2015b).

In light of the foregoing, it is clear that reactive oxygen 
and nitrogen species are two-edged swords as far as 
spermatozoa are concerned. On the one hand, these 
reactive metabolites are critical to the cascade of oxidative 
events driving sperm capacitation by virtue of their 
capacity to stimulate cAMP generation, impair tyrosine 
phosphatase activity and enhance oxysterol formation. 
On the other, over-capacitation of spermatozoa leads to 
a state of senescence and the activation of a truncated 
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intrinsic apoptotic cascade characterized by enhanced 
mitochondrial ROS generation, lipid oxidation, motility 
loss, caspase activation and phosphatidylserine 
externalization (Aitken et  al. 2015b). This truncated 
apoptotic cascade constitutes a regulated biological 
mechanism that allows spermatozoa that are surplus to 
requirements to die in a carefully controlled manner. This 
is important because it permits the immune system to 
phagocytose senescent spermatozoa without triggering 
an unwanted inflammatory response. This situation 
arises by virtue of the fact that apoptotic cells, expressing 
phosphatidylserine on their surface, are able to induce 
a ‘silent’ phagocytosis on behalf of the neutrophils and 
macrophages entering the lower female reproductive 
tract following insemination (Aitken & Baker 2013). 
Levels of oxidative stress that are not sufficient to induce 
cell death via apoptosis are still capable of disrupting 
all aspects of sperm function including motility, sperm-
zona recognition, acrosomal exocytosis and sperm-
oocyte fusion. In addition, sublethal levels of oxidative 
stress are known to impact the integrity of sperm DNA 
thereby influencing the potential development of the 
embryo and the health and wellbeing of the offspring 
(Aitken et al. 1998a, Aitken & Curry 2011, Aitken 2018). 
For example, the altered patterns of gene expression 
observed in equine embryos as a consequence of 
insemination with cryostored spermatozoa maybe a case 
in point, because cryostorage is known to be associated 
with the induction of oxidative DNA damage (Thomson 
et al. 2009, Ortiz-Rodriguez et al. 2019).

Oxidative stress in the female

The oocyte

The female germ line is as vulnerable to oxidative stress 
as the male. Just as oxidative stress plays a key role in 
the senescence of spermatozoa post ejaculation, such 
stress appears to be central to the mechanisms by which 
the oocyte loses its developmental competence post 
ovulation. In this context, oocytes are actually more 
vulnerable than spermatozoa. Within a few hours of 
ovulation, the oocyte loses its viability and functionality, 
while ejaculated spermatozoa are designed to spend 
several days in the female reproductive tract waiting 
for an egg to arrive; particularly in our own species 
where the acts of insemination and ovulation are not 
synchronized by the expression of oestrus. Oocytes are 
therefore programmed to die rapidly after ovulation 
unless they are rescued by union with a spermatozoon 
– whereupon they become (potentially) immortalized.

The mechanism by which postovulatory oocytes 
enter apoptosis and lose their functionality involves a 
complex series of events, all of which are driven by an 
increase in oxidative stress. For example, zona pellucida 
hardening is a classic feature of post-ovulatory oocyte 
ageing which can be driven by exposure to O2

−· and 

involves the cross linking of tyrosine residues. This 
oxidative event is catalysed by an ovoperoxidase located 
in cortical granules which are released from the oocyte 
surface in an exocytotic process which is facilitated by 
ageing and is, again, driven by O2

−· (Hoodbhoy & Talbot 
1994, Goud et al. 2008). Oxidative stress also appears 
to be involved in the non-dysjunction of chromosomes 
that characterizes oocytes that have aged in vivo and is 
responsible for the exponential increase in aneuploidy 
in the embryos conceived by woman over the age of 35 
(Tarin et al. 1998).

In a manner reminiscent of senescent spermatozoa, 
oxidative stress during the post-ovulatory ageing of 
oocytes is created by the leakage of electrons from the 
oocyte mitochondria driving a lipid peroxidation process 
that culminates in the generation of toxic lipid aldehydes 
such as 4-HNE and acrolein (Lord et al. 2015, Jeelani 
et al. 2018). These aldehydes, in turn, mediate a great 
deal of the cellular damage that ultimately induces the 
post-ovulatory apoptotic demise of the oocyte including 
the induction of mitochondrial ROS generation, a loss of 
mitochondrial membrane potential, DNA damage and 
activation of the intrinsic apoptotic cascade. A major 
target for these electrophilic aldehydes again appears to 
be proteins within the mitochondrial electron transport 
chain such as succinic acid dehydrogenase. Adduction 
of this enzyme by lipid aldehydes such as acrolein or 
4-HNE disrupts electron flow within the mitochondria, 
promoting electron leakage and ROS generation, that 
then reinforce the creation of oxidative stress in a 
positive feedback loop. As a result of this chemistry, the 
oxidative attack becomes sustained, initiating a cascade 
of events that create the aged-oocyte phenotype (Lord & 
Aitken 2013).

Remarkably, the act of fertilization abruptly halts 
this self-induced, post-ovulatory decline in viability; 
however, how this is achieved is currently unknown. 
We do know that fertilization is followed by a sudden 
increase in the DNA-repair capacity of the oocyte such 
that the latter is significantly more resistant to the ability 
of etoposide to elicit double strand breaks in oocyte DNA. 
This change is at least partly mediated by the fertilization-
dependent upregulation of permeability glycoprotein 
(PGP), an endogenous multidrug efflux transporter that is 
translocated to the oolemma and phosphorylated upon 
oocyte activation, thereby enhancing the ability of the 
oocyte to remove compounds that might compromise 
DNA integrity (Martin et al. 2016). Many other changes 
are invoked in the oocyte following fertilization, not 
least the activation of calcium oscillations by sperm-
specific phospholipase C. These transients are clearly 
critical for arresting the tendency of oocytes to descend 
into an apoptotic decline while activating embryonic 
development (Swann & Lai 2016). However, the 
precise mechanism by which these calcium oscillations 
so dramatically alter the downward, developmental 
trajectory of the oocyte have not yet been resolved.
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Similar oxidative processes appear to mediate the 
impact of chronological age on oocyte function. In this 
context, oocytes recovered from ageing female mice are 
characterized by significantly elevated levels of ROS 
generation and lipid aldehyde formation as well as a 
high tendency for chromosome non-dysjunction (Lord 
et al. 2015, Mihalas et al. 2017). One of the targets for 
these electrophilic aldehydes appears to be the proteins 
involved in the control of chromosome segregation during 
meiosis (Mihalas et  al. 2017). Significantly, the age-
dependent increase of chromosomal non-dysjunction 
seen in Drosophila oocytes can be completely reversed 
by the engineered overexpression of SOD 1 and SOD 2 
during meiotic prophase. Such studies support the notion 
that the exponential increase in oocyte aneuploidies seen 
in ageing women is related to an age-induced increase 
in oxidative stress that might be amenable to correction 
through the judicious administration of exogeneous 
antioxidants (Perkins et al. 2019).

An interesting question which is yet to be addressed 
is whether there are other sources of ROS generation 
in oocytes. These cells are apparently rich in NADPH 
oxidase enzymes (Maru et al. 2005) and, in some species 
at least, strong lipoxygenase activity has been detected 
in the oocyte, with a potential role in oocyte maturation 
(Hawkins & Brash 1987). However, the contribution of 
such systems in the biology and pathology of the oocyte 
is currently unknown (Fig. 2).

Antioxidants

In light of the important role that oxidative stress plays 
in the aetiology of defective sperm and oocyte function, 
it is possible that antioxidants may have a therapeutic 

role to play in the context of both in vitro fertilization 
outcomes and in controlling the impact of age on 
fertility. In vitro, a variety of antioxidants have been 
shown to enhance the fertilizability of oocytes following 
in vitro maturation. For example, the presence of sodium 
selenite in the medium has been shown to significantly 
increase the vitro maturation of mouse oocytes while 
suppressing the generation of ROS and increasing 
mtDNA copy number (Ghorbanmehr et  al. 2018), 
presumably through the stimulation of glutathione 
peroxidase activity (a key antioxidant enzyme with 
selenium in its active site). Positive impacts on the in 
vitro maturation of mammalian oocytes have also been 
recorded for α-tocopherol, either alone (Arias-Álvarez 
et  al. 2018) or mixed with additional antioxidants 
(alpha-lipoic acid, hypotaurine and N-acetyl cysteine) 
(Pasquariello et  al. 2019), 9-cis-retinoic acid (Gad 
et al. 2018), coenzyme Q10 (Heydarnejad et al. 2019) 
melatonin (An et al. 2019), rosmarinic acid (Zhang et al. 
2019) and the antioxidant citrus flavonoid, hesperetin 
(Kim et al. 2019). Antioxidants have also been shown to 
ameliorate the oxidative stress associated with oocyte 
vitrification (Trapphoff et  al. 2016, Wang et  al. 2018, 
Ahmadi et al. 2019) repeated superovulation (Xiao et al. 
2019), induced polycystic ovarian disease (Eini et  al. 
2019) post-ovulatory oocyte ageing (Liang et al. 2018), 
exposure to heat stress (Cavallari et al. 2019), old age 
(Liu et al. 2013) or a variety of toxicants in vitro such as 
menadione, bisphenol A (Cavallari et al. 2019, Li & Zhao 
2019), Fenoxaprop-ethyl (He et al. 2019) and busulfan/
cyclophosphamide chemotherapeutic combinations 
(Wu et al. 2019).

Oxidative stress has also been suggested as a 
detrimental factor in the determination of ICSI success 

Figure 2 Sources of ROS in oocytes. Much less 
is known about ROS generation in oocytes. 
Post-ovulatory oocyte ageing clearly involves 
ROS generation by the mitochondria (Lord & 
Aitken 2013). While oocytes possess NADPH 
oxidase (NOX2) and lipoxygenase, the role of 
these pathways in creating oxidative stress 
within the female germ line is unknown. 
Whatever the origins of the O2

−· generated by 
these cells, the H2O2 produced by dismutation 
has positive outcomes when the oxidative 
stimulus is moderate and physiological (zona 
hardening and oocyte maturation). However 
negative outcomes (impaired functionality, 
senescence, DNA damage and impaired 
chromosome segregation) are observed when 
ROS are produced in excess (Kala et al. 2017). 
Once again, lipid aldehydes such as, 4-HNE is 
a key mediator of pathological change.
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rates. The results achieved with this form of insemination 
are enhanced by lowering ambient oxygen tensions 
(20–5%) or the inclusion of antioxidants in the culture 
medium such as reduced glutathione (Ashibe et al. 2019). 
Even though high levels of oxidative sperm DNA damage 
are tolerated by the oocyte in terms of fertilization and 
pronucleus formation (Twigg et  al. 1998), it is in the 
subsequent development of the embryo that the impact 
of oxidative stress becomes manifest particularly in 
terms of mitotic arrest after ICSI (Burruel et  al. 2013). 
This maybe because of the presence of high levels of 
unresolved DNA damage leading to the induction of 
apoptosis or the creation elevated mutational loads as 
a consequence of aberrant or defective DNA repair. 
In addition, since the spermatozoon’s centromeres are 
responsible for orchestrating all cell division in the 
embryo, it is possible that oxidative damage to this 
subcellular structure in the male gamete results in the 
impairment of ordered mitosis in the offspring. We have 
recently found evidence for such an effect in annelid 
spermatozoa exposed to dibutyl phthalate. This toxicant 
created a state of oxidative stress in the spermatozoa 
resulting in the generation of 4-HNE which covalently 
bound to the sperm centriole, ultimately resulting in 
disrupted cytoskeletal protein organization during early 
embryonic cleavage (Lu et al. 2017). The extent to which 
such epigenetic mechanisms may underlie the impact 
of oxidative stress in the male germ line on the post-
fertilization developmental normality of embryos from 
other species is unknown.

Conclusions

Oxidative stress is clearly a major determinant of 
functionality in both the male and female germ lines. 
In the male germ line, there is clear evidence that a 
low level of ROS generation is beneficial for sperm 
function, achieving a range of functions from the cross 
linking of sperm chromatin to the enhancement of 
sperm capacitation. However, in a variety of situations 
(cryopreservation, toxicant exposure, age etc.) the 
generation of ROS becomes super-physiological 
and overpowers the limited antioxidant defences of 
these cells precipitating a state of oxidative stress that 
can impair both sperm production and function and 
ultimately impact the health trajectory of the offspring. 
Although we have made some progress in understanding 
the various sources of ROS in these cells, we are still 
awaiting a full explanation of the genetic, epigenetic 
and environmental factors responsible for the oxidative 
stress seen in subfertile males. In the female germ line, 
no positive role for ROS has been suggested; however, 
it is clear that oocytes are vulnerable to the damaging 
impact of these toxic metabolites if the exposure is 
intense and/or adequately prolonged. As in the male 
germ line, cryopreservation, toxicant exposure and 
ageing, whether in vitro or in vivo, are all factors in 

creating pathological levels of oxidative stress in the 
female germ line with potential impacts on both fertility 
and the normality of any resulting embryos. Given 
the susceptibility of reproduction to oxidative stress, 
antioxidants should be of fundamental significance 
in preserving the functional integrity of the male and 
female germ line. Despite the potential inherent in this 
field and certain islands of promising data, there is little 
science behind either the precise nature or the dose of 
antioxidants that have been used to address oxidative 
stress in vivo or in vitro. The lack of clinical trials wherein 
patients are selected for antioxidant therapy based on 
evidence that their infertility is due to oxidative stress 
is particularly distressing. Hopefully this deficit will be 
addressed in the not-too-distant future.
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