Search Results

You are looking at 21 - 29 of 29 items for

  • Author: Yi Liu x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Cheng Jin, Yan Zhang, Zhi-Peng Wang, Xiu-Xia Wang, Tie-Cheng Sun, Xiao-Yu Li, Ji-Xin Tang, Jin-Mei Cheng, Jian Li, Su-Ren Chen, Shou-Long Deng, and Yi-Xun Liu

Spermatogenesis is crucial for male fertility and is therefore tightly controlled by a variety of epigenetic regulators. However, the function of enhancer of zeste homolog 2 (EZH2) in spermatogenesis and the molecular mechanisms underlying its activity remain poorly defined. Here, we demonstrate that deleting EZH2 promoted spermatogonial differentiation and apoptosis. EZH2 is expressed in spermatogonia, spermatocytes and round and elongated spermatids from stage 9 to 11 but not in leptotene and zygotene spermatocytes. Knocking down Ezh2 in vitro using a lentivirus impaired self-renewal in spermatogonial stem cells (SSCs), and the conditional knockout of Ezh2 in spermatogonial progenitors promoted precocious spermatogonial differentiation. EZH2 functions to balance self-renewal and differentiation in spermatogonia by suppressing NEUROG3 and KIT via a direct interaction that is independent of its histone methyltransferase activity. Moreover, deleting Ezh2 enhanced the activation of CASP3 in spermatids, resulting in reduced spermatozoa production. Collectively, these data demonstrate that EZH2 plays a nonclassical role in the regulation of spermatogonial differentiation and apoptosis in murine spermatogenesis.

Free access

Xiao-yu Yang, Hua Li, Qing-wen Ma, Jing-bin Yan, Jiang-guo Zhao, Hua-wei Li, Hai-qing Shen, Hai-feng Liu, Ying Huang, Shu-Zhen Huang, Yi-Tao Zeng, and Fanyi Zeng

Somatic cell nuclear transfer (SCNT) has been used for the cloning of various mammals. However, the rates of successful, healthy birth are generally poor. To improve cloning efficiency, we report the utilization of an ‘autologous SCNT’ cloning technique in which the somatic nucleus of a female bovine donor is transferred to its own enucleated oocyte recovered by ovum pick up, in contrast to the routine ‘allogeneic SCNT’ procedure using oocytes from unrelated females. Our results showed that embryos derived from autologous SCNThave significantly higher developmental competence than those derived from allogeneic SCNT, especiallyat the eight-cell (60 vs 44%), morula (45 vs 36%), and blastocyst (38 vs 23%) stages. The pregnancy and birth rates were also higher for the autologous (39 and 23%), compared to the allogeneic (22 and 6%) SCNT groups. Genome-wide histone3-lysine9 methylation profiles reveal that autologous SCNTembryos have less epigenetic defects than the allogeneic SCNTembryos. This study indicates that autologous SCNT can improve the efficiency of bovine cloning with less reprogramming deficiency.

Free access

Mian Liu, Xia Chen, Qing-Xian Chang, Rui Hua, Yan-Xing Wei, Li-Ping Huang, Yi-xin Liao, Xiao-Jing Yue, Hao-Yue Hu, Fei Sun, Si-Jia Jiang, Song Quan, and Yan-Hong Yu

Small extracellular vesicles (sEVs) are important mediators of cell-to-cell communication involved in the successful establishment of a pregnancy. Human decidual stromal cells play a key role in regulating trophoblast invasion. Nevertheless, the regulatory functions of decidual stromal cells-derived sEVs in human trophoblast cells are still unclear. In this study, primary human decidual stromal cells were isolated, and immortalized human endometrial stromal cell line (HESCs) were decidualized into human decidual stromal cells (HDSCs) using hormonal cocktail containing medroxy progesterone 17-acetate (MPA), estrogen and cAMP analog. HDSC-sEVs were isolated from both primary human decidual stromal cells and immortal HDSCs, respectively, and identified by transmission electron microscopy and western blotting. EV uptake assay indicated that HDSC-sEVs could be uptaken by trophoblast cells. HDSC-sEVs could increase the invasiveness and the expression level of N-cadherin of trophoblast cells with elevated phosphorylation of SMAD2 and SMAD3 in the cells. Silencing of N-cadherin could block cell invasion induced by HDSC-sEVs, while knockdown of SMAD2 and SMAD3 could inhibit the upregulation of N-cadherin in trophoblast cells. Taken together, our results suggested a regulatory effect of HDSC-sEVs in the invasion of trophoblast cells, and HDSC-sEVs may be important mediators of trophoblasts during embryo implantation and placentation.

Open access

Yu-chen Zhang, Xiao-li Qin, Xiao-ling Ma, Hui-qin Mo, Shi Qin, Cheng-xi Zhang, Xiao-wei Wei, Xue-qing Liu, Yan Zhang, Fu-ju Tian, and Yi Lin

Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, Western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.

Free access

Qiu-Chan Qu, Hui-Hui Shen, Cheng-Jie Wang, Xin-Yan Zhang, Jiang-Nan Wu, Hang-Cheng Lu, Xue-Min Qiu, Jia-Yi Ding, Xiao-Fang Tan, Li-Bing Liu, and Ming-Qing Li

A successful pregnancy requires sufficient decidualization of endometrial stromal cells (ESCs). CD82, a metastasis suppressor, is a critical regulator for trophoblast invasion but the effect in decidualization was largely unknown. Here we reported that there was a high level of CD82 in DSC by the immunohistochemistry staining and flow cytometer analysis. Stimulation with prostaglandin E2 (PGE2) elevated the expression of CD82 in ESCs. In contrast, celecoxib, a selective COX-2 inhibitor, significantly downregulated the expression of CD82 in decidual stromal cells (DSCs). Bioinformatics analysis and further research showed that recombinant human interleukin (IL)-1β protein (rhIL-1β) upregulated CD82 in ESCs. Of note, blocking IL-1β signaling with anti-human IL-1β neutralizing antibody could reverse the stimulatory effect of PGE2 on CD82 in ESCs. Silencing CD82 resulted in the decease of the decidualization markers PRL and IGFBP1 mRNA levels in DSCs. More importantly, we observed rhIL-1β also upregulated the expression of COX-2, and the upregulation of PRL and IGFBP1 induced by rhIL-1β could be abolished by celecoxib in ESCs or CD82 deficiency in DSCs. This study suggests that CD82 should be a novel promotor for decidualization under a positive regulation of the COX-2/PGE2/IL-1β positive feedback loop.

Restricted access

Zhi-hui Cui, Yong-dan Ma, Yi-cheng Wang, Huan Liu, Jia-wei Song, Li-xue Zhang, Wen-jing Guo, Xue-qin Zhang, Sha-sha Tu, Dong-zhi Yuan, Jin-hu Zhang, Li Nie, and Li-min Yue

In brief

Impaired spermatogenesis resulting from disturbed cholesterol metabolism due to intake of high-fat diet (HFD) has been widely recognized, however, the role of preprotein invertase subtilin 9 (PCSK9), which is a negative regulator of cholesterol metabolism, has never been reported. This study aims to reveal the role of PCSK9 on spermatogenesis induced by HFD in mice.


Long-term consumption of a high-fat diet (HFD) is an important factor that leads to impaired spermatogenesis exhibiting poor sperm quantity and quality. However, the mechanism of this is yet to be elucidated. Disrupted cholesterol homeostasis is one of many crucial pathological factors which could contribute to impaired spermatogenesis. As a negative regulator of cholesterol metabolism, preprotein invertase subtilin 9 (PCSK9) mediates low density lipoprotein receptor (LDLR) degradation to the lysosome, thereby reducing the expression of LDLR on the cell membrane and increasing serum low-density lipoprotein cholesterol level, resulting in lipid metabolism disorders. Here, we aim to study whether PCSK9 is a pathological factor for impaired spermatogenesis induced by HFD and the underlying mechanism. To meet the purpose of our study, we utilized wild-type C57BL/6 male mice and PCSK9 knockout mice with same background as experimental subjects and alirocumab, a PCSK9 inhibitor, was used for treatment. Results indicated that HFD induced higher PCSK9 expression in serum, liver, and testes, and serum PCSK9 is negatively correlated with spermatogenesis, while both PCSK9 inhibitor treatment and PCSK9 knockout methodologies ameliorated impaired lipid metabolism and spermatogenesis in mice fed a HFD. This could be due to the overexpression of PCSK9 induced by HFD leading to dyslipidemia, resulting in testicular lipotoxicity, thus activating the Bcl-2–Bax–Caspase3 apoptosis signaling pathway in testes, particularly in Leydig cells. Our study demonstrates that PCSK9 is an important pathological factor in the dysfunction of spermatogenesis in mice induced by HFD. This finding could provide innovative ideas for the diagnosis and treatment of male infertility.

Free access

Li Nie, Li-xue Zhang, Yi-cheng Wang, Yun Long, Yong-dan Ma, Lin-chuan Liao, Xin-hua Dai, Zhi-hui Cui, Huan Liu, Zhao-qi Wang, Zi-yang Ma, Dong-zhi Yuan, and Li-min Yue

Uterine receptivity to the embryo is crucial for successful implantation. The establishment of uterine receptivity requires a large amount of energy, and abnormal energy regulation causes implantation failure. Glucose metabolism in the endometrium is tissue specific. Glucose is largely stored in the form of glycogen, which is the main energy source for the endometrium. AMP-activated protein kinase (AMPK), an important energy-sensing molecule, is a key player in the regulation of glucose metabolism and its regulation is also tissue specific. However, the mechanism of energy regulation in the endometrium for the establishment of uterine receptivity remains to be elucidated. In this study, we aimed to investigate the energy regulation mechanism of mouse uterine receptivity and its significance in embryo implantation. The results showed that the AMPK, p-AMPK, glycogen synthase 1, and glycogen phosphorylase M levels and the glycogen content in mouse endometrial epithelium varied in a periodic manner under regulation by the ovarian hormone. Specifically, progesterone significantly activated AMPK, promoted glycogenolysis, and upregulated glycogen phosphorylase M expression. AMPK regulated glycogen phosphorylase M expression and promoted glycogenolysis. AMPK was also found to be activated by changes in the energy or glycogen of the endometrial epithelial cells. The inhibition of AMPK activity or glycogenolysis altered the uterine receptivity markers during the window of implantation and ultimately interfered with implantation. In summary, consistency and synchronization of AMPK and glycogen metabolism constitute the core regulatory mechanism in mouse endometrial epithelial cells involved in the establishment of uterine receptivity.

Free access

Xue-Ying Zhang, Yi-Meng Xiong, Ya-Jing Tan, Li Wang, Rong Li, Yong Zhang, Xin-Mei Liu, Xian-Hua Lin, Li Jin, Yu-Ting Hu, Zhen-Hua Tang, Zheng-Mu Wu, Feng-Hua Yin, Zheng-Quan Wang, Ye Xiao, Jian-Zhong Sheng, and He-Feng Huang

Fertilization failure often occurs during in vitro fertilization (IVF) cycles despite apparently normal sperm and oocytes. Accumulating evidence suggests that mitochondria play crucial roles in the regulation of sperm function and male fertility. 3-Nitrophthalic acid (3-NPA) can induce oxidative stress in mitochondria, and melatonin, as an antioxidant, can improve mitochondrial function by reducing mitochondrial oxidative stress. The role of sperm mitochondrial dysfunction in fertilization failure during IVF is unclear. The present study revealed that spermatozoa with low, or poor, fertilization rates had swollen mitochondria, increased mitochondria-derived ROS, and attenuated mitochondrial respiratory capacity. 3-NPA treatment enhanced mitochondrial dysfunction in sperm. Spermatozoa with poor fertilization rates, and spermatozoa treated with 3-NPA, had reduced penetration ability. The concentration of melatonin was decreased in semen samples with low and poor fertilization rates. Melatonin, not only decreased excessive mitochondria-derived ROS, but also ‘rescued’ the reduced penetration capacity of spermatozoa treated with 3-NPA. Taken together, the study suggested that mitochondria-derived ROS and mitochondrial respiratory capacity are independent bio-markers for sperm dysfunction, and melatonin may be useful in improving sperm quality and overall male fertility.

Free access

Xue-Min Qiu, Zhen-Zhen Lai, Si-Yao Ha, Hui-Li Yang, Li-Bing Liu, Yan Wang, Jia-Wei Shi, Lu-Yu Ruan, Jiang-Feng Ye, Jiang-Nan Wu, Qiang Fu, Xiao-Fang Yi, Kai-Kai Chang, and Ming-Qing Li

Immune cells and cytokines have important roles in the pathogenesis of endometriosis. However, the production and role of cytokines of T helper type 1 (Th1) and Th2 cells in the progress of endometriosis have remained to be fully elucidated. The present study reported that the interferon (IFN)-γ levels and the percentage of IFN-γ+CD4+ cells were significantly increased in the peritoneal fluid (PF) at the early stage and maintained at a higher level at the advanced stage of endometriosis; furthermore, interleukin (IL)-10 and IL-10+CD4+ cells were elevated in the advanced stage of endometriosis. In addition, IL-2 levels in the PF at the advanced stage of endometriosis were elevated and negatively associated with IFN-γ expression. In a co-culture system of ectopic endometrial stromal cells (ESCs) and macrophages, elevated IL-2 was observed, and treatment with cytokines IL-2 and transforming growth factor-β led to upregulation of the ratio of IL-2+ macrophages. IL-27-overexpressing ESCs and macrophages were able to induce a higher ratio of IL-10+CD4+ T cells. Blocking of IL-2 with anti-IL-2 neutralizing antibody led to upregulation of the ratio of IFN-γ+CD4+ T cells in the co-culture system in vitro. Recombinant human IL-10 and IFN-γ promoted the viability, invasiveness and transcription levels of matrix metalloproteinase (MMP)2, MMP9, and prostaglandin-endoperoxide synthase 2 of ESCs, particularly combined treatment with IL-10 and IFN-γ. These results suggest that IL-2 and IL-27 synergistically promote the growth and invasion of ESCs by modulating the balance of IFN-γ and IL-10 and contribute to the progress of endometriosis.