Endometriosis is an estrogen-dependent disease that involves the adhesion, invasion, and angiogenesis of endometrial tissues outside of the uterine cavity. We hypothesized that a link exists between estrogen and beta-catenin (β-catenin) signaling in the pathogenesis of endometriosis. Human endometrial stromal cells (HESCs) were separated from eutopic endometrial tissues that were obtained from patients with endometriosis. β-catenin expression and cells invasiveness ability were up-regulated by 17β-estradiol (E2) in an estrogen receptor (ESR)-dependent manner, whereas β-catenin siRNA abrogated this phenomenon. Moreover, co-immunoprecipitation and dual immunofluorescence studies confirmed ESR1, β-catenin, and lymphoid enhancer factor 1/T cell factor 3 co-localization in the nucleus in HESCs after E2 treatment. To determine the role of β-catenin signaling in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium from endometriosis patients into ovariectomized severe combined immunodeficiency mice. The implantation of the endometrium was suppressed by β-catenin siRNA. Collectively, studies regarding β-catenin signaling are critical for improving our understanding of the pathogenesis of estrogen-induced endometriosis, which can translate into the development of treatments and therapeutic strategies for endometriosis.
Search Results
You are looking at 1 - 4 of 4 items for
- Author: Yi Liu x
- Refine by Access: Open Access content only x
Wenqian Xiong, Ling Zhang, Lan Yu, Wei Xie, Yicun Man, Yao Xiong, Hengwei Liu, and Yi Liu
Qi Li, Na Li, Hengwei Liu, Yu Du, Haitang He, Ling Zhang, and Yi Liu
Endometriosis (EMs) is an estrogen (E2)-dependent inflammatory disorder. Although EMs is considered a benign disease, it presents with malignant characteristics, such as migration and invasion. An increasing number of studies have shown that aberrantly expressed circular RNAs (circRNAs) play an essential role in disease development and progression. However, the mechanisms by which circRNAs exert their pathological effects in EMs remain unclear. Hsa_circ_0001649, a novel cancer-associated circRNA, has been previously reported to be downregulated in several cancer types and related to cell migration and invasion. In the present study, real-time PCR (qRT-PCR) was carried out to measure hsa_circ_0001649 levels in human tissues, human primary endometrial stromal cells (ESCs) and a human endometrial stromal cell line (ThESCs). Matrix metalloproteinase 9 (MMP9) levels in ESCs and ThESCs were assessed by qRT-PCR and Western blotting, and the migration and invasion capacities of ThESCs were evaluated by transwell assay. As a result, hsa_circ_0001649 expression was significantly decreased in ectopic and eutopic endometrial samples compared with that in normal endometrial samples. E2 decreased hsa_circ_0001649 expression but increased MMP9 expression in ESCs and ThESCs. Furthermore, ThESCs were more invasive under E2 stimulation. However, these effects disappeared when ICI or hsa_circ_0001649 transfection was used. Collectively, our findings reveal that decreased hsa_circ_0001649 expression plays a role in E2-increased MMP9 expression through E2 receptors (ERs), which have critical functions in EMs.
Ning-Xin Qin, Yi-Ran Zhao, Wei-Hui Shi, Zhi-Yang Zhou, Ke-Xin Zou, Chuan-Jin Yu, Xia Liu, Ze-Han Dong, Yi-Ting Mao, Cheng-Liang Zhou, Jia-Le Yu, Xin-Mei Liu, Jian-Zhong Sheng, Guo-Lian Ding, Wen-Long Zhao, Yan-Ting Wu, and He-Feng Huang
The number of children born after assisted reproductive technology (ART) is accumulating rapidly, and the health problems of the children are extensively concerned. This study aims to evaluate whether ART procedures alter behaviours in male offspring. Mouse models were utilized to establish three groups of offspring conceived by natural conception (NC), in vitro fertilization and embryo transfer (IVF-ET), and frozen-thawed embryo transfer (IVF-FET), respectively. A battery of behaviour experiments for evaluating anxiety and depression levels, including the open field test (OFT), elevated plus maze (EPM) test, light/dark transition test (L/DTT), tail suspension test (TST), forced swimming test (FST), and sucrose preference test (SPT) was carried out. Aged (18 months old), but not young (3 months old), male offspring in the IVF-ET and IVF-FET groups, compared with those in the NC group, exhibited increased anxiety and depression-like behaviours. The protein expression levels of three neurotrophins in PFC or hippocampus in aged male offspring from the IVF-ET and IVF-FET groups reduced at different extent, in comparison to NC group. RNA sequencing (RNA-Seq) was performed in the hippocampus of 18 months old offspring to further explore the gene expression profile changes in the three groups. KEGG analyses revealed the coexisted pathways, such as PI3K-Akt signalling pathway, which potentially reflected the similarity and divergence in anxiety and depression between the offspring conceived by IVF-ET and IVF-FET. Our research suggested the adverse effects of advanced age on the psychological health of children born after ART should be highlighted in the future.
Yu-chen Zhang, Xiao-li Qin, Xiao-ling Ma, Hui-qin Mo, Shi Qin, Cheng-xi Zhang, Xiao-wei Wei, Xue-qing Liu, Yan Zhang, Fu-ju Tian, and Yi Lin
Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, Western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.