Search Results

You are looking at 1 - 6 of 6 items for

  • Abstract: stem cells x
  • Abstract: pluripoten* x
  • Abstract: totipotent x
  • Open access x
Clear All Modify Search
Open access

Atsushi Fukuda, Atsushi Mitani, Toshiyuki Miyashita, Hisato Kobayashi, Akihiro Umezawa and Hidenori Akutsu

Spatiotemporal expression of transcription factors is crucial for genomic reprogramming. Pou5f1 (Oct4) is an essential transcription factor for reprogramming. A recent study reported that OCT4A, which is crucial for establishment and maintenance of pluripotent cells, is expressed in oocytes, but maternal OCT4A is dispensable for totipotency induction. Whereas another study reported that OCT4B, which is not related to pluripotency, is predominantly expressed instead of OCT4A during early preimplantation phases in mice. To determine the expression states of OCT4 in murine preimplantation embryos, we conducted in-depth expression and functional analyses. We found that pluripotency-related OCT4 mainly localizes to the cytoplasm in early preimplantation phases, with no major nuclear localization until the 8–16-cell stage despite high expression in both oocytes and early embryos. RNA-sequencing analysis using oocytes and early preimplantation embryos could not identify the splice variants creating alternative forms of OCT4 protein. Forced expression of OCT4 in zygotes by the injection of polyadenylated mRNA clearly showed nuclear localization of OCT4 protein around 3–5-fold greater than physiological levels and impaired developmental competency in a dose-dependent manner. Embryos with modest overexpression of OCT4 could develop to the 16-cell stage; however, more than 50% of the embryos were arrested at this stage, similar to the results for OCT4 depletion. In contrast, extensive overexpression of OCT4 resulted in complete arrest at the 2-cell stage accompanied by downregulation of zygotically activated genes and repetitive elements related to the totipotent state. These results demonstrated that OCT4 protein localization was spatiotemporally altered during preimplantation development, and strict control of Oct4 protein levels was essential for proper totipotential reprogramming.

Open access

Rupsha Fraser and Chih-Jen Lin

Gametogenesis (spermatogenesis and oogenesis) is accompanied by the acquisition of gender-specific epigenetic marks, such as DNA methylation, histone modifications and regulation by small RNAs, to form highly differentiated, but transcriptionally silent cell-types in preparation for fertilisation. Upon fertilisation, extensive global epigenetic reprogramming takes place to remove the previously acquired epigenetic marks and produce totipotent zygotic states. It is the aim of this review to delineate the cellular and molecular events involved in maternal, paternal and zygotic epigenetic reprogramming from the time of gametogenesis, through fertilisation, to the initiation of zygotic genome activation for preimplantation embryonic development. Recent studies have begun to uncover the indispensable functions of epigenetic players during gametogenesis, fertilisation and preimplantation embryo development, and a more comprehensive understanding of these early events will be informative for increasing pregnancy success rates, adding particular value to assisted fertility programmes.

Open access

B Fereydouni, C Drummer, N Aeckerle, S Schlatt and R Behr

Oogonia are characterized by diploidy and mitotic proliferation. Human and mouse oogonia express several factors such as OCT4, which are characteristic of pluripotent cells. In human, almost all oogonia enter meiosis between weeks 9 and 22 of prenatal development or undergo mitotic arrest and subsequent elimination from the ovary. As a consequence, neonatal human ovaries generally lack oogonia. The same was found in neonatal ovaries of the rhesus monkey, a representative of the old world monkeys (Catarrhini). By contrast, proliferating oogonia were found in adult prosimians (now called Strepsirrhini), which is a group of ‘lower’ primates. The common marmoset monkey (Callithrix jacchus) belongs to the new world monkeys (Platyrrhini) and is increasingly used in reproductive biology and stem cell research. However, ovarian development in the marmoset monkey has not been widely investigated. Herein, we show that the neonatal marmoset ovary has an extremely immature histological appearance compared with the human ovary. It contains numerous oogonia expressing the pluripotency factors OCT4A, SALL4, and LIN28A (LIN28). The pluripotency factor-positive germ cells also express the proliferation marker MKI67 (Ki-67), which has previously been shown in the human ovary to be restricted to premeiotic germ cells. Together, the data demonstrate the primitiveness of the neonatal marmoset ovary compared with human. This study may introduce the marmoset monkey as a non-human primate model to experimentally study the aspects of primate primitive gonad development, follicle assembly, and germ cell biology in vivo.

Open access

Catherine E Forristal, Kate L Wright, Neil A Hanley, Richard O C Oreffo and Franchesca D Houghton

Human embryonic stem (hES) cells are routinely cultured under atmospheric, 20% oxygen tensions but are derived from embryos which reside in a 3–5% oxygen (hypoxic) environment. Maintenance of oxygen homeostasis is critical to ensure sufficient levels for oxygen-dependent processes. This study investigates the importance of specific hypoxia inducible factors (HIFs) in regulating the hypoxic responses of hES cells. We report that culture at 20% oxygen decreased hES cell proliferation and resulted in a significantly reduced expression of SOX2, NANOG and POU5F1 (OCT4) mRNA as well as POU5F1 protein compared with hypoxic conditions. HIF1A protein was not expressed at 20% oxygen and displayed only a transient, nuclear localisation at 5% oxygen. HIF2A (EPAS1) and HIF3A displayed a cytoplasmic localisation during initial hypoxic culture but translocated to the nucleus following long-term culture at 5% oxygen and were significantly upregulated compared with cells cultured at 20% oxygen. Silencing of HIF2A resulted in a significant decrease in both hES cell proliferation and POU5F1, SOX2 and NANOG protein expression while the early differentiation marker, SSEA1, was concomitantly increased. HIF3A upregulated HIF2A and prevented HIF1A expression with the knockdown of HIF3A resulting in the reappearance of HIF1A protein. In summary, these data demonstrate that a low oxygen tension is preferential for the maintenance of a highly proliferative, pluripotent population of hES cells. While HIF3A was found to regulate the expression of both HIF1A and HIF2A, it is HIF2A which regulates hES cell pluripotency as well as proliferation under hypoxic conditions.

Open access

Jishang Gong, Quanwei Zhang, Qi Wang, Youji Ma, Jiaxiang Du, Yong Zhang and Xingxu Zhao

PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA–protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18–40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18–30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM–receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity.

Open access

Y Li, Michelle K Y Seah and C O'Neill

Reprogramming epigenetic modifications to cytosine is required for normal embryo development. We used improved immunolocalization techniques to simultaneously map global changes in the levels of 5′-methylcytosine (5meC) and 5′-hydroxymethylcytosine (5hmC) in each cell of the embryo from fertilization through the first rounds of cellular differentiation. The male and female pronuclei of the zygote showed similar staining levels, and these remained elevated over the next three cell cycles. The inner cells of the morula showed a progressive reduction in global levels of both 5meC and 5hmC and further losses occurred in the pluripotent inner cell mass (ICM) of the blastocyst. This was accompanied by undetectable levels of DNA methyltransferase of each class in the nuclei of the ICM, while DNA methyltransferase 3B was elevated in the hypermethylated nuclei of the trophectoderm (TE). Segregation of the ICM into hypoblast and epiblast was accompanied by increased levels in the hypoblast compared with the epiblast. Blastocyst outgrowth in vitro is a model for implantation and showed that a demethylated state persisted in the epiblast while the hypoblast had higher levels of both 5meC and 5hmC staining. The high levels of 5meC and 5hmC evident in the TE persisted in trophoblast and trophoblast giant cells after attachment of the blastocyst to the substratum in vitro. This study shows that global cytosine hypomethylation and hypohydroxymethylation accompanied the formation of the pluripotent ICM and this persisted into the epiblast after blastocyst outgrowth, and each differentiated lineage formed in the early embryo showed higher global levels of 5meC and 5hmC.